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SEMIPARAMETRIC DETECTION OF SIGNIFICANT ACTIVATION
FOR BRAIN FMRI

BY CHUNMING ZHANG1 AND TAO YU2

University of Wisconsin-Madison

Functional magnetic resonance imaging (fMRI) aims to locate activated
regions in human brains when specific tasks are performed. The conventional
tool for analyzing fMRI data applies some variant of the linear model, which
is restrictive in modeling assumptions. To yield more accurate prediction of
the time-course behavior of neuronal responses, the semiparametric inference
for the underlying hemodynamic response function is developed to identify
significantly activated voxels. Under mild regularity conditions, we demon-
strate that a class of the proposed semiparametric test statistics, based on the
local linear estimation technique, follow χ2 distributions under null hypothe-
ses for a number of useful hypotheses. Furthermore, the asymptotic power
functions of the constructed tests are derived under the fixed and contiguous
alternatives. Simulation evaluations and real fMRI data application suggest
that the semiparametric inference procedure provides more efficient detec-
tion of activated brain areas than the popular imaging analysis tools AFNI
and FSL.

1. Introduction. Neuroscience is a discipline dedicated to studying the struc-
ture, function and pathology of the brain and nervous system, and lies at the fore-
front of investigation of the brain and mind. Functional magnetic resonance imag-
ing (fMRI) has emerged as a new and exciting noninvasive imaging technique that
aims to localize functional brain areas in a living human brain, that is, to detect
areas or regions that are responsible for the processing of certain stimuli.

Adequate statistical modeling and analysis of the massive spatio-temporal data
sets generated by fMRI pose significant challenges to conventional statistical
methods. First, a typical fMRI data set for a single scan on a single subject con-
tains a (temporally) highly correlated time series of measurements taken every two
seconds or so for about an hour on each of, say, 64 × 64 × 30 voxels (a voxel is
a volume element in three-dimensional space) throughout the brain. Accordingly,
the data sets are so enormous that proper accomodation of both temporal and spa-
tial correlation is needed. Second, models relating fMRI signals to neural changes
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are complex. The standard tool for analyzing fMRI data is some variant of the lin-
ear model, usually fitted separately by least-squares to each voxel [Worsley and
Friston (1995)]. After that, tests of significance of the model parameters are per-
formed and colors are drawn on top of significant voxels. This comprises the major
procedure of statistical parametric mapping (SPM), popularly used in neuroimage
study [Friston et al. (1997)]. Recent reviews of the statistical issues involved in
fMRI for brain imaging and the statistical methods for analyzing fMRI data can
be found in Lange (1996), Lazar et al. (2001), Fahrmeir and Gössl (2002) and
Worsley, et al. (2002), among others.

In this paper, we aim to develop voxelwise semiparametric inference for the
underlying hemodynamic response function (HRF), the object of primary interest
to neuroscientists. For instance, identifying whether a particular voxel is activated
when a subject performs certain motor, sensory or cognitive tasks can be achieved
by means of a statistical test of the hypothesis that HRF is zero. In order to gen-
erate brain activation maps, statistical inference must be drawn from voxelwise
estimates of HRF. We will first develop a semiparametric modeling and estimation
approach to obtain statistically more efficient estimates of the underlying HRF
associated with fMRI experiments. Compared with the general linear model ap-
proach in previous studies, our approach has the advantage that we neither specify
any a priori parametric shape for the HRF, nor do we assume any particular form
for the temporal drift function. Taking full advantage of these flexibilities will help
to reduce the bias due to model misspecification and to enhance the power of de-
tection.

Addressing the issue of semiparametric inference for brain fMRI is a nontriv-
ial task, however. Existing parametric statistical inference procedures for fMRI
are not immediately applicable to our approach in which the HRFs are estimated
semiparametrically. The work on the generalized likelihood ratio test [Fan, Zhang
and Zhang (2001)] sheds light on nonparametric inference, based on function es-
timation under nonparametric models with independent errors, and, at the same
time, is not readily translated into results from other models. Moreover, as em-
phasized in Section 3, some standard results for semiparametric models are not
directly applicable to the context of fMRI data due to the distinctive feature of
the Toeplitz design matrix and the complicated dependence structure of the error
process. Hence, a rigorous investigation of semiparametric inference applied to
the important area of fMRI research is required. This paper fills that gap in the
literature. Under mild regularity conditions, we show that a class of the proposed
semiparametric test statistics follow χ2 distributions under null hypotheses for a
number of useful hypotheses. To yield improved finite-sample performance of the
proposed test statistic, we further explore its bias-corrected version and derive the
corresponding asymptotic distribution. Moreover, the asymptotic power functions
of the constructed tests are derived under the fixed and contiguous alternatives.
These results are not only important for gaining theoretical insight into semipara-
metric inference applied to a much broader range of scientific problems, but also
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helpful in offering valuable practical guidance for the implementation of these
techniques.

The rest of the paper is arranged as follows. Section 2 reviews statistical models
for single-voxel and single-run fMRI. Section 3 describes the semiparametric esti-
mation of the HRF, based on the local linear nonparametric smoothing technique.
Section 4 establishes the asymptotic distribution of the proposed test statistics.
Section 5 presents simulation evaluations and compares the activated brain regions
using the popular imaging analysis tools AFNI (at http://afni.nimh.nih.gov/afni/)
[Cox (1996)] and FSL (at http://www.fmrib.ox.ac.uk/fsl/) [Smith et al. (2004) and
Woolrich et al. (2001)]. Section 6 applies the semiparametric inference to a real
fMRI data set. Technical conditions and detailed proofs are deferred to the Appen-
dix.

2. Statistical models for single-voxel and single-run fMRI. We begin with
a brief overview of the convolution model popularly used in fMRI study. The
BOLD (blood oxygenation level-dependent) signal response to neuronal activity
is heavily lagged and damped by the hemodynamic response. Following Ward
(2001) and Worsley et al. (2002), a single-voxel fMRI time series {s(ti), y(ti)}ni=1
for a given scan and a given subject, can be captured by the convolution model,

y(t) = s ∗ h(t) + d(t) + ε(t), t = t1, . . . , tn,(2.1)

where ∗ denotes the convolution operator, y(t) is the measured noisy fMRI signal,
s(t) is the external input stimulus at time t [which could be from a design either
block- or event-related and where s(t) = 1 or 0 indicates the presence or absence
of a stimulus], h(t) is the hemodynamic response function (HRF) at time t after
neural activity, d(t) is a slowly drifting baseline of time t , and ε(t) is a zero-
mean error process, consisting of nonneural noise (due to respiration and blood
flow pulsations through the cardiac cycle) and “white noise” (from random/thermal
currents in the body and the scanner).

2.1. Existing methods for modeling HRF, drift and error. In neuroimaging
studies, most existing methods model h(·) as the difference of two gamma func-
tions or a linear combination of gamma functions, a linear combination of a gamma
function and its Taylor expansion [Worsley et al. (2002), Lange and Zeger (1997),
Josephs and Henson (1999)]. Genovese (2000) constructed h(·) as a “bell” func-
tion with cubic splines. As a nuisance component in (2.1), the temporal drift d(·)
is usually approximated by a quadratic or higher-order polynomial [Worsley et al.
(2002)] or polynomial splines [Genovese (2000)]. Note that restrictive assump-
tions on the HRF and drift may produce biased estimates of the true hemodynamic
responses. Goutte, Nielsen and Hansen (2000) estimated h(·) using smooth FIR
filters and reported that some subtle details of the HRF can be revealed by the fil-
ters, but not by previous approaches based on gamma functions. The errors ε(ti)
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TABLE 1
HRF, drift and error implemented in AFNI and FSL

AFNI (tool 3dDeconvolve) FSL (tool FEAT)

h(t) finite impulse response filter difference of two gamma functions,
which is the canonical form

d(t) quadratic polynomial removed in the preprocessing, using
high-pass temporal filtering (Gaussian-

weighted LSF straight line fitting)
ε(t) i.i.d. autocorrelation estimated by Tukey

tapering of the spectrum of the residuals

are well known to be temporally autocorrelated. Genovese (2000) assumed inde-
pendent errors for computational convenience. Other assumptions like the AR(p)

structure, most commonly AR(1), are used in Worsley et al. (2002). As an illus-
tration, Table 1 tabulates the HRF, drift and error implemented in software AFNI
and FSL.

3. Semiparametric estimation of HRF. Estimating the HRF in (2.1) is a de-
convolution problem. Ideally, the HRF is a high-dimensional smooth function and
is nonidentically zero if the voxel responds to the stimuli. We will describe a semi-
parametric method for characterizing properties of the hemodynamic response in
the presence of unknown smooth drift. Such characterization is essential for accu-
rate prediction of time-course behavior of neuronal responses.

Typically, the peak value of HRF h(·) is reached after a short delay of the stim-
ulus and drops quickly to zero. A typical example of h(·), given in Glover (1999),
is plotted in Figure 1. Clearly, the region {t :h(t) �= 0} is sparse in its temporal
domain. Thus, to obtain statistically efficient estimates of the HRF associated with
event-related fMRI experiments, the sparsity of the HRF needs to be taken into
account. We thus suppose that h(t) = 0 for t > tm and focus on estimating the
first m values of h(ti), where m is less than n, the length of the fMRI time series.
Similarly to the regularization technique discussed in Bickel and Li (2006), such a

FIG. 1. An illustrative plot of HRF h(tj ) with n = 80.
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qualitative assumption aims to obtain well-behaved solutions to overparametrized
estimation problems and is thus particularly appealing for dimension reduction
with high-dimensional problems. The semiparametric modeling and inference in
this paper are applicable to all m < n. Data-driven selection of m can be made via
a change-point approach or other model-selection criteria. To facilitate discussion,
we assume that y(·) and s(·) have equal time resolutions of one second. Letting
y = (y(t1), . . . , y(tn))

T ,

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s(0) 0 · · · 0
s(t2 − t1) s(0) · · · 0

...
...

. . .
...

s(tm − t1) s(tm − t2) · · · s(0)
...

... · · · ...

s(tn − t1) s(tn − t2) · · · s(tn − tm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

h = (h(t1), . . . , h(tm))T , d = (d(t1), . . . , d(tn))
T and ε = (ε(t1), . . . , ε(tn))

T ,
model (2.1) can be re-expressed as y = Sh + d + ε, where S is a Toeplitz ma-
trix.

In general, for multiple types of stimuli, model (2.1) can be extended to be

y(t) = s1 ∗ h1(t) + · · · + sr ∗ hr(t) + d(t) + ε(t), t = t1, . . . , tn.(3.1)

Corresponding to the j th type of stimulus, denote by sj (·) the time-varying stim-
ulus function, by Sj the n × m Toeplitz design matrix and by hj the m × 1 vector
of the HRF. Model (3.1) can then be rewritten as

y = S1h1 + · · · + Srhr + d + ε ≡ Sh + d + ε,(3.2)

where S = [S1, . . . ,Sr ] and h = [hT
1 , . . . ,hT

r ]T . To accommodate fMRI data with
multiple runs, we only need to supplement the matrix S by adding the Toeplitz
design matrix arising from each run.

Model (3.2) is conceivably a semiparametric regression model, with a vector h
of length rm for parametric components and a vector d of length n for nonpara-
metric components. The parametric components (related to the unknown HRF)
are of primary interest, whereas the nonparametric components (related to the un-
known temporal drift) serve as nuisance effects, and the noise components ε are
serially correlated. We wish to emphasize that due to the special structure of the
design matrix S associated with fMRI design, some commonly used assumptions,
such as independence between rows of a design matrix, fail to hold. In addition, the
unobservable true correlation structure of ε is often complicated. Thus some stan-
dard results for semiparametric models are not directly applicable to the current
fMRI data.

We now describe the semiparametric estimation of both the HRF and the non-
parametric drift function in (3.2). Let Sd be an n×n local linear smoothing matrix
associated with the design points {t1, . . . , tn}, with the (i, j)th entry equal to

Sd(i, j) = (1,0){X(ti)
T W(ti)X(ti)}−1(1, tj − ti)

T K
(
(tj − ti)/b

)
/b,(3.3)
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where K is a kernel function, b > 0 is a bandwidth parameter,

X(t) =
⎡⎢⎣ 1 t1 − t

...
...

1 tn − t

⎤⎥⎦
and

W(t) = diag
{
K

(
(t1 − t)/b

)
/b, . . . ,K

(
(tn − t)/b

)
/b

};
see Fan and Gijbels (1996), which provides a comprehensive account of the local
linear and local polynomial regression techniques. (For expositional simplicity,
this paper is confined to the local linear method.) Note that the matrix Sd car-
ries information about the design points, kernel K and bandwidth b, but does not
rely on the configuration of the response variables. We refer to Section 2.3 of
Zhang (2003) for further discussion of finite-sample and asymptotic properties of
the smoothing matrix. Notice that smoothing the entries of y via the local linear
method is equivalent to applying Sd to y. We observe from (3.2) that

ỹ = S̃h + d̃ + ε̃,(3.4)

where ỹ = (I−Sd)y, S̃ = (I−Sd)S, d̃ = (I−Sd)d, ε̃ = (I−Sd)ε and I denotes an
identity matrix. Ignoring d̃, model (3.4) can be regarded as a general linear model.
Denote by R the true correlation matrix of ε, namely, cov(ε, ε) = σ 2R, with vari-
ance σ 2. Let R̂ be an estimate of R. By the weighted least-squares method, an
estimate of h is produced by

ĥ = (̃ST R̂−1S̃)−1S̃T R̂−1ỹ,(3.5)

which, in turn, supplies estimates of the drift components formed by

d̂ = Sd(y − Sĥ).

4. Semiparametric hypothesis test for HRF. Identification of a particular
brain region with a specific function has become a central theme in neuroscience.
In this section, we consider constructing test statistics to test whether a particular
voxel is activated by the stimuli and whether HRFs activated by different types
of stimuli really differ. They correspond to testing the hypotheses H0 : h = 0 ver-
sus H1 : h �= 0 and H0 : hj1 = hj2 versus H1 : hj1 �= hj2 , where j1 �= j2. Under the
semiparametric model (3.2), all of these testing problems can be formulated in a
more general form,

H0 :Ah = 0 versus H1 :Ah �= 0,(4.1)

where A is a full row rank matrix with rank(A) = k.
An earlier work on developing pseudo-F -type test statistics was empirically

studied in Lu (2006) and Zhang et al. (2006). There, it was observed from QQ
plots in simulation studies that under the null hypothesis, empirical quantiles of the
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F -type test statistics (in the restrictive case where the true R is known and a single
type of stimulus in the fMRI experiment is presented) could be approximated by
quantiles of the F -distribution. No asymptotic exploration of properties of the F -
type test statistics was conducted.

4.1. Asymptotic null distributions. Motivated by the parametric F -statistic in
linear regression models and the justification of power comparison [Zhang and
Dette (2004)] between nonparametric tests for regression curves based on kernel
smoothing techniques, we first examine the following semiparametric test statistic,
represented by

K = (Aĥ)T {A(̃ST R̂−1S̃)−1AT }−1(Aĥ)

r̂T R̂−1̂r/(n − rm)
,

where r̂ = ỹ − S̃ĥ. Theorem 4.1 below establishes the asymptotic null distribution
of K.

THEOREM 4.1. Assume Condition A in the Appendix. Then, under H0 in

(4.1), where A is a k × rm matrix with rank(A) = k, it follows that K
L→χ2

k , where
L→ denotes convergence in distribution.

Our simulation evaluation in Section 5 demonstrates that the finite sampling
distribution of K is reasonably well approximated by its asymptotic χ2 distrib-
ution, whereas when the noise level decreases, the approximation may become
less accurate; see Figure 2 (right panel). Technically, as manifested in the proof
of Theorem 4.1, the asymptotic χ2 distribution of K follows from the asymptotic
normality of ĥ shown in Lemma A.7, which relies on the fact that a term J1 (asso-
ciated with the drift vector d) is stochastically dominated by a term J2 (associated
with the error vector ε). Practically, in finite-sample situations, low noise levels
do not necessarily guarantee that J1 is stochastically negligible compared with J2.
Consequently, the finite sampling distributions of ĥ and K may appear biased to-
ward the normal and χ2 distribution, respectively. In these situations, we adopt the
bias-corrected version of K, defined as

Kbc = (Aĥbc)
T {A(̃ST R̂−1S̃)−1AT }−1(Aĥbc)

r̂T
bcR̂

−1̂rbc/(n − rm)
,

where ĥbc = ĥ − (̃ST R̂−1S̃)−1S̃T R̂−1˜̂d, r̂bc = r̂ − ˜̂d, d̂ = Sd(y − Sĥ) and ˜̂d =
(I−Sd )̂d. Note that as the sequence length n grows, ˜̂d is negligible, but practically
adjusts for the bias caused by J1 due to the ignorance of d̃ in (3.4). Theorem 4.2
below reveals that Kbc and K have the same asymptotic null distributions.

THEOREM 4.2. Assume Condition A in the Appendix. Then, under H0 in

(4.1), where A is a k × rm matrix with rank(A) = k, it follows that Kbc
L→χ2

k .
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We now make some remarks concerning the derivations of Theorems 4.1–4.2.

First, it is tempting to try to show that n−1S̃T R̂−1S̃
P→M for some positive definite

matrix M, where
P→ denotes converges in probability. Nonetheless, for fMRI data,

since the n×n correlation matrix R of ε is generally far more complicated than the
diagonal matrix of independent errors, deriving an explicit form for M is nearly
intractable. To overcome this technical difficulty, we have demonstrated that it
suffices to verify that R satisfies

var{n−1ξT
j1,�1

(I − Sd)T R−1(I − Sd)ξ j2,�2
} → 0

for all j1, j2 = 1, . . . , r and all �1, �2 = 1, . . . ,m, where ξ j,� is the �th column
vector of Sj and R̂ fulfills Condition A8 in the Appendix,

E(‖R̂−1 − R−1‖2∞) = o(1),

‖B‖∞ = max1≤i≤n

∑n
j=1 |B(i, j)| denoting the ∞-norm of an n × n matrix B;

see Lemma A.6 and Corollary A.2. Thus, the explicit form of M is not needed
in deriving the asymptotic null distributions of K and Kbc. Second, Condition A8,
together with ‖B‖2 ≤ {‖B‖1‖B‖∞}1/2 [Golub and Van Loan (1996)] and the sym-
metry of R̂ and R, guarantees that ‖R̂−1 − R−1‖2 = oP (1), which is typically in-
terpreted as the “consistency” of large covariance matrix estimators [Bickel and
Levina (2008)].

REMARK 1. In real-world applications, fMRI sequence lengths are not very
long. For instance, n is 185 for each run in the real fMRI data set described in
Section 6. This indicates that the “mixing assumptions,” commonly made in the
asymptotic studies of nonlinear time series [Bosq (1998), Fan and Yao (2003)],
may not hold for fMRI data. Therefore, the sampling properties of K and Kbc
are studied using the more realistic error assumption A3 of Condition A in the
Appendix, which could possibly be weakened.

REMARK 2. Throughout the numerical work in this paper, parametric esti-
mation of the error covariance matrix adopts a computationally fast and effec-
tive scheme developed in Zhang et al. (2006), which assumes g = 2 in Con-
dition A3 of the Appendix. This regularized estimator is constructed as fol-
lows: obtain the transformed data e(ti) by applying the second-order difference
to y(ti) − ∑r

j=1 sj ∗ hj (ti); calculate autocovariances {γe(j)}gj=0 of e(ti), which

form a linear system for autocovariances {γ (j)}gj=0 of ε(ti); substitute for {γe(j)}
their empirical moment estimates and solve {γ (j)}; acquire an estimate R̂ of R

using Condition A3. Moreover, since an fMRI data set contains time-course mea-
surements over voxels, the number of which is typically of the order of 104–105,
the conventional false discovery rate (FDR) approach [Benjamini and Hochberg
(1995), Storey (2002)] can be adopted to account for the multiple comparisons
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problem. Other useful and elaborate procedures for covariance matrix estimation
and multiple comparison may also be employed. Particularly, Zhang et al. (2006)
presented numerical evidence that the existing FDR approach tends to find activa-
tion in tiny scattered regions of the brain which are more likely to be false discov-
eries, and carefully devised a new FDR approach which gains efficiency over the
existing FDR approach.

4.2. Asymptotic power functions. To appreciate the discriminating power of
the proposed tests in assessing the significance of activated areas, the asymptotic
power is analyzed. Theorem 4.3 demonstrates that both K and Kbc are consistent
against all fixed deviations from the null model.

THEOREM 4.3. Assume Condition A in the Appendix and n−1S̃T R−1S̃
P→M,

where M is positive definite. Then, under the fixed alternative H1 in (4.1),

n−1
K

P→ (Ah)T (AM−1AT )−1Ah/σ 2 > 0,

n−1
Kbc

P→ (Ah)T (AM−1AT )−1Ah/σ 2 > 0.

The results in Theorem 4.3 indicate that under the fixed alternative H1,

K
P→+∞ and Kbc

P→+∞,

at the common rate n. Hence, the test statistics K and Kbc have power functions
tending to one against fixed alternatives.

Consider a sequence of local alternatives, defined by

H1n :Ah = δnc,(4.2)

where δn = n−1/2 and c = (c1, . . . , ck)
T �= 0. Theorem 4.4 explores the asymptotic

distributions of K and Kbc under the local alternatives H1n.

THEOREM 4.4. Assume Condition A in the Appendix and n−1S̃T R−1S̃
P→M,

where M is positive definite. Then, under the local alternative H1n in (4.2),

K
L→χ2

k (τ 2) and Kbc
L→χ2

k (τ 2), with noncentrality parameter τ 2 =
cT (AM−1AT )−1c/σ 2.

The results in Theorem 4.4 indicate that the tests have nontrivial local power
detecting local alternatives approaching the null at the rate n−1/2. A simple calcu-
lation shows that the asymptotic power of the tests against local misspecification
(4.2) equals ∫ ∞

χ2
k;1−α

exp{−(x + τ 2)/2}
2k/2

∞∑
j=0

xk/2+j−1τ 2j


(k/2 + j)22j j ! dx,

where χ2
k;1−α is the 1 − α quantile of the χ2

k distribution and 
(·) denotes the
gamma function.
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5. Simulation study. Throughout the numerical work, we use the Epanech-
nikov kernel function [Silverman (1986)] supported on [−1,1]. A complete copy
of MATLAB codes is available on request.

5.1. Hypothesis test of HRF at a single voxel. As an illustration, the hypoth-
esis testing for H0 : h = 0 versus H1 : h �= 0 is undertaken. This is used to test
whether the brain activity in a voxel is triggered or not. To check the agreement
between the χ2 distribution with finite sampling distributions of K and Kbc under
H0, the fMRI data are simulated as follows. We simulate an fMRI experiment with
a single run and a single type of stimulus, where n = 400 and 500 realizations are
conducted. (I) The time-varying stimuli are generated from independent Bernoulli
trials such that P {s(ti) = 1} = 0.5. (II) The HRF is h(ti) = 0, i = 1, . . . ,18 (so
that m = 18). (III) The drift function is d(ti) = 10 sin{π(ti − 0.21)}, i = 1, . . . , n.
(IV) The noise process ε is the sum of independent noise processes ε1 and ε2
(see Purdon et al. (2001)); {ε1(ti)} are i.i.d. normal with mean zero and variances
0.52162, 0.36892, 0.26082 and 0.18442, respectively; ε2 is AR(1), that is, ε2(ti) =
ρε2(ti−1) + z(ti) with ρ = 0.638 and the z(ti) follow the normal distribution with
mean zero and variances 0.52162, 0.36892, 0.26082 and 0.18442, respectively.
These choices give a noise lag-one autocorrelation equal to 0.4 and signal-to-noise-
ratios (SNRs) of about 1, 2, 4 and 8, where SNR = variance(Sh)/variance(ε).

The QQ plots of the (1st to 99th) percentiles of K and Kbc against those of the
χ2

m distribution are displayed in Figure 2. In the top panel, K and Kbc use the true
covariance matrix and fix the smoothing parameters at their theoretically optimal

FIG. 2. Empirical quantiles (on the y-axis) of test statistics K and Kbc (where the top panel uses
the true R and the optimal smoothing parameters, and the bottom panel uses the estimated R̂ and
data-driven smoothing parameters) versus quantiles (on the x-axis) of χ2

m distribution. Solid line:
the 45 degree reference line.
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values (minimizing the mean squared errors of estimators) for estimating the HRF
and drift in each simulation. For the sake of clarity, only the cases of SNR equal to
1 and 8 are presented; the former is the “large noise level” case, whereas the latter
is the “small noise level” case. In either case, we observe that the finite sampling
distributions of K and Kbc, at the realistic sample size 400, agree reasonably well
with the χ2 distribution. The QQ plots also lend support to the possibility that Kbc
is better than or at least as good as, the bias-uncorrected counterpart K.

For a more realistic comparison, K and Kbc in the bottom panel of Figure 2
use the estimated covariance matrices and data-driven smoothing parameters. The
results are similar in spirit to the ones in the top panel and continue to support the
bias correction procedure.

5.2. Detection of activated brain regions. We simulate a whole brain fMRI
data set, with aim of mimicking true brain activity to the maximum extent feasible.
The experiment design, timings and size are exactly the same as those of the real
fMRI data set in Section 6. An HRF profile is extracted from a voxel which shows
the strongest responses in the real data set. For each voxel, the simulated drift
is obtained from an adequate smoothing of the time series for the corresponding
voxel of the real data set. The simulated noise variance profile is determined from
a variance map, which is made by a 5×5×5 spatial median smoothing on median
values of squared residuals of the real time series, subtracting the simulated drift
profile as mentioned before. The noise process ε(t) is generated in a fashion similar
to that of Section 5.1. Specifically, the variances of ε1(t) and z(t) are chosen to be
equal such that var{ε(t)} is one-fifth of the variance map. The HRF profiles, in
accordance with the stimuli in the experiment, is added to two regions which are
postulated to be truly active. In these two zones, the HRFs have been rescaled to
about 17% and 12% of the amplitude of the original HRF profiles. The purpose
of rescaling the HRFs and noise variance is to amplify the drift effect and weaken
the HRF response so that the estimation of the HRF is more challenging. Figure 3
shows nine different slices which highlight the two activated brain regions. Note
that throughout the paper, we apply the same registration transform from the real
brain data to the T1 high-resolution image of the subject’s brain.

The gain in efficiency achieved by the semiparametric inference procedure is il-
lustrated by comparing the activated brain regions identified by our approach with
those identified via methods offered by the popular software AFNI and FSL. The
conventional FDR approach is performed at the FDR level 0.05. Inspection of Fig-
ure 4 reveals that K and Kbc are capable of locating both active regions. In contrast,
both AFNI and FSL fail to locate an activated brain area, and the other region, al-
though correctly detected, has appreciably reduced size relative to the actual size.
This detection bias suggests that the stringent modeling assumptions in Table 1
should be relaxed to ameliorate the effects of misspecification. Furthermore, as
evidenced in Figure 5, all four methods, when applying the new FDR approach
in Zhang et al. (2006), achieve more accurate detection than their counterparts in
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FIG. 3. True activated brain regions (denoted by hot color) for the simulated fMRI data set.

FIG. 4. Comparison of activated brain regions discovered for the simulated fMRI data set. Top
panel: K (on the left) and Kbc (on the right). Bottom panel: AFNI (on the left) and FSL (on the
right). The conventional FDR approach is used. The FDR level is 0.05.
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Figure 4, with K and Kbc continuing to outperform AFNI and FSL. Therefore, for
applications to the real fMRI data set in Section 6, we will only employ the new
FDR approach in Zhang et al. (2006).

6. Real data analysis. In an emotional control study, subjects saw a series
of negative or positive emotional images and were asked to either suppress or
enhance their emotional responses to the image, or to simply attend to the im-
age. Therefore, there were six types of trial (i.e., six types of stimuli): negative-
enhance (neg-enh), negative-attend (neg-att), negative-suppress (neg-
sup), positive-enhance (pos-enh), positive-attend (pos-att) and positive-
suppress (pos-sup). The sequence of trials was randomized. The time between
successive trials also varied. There were 24 trials each of neg-enh, neg-sup,
pos-enh, and pos-sup; there were 11 trials each of neg-att and pos-att.

FIG. 5. Comparison of activated brain regions discovered for the simulated fMRI dataset. Top
panel: K (on the left) and Kbc (on the right). Bottom panel: AFNI (on the left) and FSL (on the
right). The new FDR approach in Zhang et al. (2006) is used. The FDR level is 0.05.
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The size of the whole brain data set is 64 × 64 × 30. At each voxel, the time
series has six runs, each containing 185 observations with a time resolution of two
seconds, thus TR = 2 seconds and the total length is 1110. In contrast, the length
of stimuli is 2220; the timing of the stimuli has a time resolution of one second
and thus each HRF output will also be sampled at one second. Hence, the odd rows
of the design matrix S in (3.2) suffice for analysis. The study aims to estimate the
BOLD response to each of the trial types for 1–18 seconds following the image
onset. We analyze the fMRI data set containing one subject. The length of the
estimated HRF is set equal to 18.

A comparison of the activated brain regions detected by K, Kbc, AFNI and FSL
is illustrated in Figure 6. Again, the HRF in FSL is specified as the difference
of two gamma functions and the drift term in AFNI is specified as a quadratic
polynomial. We use FDR at level 0.001 to carry out the multiple comparisons. This
level is set to avoid excessive discoveries, most of which are thought to be false.

FIG. 6. Comparison of activated brain regions discovered for the real fMRI data set. Top panel: K

(on the left) and Kbc (on the right). Bottom panel: AFNI (on the left) and FSL (on the right). The
new FDR approach in Zhang et al. (2006) is used. The FDR level is 0.001.
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Our detected regions are closer to those obtained by AFNI, but our methods find
activation in much more clustered regions of the brain. For example, our results
do not have the holes seen in the detected regions on the first slice of AFNI and
FSL. AFNI gives more tiny scattered findings, which are more likely to be false
discoveries. FSL detects very scattered regions which are difficult to interpret. In
addition, the volumes of the regions detected by FSL are substantially smaller than
those of AFNI and our methods.

APPENDIX: PROOFS OF MAIN RESULTS

We first impose some technical assumptions, which are not the weakest possi-
ble. Throughout the proof, C is used as a generic finite constant.

CONDITION A.

A1. The drift function d(t) has a bounded continuous second derivative.
A2. The kernel K is a symmetric probability density function with compact

support, say [−L,L], is Lipschitz continuous and such that supt K(t) ≤ C for
some constant C ∈ (0,∞).

A3. Assume that {ε(ti)} is a stationary g-dependent sequence with E{ε(t1)} =
0, E{ε2 ∈ (0,∞)(t1)} = σ 2 and E{ε4(t1)} < ∞. The eigenvalues of R, the true
correlation matrix of ε, are uniformly bounded away from zero and infinity. Fur-
thermore, E{ε(ti)ε(tj )|R̂} = E{ε(ti)ε(tj )}.

A4. In model (3.1), {sj (·)}, j = 1, . . . , r , are independent of {ε(·)}. For the
RPER design, sj (t) is stationary and P {sj (t) = 1} = pj ∈ (0,1), j = 1, . . . , r , and∑r

j=1 pj < 1. Assume that sj1(tu) and sj2(tv) are independent at any tu �= tv . For
any u, v = 1, . . . , n, E{sj (tu)sj (tv)|R̂} = E{sj (tu)sj (tv)}.

A5. n → ∞, b → 0 and nb → ∞.
A6. ti = i/n, i = 1, . . . , n.
A7. cov(ST ,ST ) > 0.
A8. E(‖R̂−1 − R−1‖2∞) = o(1).

We next introduce some necessary notation and definitions.

NOTATION. For the kernel K and bandwidth b > 0, define Kb(t) = K(t/b)/b.
Denote by ej the j th column of an identity matrix. Define vectors 1 = (1, . . . ,1)T

and 0 = (0, . . . ,0)T . Define a matrix H with entries H(i, j) = n−1Kb(tj − ti),
1 ≤ i, j ≤ n. Define V = R−1 and let ρ(l) denote the noise autocorrelation coeffi-
cient. Denote by ξ j,� the �th column vector of Sj , that is, ξ j,� = Sje�. Throughout
the proof, ‖ · ‖ refers to the L2-norm unless otherwise stated.

DEFINITION A.1. An n×n matrix B is called “row absolute value uniformly
summable” (RAVUS) if there exists C > 0 such that

sup
n≥1

sup
1≤j≤n

n∑
i=1

|B(i, j)| ≤ C.
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Likewise, B is called “column absolute value uniformly summable” (CAVUS) if
there exists C > 0 such that supn≥1 sup1≤i≤n

∑n
j=1 |B(i, j)| ≤ C. Moreover, if a

matrix is both RAVUS and CAVUS, it is called “absolute value uniformly sum-
mable” (AVUS).

Before proving the main results of the paper, we need Lemmas A.1–A.8.

LEMMA A.1. If both matrices B1 ∈ Rn×n and B2 ∈ Rn×n are AVUS, where
AVUS is defined in Definition A.1 above, then B1B2 is AVUS.

PROOF. By the definition, there exists C > 0 such that

sup
n≥1

sup
1≤j≤n

n∑
i=1

|B1(i, j)| ≤ C, sup
n≥1

sup
1≤j≤n

n∑
i=1

|B2(i, j)| ≤ C.

We observe that

sup
n≥1

sup
1≤j≤n

n∑
i=1

|(B1B2)(i, j)| ≤ sup
n≥1

sup
1≤j≤n

n∑
i=1

n∑
l=1

|B1(i, l)B2(l, j)|

= sup
n≥1

sup
1≤j≤n

n∑
l=1

|B2(l, j)|
n∑

i=1

|B1(i, l)|

≤ C sup
n≥1

sup
1≤j≤n

n∑
l=1

|B2(l, j)| ≤ C2.

Thus, B1B2 is RAVUS and, by similar reasoning, is CAVUS. Hence, B1B2 is AVUS.
�

LEMMA A.2. Assume Condition A3. There then exist constants C ∈ (0,∞)

and λ ∈ (0,1) such that |V (i, j)| ≤ Cλ|i−j | for all 1 ≤ i, j ≤ n and n ≥ 1.

PROOF. Under Condition A3, R is positive definite, centered and 2g-banded.
Let an and bn be the minimum and maximum eigenvalues of R, respectively,
and set rn = bn/an. Applying Proposition 2.2 of Demko, Moss and Smith (1984)
gives that |V (i, j)| ≤ Cnλ

|i−j |
n , where Cn = max{a−1

n , (1 + r
1/2
n )2/(2anrn)} and

λn = {(r1/2
n − 1)/(r

1/2
n + 1)}1/g . From Condition A3, an and bn are bounded away

from both zero and infinity; it follows that rn is bounded away from both zero and
infinity. Thus, there exist C ∈ (0,∞) and λ ∈ (0,1) such that Cn < C and λn < λ.
Hence, |V (i, j)| ≤ Cnλ

|i−j |
n ≤ Cλ|i−j |. �

LEMMA A.3. Assume Conditions A2 and A5.
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1. Let f be Lipschitz continuous and bounded on an interval [d1, d2], where
d1 < d2. Let uj = d1 + (d2 − d1)j/n, j = 1, . . . , n. Then, uniformly in τ ,

1

n

n∑
j=1

Kb(uj − τ)f (uj ) = 1

d2 − d1

∫ d2

d1

Kb(u − τ)f (u)du + O

(
1

nb

)
.(A.1)

2. Let {εj }∞j=1 be a sequence of g-dependent and identically distributed random

variables. Assume E(ε2
1) < ∞. Then, for tj = j/n, j = 1, . . . , n,

sup
t∈[bL,1−bL]

E

[{
1

n

n∑
j=1

εjKb(tj − t) − E(ε1)

}2]
= O

(
1

nb

)
.(A.2)

PROOF. We first show (A.1). By the assumptions, there exists a constant C >

0 such that |K(s) − K(t)| ≤ C|s − t |, K(s) ≤ C, |f (s) − f (t)| ≤ C|s − t | and
|f (s)| ≤ C for any s and t . Define J = {j ∈ Z :n(−bL + τ − d1)/(d2 − d1) ≤
j ≤ n(bL + τ − d1)/(d2 − d1)} = {l1, . . . , l2}. Clearly #J ≤ 2nbL/(d2 − d1) + 2,
Kb(uj − τ) = 0 for any j /∈ J and Kb(u − τ) = 0 for u ≤ ul1−1 or u ≥ ul2+1. It
follows that∣∣∣∣∣1

n

n∑
j=1

Kb(uj − τ)f (uj ) − 1

d2 − d1

∫ d2

d1

Kb(u − τ)f (u)du

∣∣∣∣∣
= 1

d2 − d1

∣∣∣∣∣∑
j∈J

∫ uj

uj−1

Kb(uj − τ)f (uj ) du − ∑
j∈J

∫ uj

uj−1

Kb(u − τ)f (u)du

−
∫ ul2+1

ul2

Kb(u − τ)f (u)du

∣∣∣∣∣
≤ 1

d2 − d1

∑
j∈J

{∫ uj

uj−1

C(uj − u)|f (uj )|
b2 du

+
∫ uj

uj−1

Kb(u − τ)C(uj − u)du

}
+ C2

nb

≤
(

nbL

d2 − d1
+ 1

)(
C2

b2 + C2

b

)
(d2 − d1)

n2 + C2

nb
= O

(
1

nb

)
.

We now show (A.2). Following (A.1),

sup
t∈[bL,1−bL]

E

[{
1

n

n∑
j=1

εjKb(tj − t) − E(ε1)

}2]

= sup
t∈[bL,1−bL]

var

{
1

n

∑
j∈J

εjKb(tj − t)

}
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+ sup
t∈[bL,...,1−bL]

{
1

n

n∑
j=1

Kb(tj − t) − 1

}2

{E(ε1)}2

≤ C2g

n2b2 (2nbL + 2)var(ε1) + O

(
1

n2b2

)
= O

(
1

nb

)
. �

COROLLARY A.1. Assume Conditions A2, A5 and A6.
1. For any l = 0,1,2, . . . , we have that uniformly in t ∈ [0,1],

1

n

n∑
j=1

Kb(tj − t)(tj − t)l = bl

{∫ (1−t)/b

−t/b
K(u)ul du + O

(
1

nb

)}
,(A.3)

and thus, uniformly in i ∈ [nbL, . . . , n − nbL],
1

n

n∑
j=1

Kb(tj − ti)(tj − ti)
l = bl

{∫ L

−L
K(u)ul du + O

(
1

nb

)}
.(A.4)

2. There exists C > 0 such that for all n = 1,2, . . . , i ∈ {1, . . . , n} and j ∈
{1, . . . , n},

nb|Sd(i, j)| ≤ C.(A.5)

Moreover, Sd is AVUS. Furthermore, for all n = 1,2, . . . , i ∈ [nbL, . . . , n − nbL]
and j ∈ {1, . . . , n},

Sd(i, j) = H(i, j)(1 + cn,i),(A.6)

where supnbL≤i≤n−nbL |cn,i | = O{1/(nb)}.
3. Let {εj }∞j=1 be a sequence of g-dependent and identically distributed random

variables. Assume E(ε1) = 0 and E(ε2
1) < ∞. Let Yi = n−1 ∑n

j=1 εjKb(tj − ti),

ε = (ε1, . . . , εn)
T and y = (Y1, . . . , Yn)

T . Assume that B ∈ Rn×n is AVUS. Then,

n−1E(‖By‖2) = o(1),(A.7)

n−1E(‖BSdε‖2) = o(1).(A.8)

PROOF. Part 1. Following the proof of (A.1),∣∣∣∣∣1

n

n∑
j=1

Kb(tj − t)

(
tj − t

b

)l

−
∫ (1−t)/b

−t/b
K(u)ul du

∣∣∣∣∣
=

∣∣∣∣∣∑
j∈J

∫ tj

tj−1

Kb(tj − t)

(
tj − t

b

)l

du

− ∑
j∈J

∫ tj

tj−1

Kb(u − t)

(
u − t

b

)l

du −
∫ tl2+1

tl2

Kb(u − t)

(
u − t

b

)l

du

∣∣∣∣∣
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≤ ∑
j∈J

∫ tj

tj−1

|Kb(tj − t) − Kb(u − t)|
∣∣∣∣ tj − t

b

∣∣∣∣l du

+ ∑
j∈J

∫ tj

tj−1

Kb(u − t)

∣∣∣∣( tj − t

b

)l

−
(

u − t

b

)l∣∣∣∣du + 1

nb
.

Note that for j ∈ J, we have |(tj − t)/b|l ≤ Ll and that for j ∈ J and tj−1 ≤
u ≤ tj , we have |{(tj − t)/b}l − {(u − t)/b}l | ≤ C|(tj − u)/b|. Applying the same
argument for (A.1) completes the proof for (A.3) and, in turn, (A.4).

We then show Part 2. Define Sn,l(t) = n−1 ∑n
j=1 Kb(tj − t)(tj − t)l , l = 0,1,2,

and Sn(t) = X(t)T W(t)X(t). Then,

Sn(t) = n

[
Sn,0(t) Sn,1(t)

Sn,1(t) Sn,2(t)

]
,

{Sn(t)}−1 = 1

n[Sn,0(t)Sn,2(t) − {Sn,1(t)}2]
[

Sn,2(t) −Sn,1(t)

−Sn,1(t) Sn,0(t)

]
.

According to (A.3), uniformly in t ∈ [0,1],

{Sn(t)}−1 = 1

nb2[f (t) + O{1/(nb)}]
×

[
b2[a2(t) + O{1/(nb)}] −b[a1(t) + O{1/(nb)}]
−b[a1(t) + O{1/(nb)}] a0(t) + O{1/(nb)}

]
,

where al(t) = ∫ (1−t)/b
−t/b K(u)ul du, l = 0,1,2, are all uniformly bounded in t and

f (t) = a0(t)a2(t) − {a1(t)}2 is minimized at t = 0 with f (0) = 0.25 var(|U |) > 0
for a random variable U with density K(u). It is seen from the definition of Sd in
(3.3) that

Sd(i, j) = Kb(tj − ti)/n

f (ti) + O{1/(nb)}
[{

a2(ti) + O

(
1

nb

)}

− tj − ti

b

{
a1(ti) + O

(
1

nb

)}]
.

Note that when j /∈ [i − nbL, . . . , i + nbL], Kb(tj − ti) = 0 implies Sd(i, j) = 0.
Also, note that when j ∈ [i − nbL, . . . , i + nbL], |tj − ti |/b ≤ L. Thus, there
exists C > 0 uniformly in i ∈ {1, . . . , n} and j ∈ [i − nbL, . . . , i + nbL] such
that |Sd(i, j)| ≤ Cn−1Kb(tj − ti) ≤ C supt K(t)/(nb). Thus, for some C > 0, uni-
formly in n = 1,2, . . . , i = 1, . . . , n and j = 1, . . . , n,

|Sd(i, j)|
{= 0, if |j − i| > nbL,

≤ C/(nb), if |j − i| ≤ nbL,
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which implies (A.5) and also implies that Sd is AVUS. Similar arguments for (A.5)
combined with (A.4) and (3.3) yield (A.6).

We now show Part 3. From (A.2), for any ε > 0, there exists N such that n > N

implies that E(Y 2
i ) < ε for all i ∈ [nbL, . . . , n − nbL]. It can also be shown that

there exists C > 0 such that E(Y 2
i ) ≤ C for all i ∈ [1, . . . , nbL]∪[n−nbL, . . . , n].

Since B is AVUS, there exists C1 > 0 such that supn≥1 sup1≤j≤n

∑n
i=1 |B(i, j)| ≤

C1 and supn≥1 sup1≤i≤n

∑n
j=1 |B(i, j)| ≤ C1. The proof of (A.7) is obtained as

follows:

n−1E(‖By‖2) = 1

n

n∑
i=1

n∑
j=1

n∑
k=1

B(i, j)B(i, k)E(YjYk)

≤ 1

n

n∑
i=1

n∑
j=1

n∑
k=1

|B(i, j)B(i, k)|{E(Y 2
j )E(Y 2

k )}1/2

≤ ε1/2C1/2 1

n

n∑
i=1

{
n∑

j=1

|B(i, j)|
}2

+ C

n

n∑
i=1

∑∑
j,k∈[1,...,nbL]∪[n−nbL,...,n]

|B(i, j)B(i, k)|

≤ ε1/2C1/2C2
1 + 2C2

1CbL + 2C2
1C/n.

Applying (A.5), (A.6) and similar arguments for (A.7) completes the proof of
(A.8). �

LEMMA A.4. Let {Xn}∞n=1 be a sequence of random variables such that every
subsequence of Xn has a further subsequence converging in distribution to a same

random variable X. Then Xn
L→X.

PROOF. Let φY denote the characteristic function of a random variable Y .
Since any subsequence {nl}∞l=1 of {1,2, . . .} has a further subsequence, {nlj }∞j=1,

such that Xnlj

L→X, the Lévy–Cramér continuity theorem [Shao (2003), page 56]
implies that φXnlj

(t) → φX(t) as j → ∞ for any t ∈ R. This, in turn indicates

that φXn(t) → φX(t) as n → ∞ for any t ∈ R. We then conclude that Xn
L→X by

repeated application of the Lévy–Cramér continuity theorem. �

LEMMA A.5. Let {εi}ni=1 be a stationary g-dependent sequence with E(ε1) =
0 and E(ε4

1) < ∞. Set xn,i = τn,iεi , i = 1, . . . , n, where {τn,i} is independent of
{εi}. Define σ 2

n ({τn,i}) = E[(∑n
i=1 xn,i)

2|{τn,i}]. If supn≥1 sup1≤i≤n |τn,i | ≤ C and
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σ 2
n ({τn,i}) = nσ 2

a {1 + oP (1)} for some constants C > 0 and σ 2
a ∈ (0,∞), then

σ−1
n

∑n
i=1 xn,i

L→N(0,1).

PROOF. The proof follows directly from Theorem 1.7 of Bosq (1998),
page 36. It can be achieved by applying the blocking arguments and Lyapunov’s
central limit theorem. �

LEMMA A.6. Assume model (3.2) and Conditions A1–A7. Then:

1. all three matrices ṼR = V (I − Sd), ṼL = (I − Sd)T V and Ṽ = (I −
Sd)T V (I − Sd) are AVUS;

2. var(n−1ξT
j1,�1

Ṽ ξ j2,�2
) → 0 for all j1, j2 = 1, . . . , r and all �1, �2 = 1, . . . ,m;

3. n−1S̃T R−1S̃ − E(n−1S̃T R−1S̃)
P→0;

4. all entries of E(n−1S̃T R−1S̃) are bounded;
5. all convergent subsequences of E(n−1S̃T R−1S̃) are positive definite.

PROOF. The proof of Part 1 can be obtained from applying Lemma A.1,
Lemma A.2 and part 2 of Corollary A.1.

We next show part 2. For �1, �2 = 1, . . . ,m,

n−1ξT
j1,�1

Ṽ ξ j2,�2
= n−1

n∑
k1=1

n∑
k2=1

Sj1(k1, �1)Ṽ (k1, k2)Sj2(k2, �2)

= n−1
n∑

k1=�1

n∑
k2=�2

sj1(tk1 − t�1)sj2(tk2 − t�2)Ṽ (k1, k2)

≡ I1,1 + I1,2 + I1,3 + I1,4,

where

I1,1 = n−1pj1pj2

n∑
k1=�1

n∑
k2=�2

Ṽ (k1, k2),

I1,2 = n−1pj2

n∑
k1=�1

{sj1(tk1 − t�1) − pj1}
n∑

k2=�2

Ṽ (k1, k2),

I1,3 = n−1pj1

n∑
k2=�2

{sj2(tk2 − t�2) − pj2}
n∑

k1=�1

Ṽ (k1, k2),

I1,4 = n−1
n∑

k1=�1

n∑
k2=�2

{sj1(tk1 − t�1) − pj1}{sj2(tk2 − t�2) − pj2}Ṽ (k1, k2).

It is easily seen that

var(I1,1) = 0, var(I1,2) = O(n−1) and var(I1,3) = O(n−1).(A.9)
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For I1,4,

E(I 2
1,4)

= 1

n2

n∑
k1=�1

n∑
k2=�2

n∑
k3=�1

n∑
k4=�2

E[{sj1(tk1 − t�1) − pj1}{sj2(tk2 − t�2) − pj2}

× {sj1(tk3 − t�1) − pj1}{sj2(tk4 − t�2) − pj2}]
× Ṽ (k1, k2)Ṽ (k3, k4),

in which two situations will be discussed. In the situation where j1 = j2 = j , the
additive term above is nonzero only in the following four cases:

I: k1 − �1 = k2 − �2 = k3 − �1 = k4 − �2;
II: {k1 − �1 = k2 − �2} �= {k3 − �1 = k4 − �2};

III: {k1 − �1 = k3 − �1} �= {k2 − �2 = k4 − �2};
IV: {k1 − �1 = k4 − �2} �= {k2 − �2 = k3 − �1}.

Thus, E(I 2
1,4) = EI + EII + EIII + EIV, where

EI ≤ n−2[pj (1 − pj ){p3
j + (1 − pj )

3}]
n∑

k1=1

{Ṽ (k1, k1 + �2 − �1)}2 = O(n−2),

EII ≤ n−2[pj (1 − pj )]2
n∑

k1=1

n∑
k3=1

|Ṽ (k1, k1 + �2 − �1)| · |Ṽ (k3, k3 + �2 − �1)|

= O(n−2),

EIII ≤ n−2[pj (1 − pj )]2
n∑

k1=1

n∑
k2=1

{Ṽ (k1, k2)}2 = O(n−2),

EIV ≤ n−2[pj (1 − pj )]2
n∑

k1=1

n∑
k2=1

|Ṽ (k1, k2)| · |Ṽ (k2 − �2 + �1, k1 + �2 − �1)|

= O(n−2).

Hence, E(I 2
1,4) = O(n−2) when j1 = j2. In the situation where j1 �= j2, since the

sj1(·) are independent at different time points and, similarly, the sj2(·) are indepen-
dent at different time points, E[{sj1(tk1 − t�1)−pj1}{sj1(tk3 − t�1)−pj1}{sj2(tk2 −
t�2) − pj2}{sj2(tk4 − t�2) − pj2}] is nonzero only if k1 = k3 and k2 = k4. In this
case,

E(I 2
1,4)

= 1

n2

n∑
k1=�1

n∑
k3=�1

n∑
k2=�2

n∑
k4=�2

E[{sj1(tk1 − t�1) − pj1}{sj1(tk3 − t�1) − pj1}

× {sj2(tk2 − t�2) − pj2}{sj2(tk4 − t�2) − pj2}]
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× Ṽ (k1, k2)Ṽ (k3, k4)

= 1

n2

n∑
k1=�1

n∑
k2=�2

E[{sj1(tk1 − t�1) − pj1}2{sj2(tk2 − t�2) − pj2}2]

× {Ṽ (k1, k2)}2

= n−2C

n∑
k1=�1

n∑
k2=�2

{Ṽ (k1, k2)}2 = O(n−2).

Thus, in both situations, var(I1,4) → 0. This, combined with (A.9), yields Part 2.
We then show Part 3. Recall that S̃ = (I − Sd)S = [̃S1, . . . , S̃r ], where S̃j =

(I − Sd)Sj . Then,

n−1S̃T R−1S̃ = n−1

⎡⎢⎣ S̃T
1 R−1S̃1 · · · S̃T

1 R−1S̃r

...
. . .

...

S̃T
r R−1S̃1 · · · S̃T

r R−1S̃r

⎤⎥⎦ .

It suffices to consider the block matrix n−1S̃T
j1

R−1S̃j2 , whose (�1, �2)th entry is

Cj1,�1;j2,�2 = n−1ξT
j1,�1

Ṽ ξ j2,�2
. By Part 2, var(Cj1,�1;j2,�2) → 0, which, in turn,

gives Cj1,�1;j2,�2 − E(Cj1,�1;j2,�2)
P→0 and the conclusion of Part 3.

We now show Part 4, which can easily be derived from

|n−1ξT
j1,�1

Ṽ ξ j2,�2
| ≤ n−1

n∑
k1=1

n∑
k2=1

|Ṽ (k1, k2)| ≤ C

since the entries of Sj are either 0 or 1.
Last, we show Part 5. For any {nk}∞k=1 such that E(n−1

k S̃T R−1S̃) converges

to some limit M, by Part 3, n−1
k S̃T R−1S̃

P→M. Obviously, M is semi-positive
definite. It remains to show that M is nonsingular. We now prove this by
contradiction. Assume that there exists some c = (cT

1 , . . . , cT
r )T ∈ Rrm, where

cj = (cj,1, . . . , cj,m)T , j = 1, . . . , r , such that c �= 0 and cT Mc = 0. Then,

n−1
k cT S̃T R−1S̃c

P→0. By the Schur decomposition, there exist Q and v1, . . . , vnk

such that V = QT diag(v1, . . . , vnk
)Q, where QT Q = Ink

and vnk
≤ · · · ≤ v1. Fur-

thermore, from Condition A3, V is positive definite with eigenvalues bounded
away from 0 and ∞. Thus, there exist constants a and b such that 0 < a < b < ∞
and 0 < a ≤ vnk

≤ · · · ≤ v1 ≤ b < ∞. Noting that

n−1
k cT S̃T R−1S̃c = c̃T diag(v1, . . . , vnk

)̃c ≥ a‖̃c‖2,

where c̃ ≡ QS̃c/
√

nk , we conclude that as k → ∞,

‖(I − Sd)Sc‖2/nk
P→0.(A.10)
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Consider

‖(I − Sd)Sc‖2/n = ‖{Sc − E(S)c} − {SdSc − E(S)c}‖2/n
(A.11)

≡ J1 − 2J2 + J3,

where J1 = ‖Sc − E(S)c‖2/n, J2 = {Sc − E(S)c}T {SdSc − E(S)c}/n and J3 =
‖SdSc − E(S)c‖2/n. By the law of large numbers and block arguments, we can
show that

J1
P→var

(
r∑

j=1

cT
j sj,m

)
≥

(
1 −

r∑
j=1

pj

)(
r∑

j=1

pj‖cj‖2

)
> 0,(A.12)

where sj,i = ST
j ei , i = 1, . . . ,m. For J3, note that

E(J3) ≤ o(1) + ‖c‖2

n

n∑
i=1

E

[
r∑

j=1

m∑
k=1

{
n∑

�=1

Sd(i, �)sj (t� − tk) − pj

}2]

≤ o(1) + ‖c‖2

n

r∑
j=1

m∑
k=1

(n − 2nbL)

× sup
i∈[nbL,...,n−nbL]

E

[{
n∑

�=1

Sd(i, �)sj (t� − tk) − pj

}2]

+ ‖c‖2

n

r∑
j=1

m∑
k=1

2nbL

× sup
i∈[1,...,nbL]∪[n−nbL,...,n]

E

[{
n∑

�=1

Sd(i, �)sj (t� − tk) − pj

}2]

= o(1) + ‖c‖2

n

r∑
j=1

m∑
k=1

(n − 2nbL)

× sup
i∈[nbL,...,n−nbL]

E

[{
{1 + o(1)}1

n

n∑
�=1

Kb(t� − ti)sj (t� − tk) − pj

}2]

+ ‖c‖2

n

r∑
j=1

m∑
k=1

2nbL

× sup
i∈[1,...,nbL]∪[n−nbL,...,n]

E

[{
n∑

�=1

Sd(i, �)sj (t� − tk) − pj

}2]
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= o(1) + ‖c‖2

{
r∑

j=1

m∑
k=1

o(1)

}
+ ‖c‖2

{
r∑

j=1

m∑
k=1

O(b)

}
.

In the last equality, the second term follows from (A.2), whereas the third term
uses |sj (t� − tk)| ≤ 1 and the fact that Sd is AVUS. Thus, E(J3) → 0 and J3 ≥ 0
imply that

J3 = oP (1).(A.13)

By the Cauchy–Schwarz inequality, |J2| ≤ 2(J1J3)
1/2. Thus, J2 = oP (1). This, to-

gether with (A.11), (A.12) and (A.13), shows that ‖(I − Sd)Sc‖2/n
P→

var(
∑r

j=1 cT
j sj,m), which contradicts (A.10). �

LEMMA A.7. Assume Condition A. Suppose that n−1S̃T R−1S̃
P→M, where

M ∈ Rrm×rm is positive definite. Then n−1S̃T R̂−1S̃
P→M and n1/2(̂h − h)

L→N(0,

σ 2M−1).

PROOF. From (3.5), ĥ − h = (n−1S̃T R̂−1S̃)−1n−1/2(J ∗
1 + J ∗

2 ), where J ∗
1 =

n−1/2S̃T R̂−1d̃ and J ∗
2 = n−1/2S̃T R̂−1ε̃. Let J1 = n−1/2S̃T R−1d̃ and J2 =

n−1/2S̃T R−1ε̃. The proof proceeds in three steps to show that J1 = oP (1),

J2
L→N(0, σ 2M) and

n−1S̃T (R̂−1 − R−1)̃S
P→ 0,

J ∗
1 − J1 = oP (1),(A.14)

J ∗
2 − J2 = oP (1).

First, we will show J1 = oP (1). From (A.6), the ith entry of (I − Sd)d is

d(ti) − {1 + o(1)}1

n

n∑
j=1

Kb(tj − ti) d(tj )

= d(ti) − {1 + o(1)}
∫ (1−ti )/b

−ti/b
K(u)d(ti + ub)du + O

(
1

nb

)

= {1 + o(1)}
∫ L

−L
{ubK(u)d ′(ti) + u2b2K(u)d ′′(ξ)/2}du + o(1) + O

(
1

nb

)
= o(1),

uniformly in i ∈ [nbL, . . . , n − nbL]. When i ∈ [1, . . . , nbL] ∪ [n − nbL, . . . , n],∣∣∣∣∣d(ti) − {1 + o(1)}1

n

n∑
j=1

Kb(tj − ti)d(tj )

∣∣∣∣∣
≤ sup

t∈[0,1]
|d(t)|

{
1 + sup

1≤�≤n

∣∣∣∣∣1

n

n∑
j=1

Kb(tj − t�)

∣∣∣∣∣
}

≤ C,
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for some C > 0. Thus,

sup
i∈[nbL,...,n−nbL]

|eT
i d̃| = o(1),

(A.15)
sup
n≥1

sup
i∈[1,...,nbL]∪[n−nbL,...,n]

|eT
i d̃| ≤ C.

Consider the j th block vector of J1: J1,j = n−1/2S̃T
j R−1d̃. Its ith entry is eT

i J1,j =
n−1/2d̃T V (I − Sd)(ξ j,i − pj 1). Then,

E(eT
i J1,j ) = n−1/2d̃T V (I − Sd){pj (0T

i−1,1T
n−i+1)

T − pj 1}
= −pjn

−1/2d̃T V (I − Sd)(1T
i−1,0T

n−i+1)
T

= −pjn
−1/2

n∑
k=1

d̃(tk)

i−1∑
�=1

ṼR(k, �),

and thus |E(eT
i J1,j )| ≤ pjn

−1/2 ∑m
�=1

∑n
k=1 |ṼR(k, �)|{sup1≤l≤n |d̃(tl)|} = o(1),

by (A.15) and the fact that ṼR is AVUS. Moreover,

var(eT
i J1,j ) = n−1d̃T V (I − Sd)

[
0 0
0 pj (1 − pj )I

]
(I − Sd)T V d̃

≤ n−1pj (1 − pj )‖ṼLd̃‖2,

which implies that var(J1,j ) = 1m1T
mo(1), using similar derivations for (A.7).

Thus, J1,j
P→0 and hence J1

P→0.

Second, we will show that J2
L→N(0, σ 2M). Since ε̃ = ε − Sdε, J2 =

n−1/2S̃T R−1ε − n−1/2S̃T R−1Sdε ≡ J21 − J22. Consider the j th block vector
of J22: J22,j = n−1/2S̃T

j R−1Sdε. Its ith entry is eT
i J22,j = n−1/2(Sdε)T V (I −

Sd)ξ j,i , thus

E(eT
i J22,j ) = E[E{n−1/2(Sdε)T V (I − Sd)ξ j,i |ξ j,i}] = 0

and

var(eT
i J22,j ) = var{E(eT

i J22,j |ε)} + E{var(eT
i J22,j |ε)}

= n−1p2
j var{(Sdε)T V (I − Sd)(1T

i−1,0T
n−i+1)

T }

+ n−1E

{
(Sdε)T V (I − Sd)

[
0 0
0 pj (1 − pj )I

]
(I − Sd)T V (Sdε)

}
≤ n−1p2

j σ
2‖R1/2ST

d V (I − Sd)(1T
i−1,0T

n−i+1)
T ‖2

+ n−1pj (1 − pj )E(‖ṼLSdε‖2)

= o(1) + o(1) = o(1).
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In the last equality, the first o(1) is from Lemma A.2 and similar arguments for
(A.8). The second o(1) is from (A.8) and Part 1 of Lemma A.6. Thus, J22,j =
oP (1) and J22 = oP (1). For J21, by the Cramér–Wold device, it suffices to show

that for any w = (wT
1 , . . . ,wT

r )T ∈ Rrm, wT J21
L→N(0, σ 2wT Mw), where wj =

(wj,1, . . . ,wj,m)T , j = 1, . . . , r . Note that wT J21 = n−1/2 ∑n
i=1 τn,iεi , where

τn,i = ∑r
j=1

∑n
k=1

∑m
�=1 wj,�sj (tk − t�)ṼL(k, i). Thus,

|τn,i | ≤ rm

(
max

1≤j≤r
max

1≤�≤m
|wj,�|

) n∑
k=1

|ṼL(k, i)| ≤ C,

where the last inequality is from Part 1 of Lemma A.6. Also, σ 2
n ({τn,i}) =

nvar(wT J21|{τn,i}) = σ 2wT S̃T R−1S̃w = nσ 2wT Mw{1 + oP (1)} = nσ 2
a {1 +

oP (1)}, where σ 2
a = σ 2wT Mw. By Lemma A.5, the result follows.

Third, to verify (A.14), it is sufficient to show that

n−1S̃T (R̂−1 − R−1)̃S = oP (1),(A.16)

n−1/2S̃T (R̂−1 − R−1)̃d = oP (1),(A.17)

n−1/2S̃T (R̂−1 − R−1)̃ε = oP (1).(A.18)

Note that Condition A8 implies that R̂−1 − R−1 is AVUS. Similar arguments for
Lemma A.6, J1 and J2 complete the proofs for (A.16), (A.17) and (A.18), respec-
tively. �

COROLLARY A.2. Assume Condition A. Then,

1. ĥ
P→h;

2. (Aĥ − Ah)T {A(̃ST R̂−1S̃)−1AT }−1(Aĥ − Ah)
L→σ 2χ2

k .

PROOF. By Lemma A.6, for any subsequence {nl}∞l=1, there exists a further

subsequence, {nlj }∞j=1, such that n−1
lj

S̃T R−1S̃
P→Ml for some positive definite ma-

trix Ml . For this {nlj }∞j=1, an appeal to Lemma A.7 gives n−1
lj

S̃T R̂−1S̃
P→Ml and

n
1/2
lj

(̂h − h)
L→N(0, σ 2M−1

l ).

It follows that along {nlj }∞j=1, ĥ
P→h as j → ∞. Thus, for any subsequence

of ĥ, there exists a further subsequence along which ĥ
P→h. This gives ĥ

P→h as
n → ∞.

We now show the second part. Applying Slutsky’s theorem gives that as j → ∞,
{A(̃ST R̂−1S̃)−1AT }−1/2A(̂h − h) has an asymptotic Gaussian distribution with
mean vector zero and variance–covariance matrix σ 2Ik, which implies that, for
{nlj }∞j=1,

(̂h − h)T AT {A(̃ST R̂−1S̃)−1AT }−1A(̂h − h)
L→σ 2χ2

k as j → ∞.
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Applying Lemma A.4, we deduce that (ĥ − h)T AT {A(̃ST R̂−1S̃)−1AT }−1A(̂h −
h)

L→σ 2χ2
k as n → ∞. �

LEMMA A.8. Assume Condition A. Then r̂T R̂−1̂r/n
P→σ 2.

PROOF. By the definition of r̂,

r̂ = ỹ − S̃ĥ = (I − Sd)(y − Sĥ) = S̃(h − ĥ) + d̃ + ε̃.(A.19)

Notice that n−1̂rT R̂−1̂r = n−1̂rT R−1̂r + n−1̂rT (R̂−1 − R−1)̂r, in which

n−1̂rT R−1̂r = n−1‖R−1/2{̃S(h − ĥ) + d̃ + ε̃}‖2

= n−1‖R−1/2{̃S(h − ĥ) + d̃ − Sdε} + R−1/2ε‖2

≡ I1 + 2I2 + I3,

where I1 = n−1‖R−1/2{̃S(h − ĥ) + d̃ − Sdε}‖2, I2 = n−1{̃S(h − ĥ) + d̃ −
Sdε}T R−1ε and I3 = n−1‖R−1/2ε‖2. The proof will be completed by showing
that I1 = oP (1), I2 = oP (1), I3 = σ 2 + oP (1) and n−1̂rT (R̂−1 − R−1)̂r = oP (1).

First, consider I1. Note that

I1 = n−1‖R−1/2{̃S(h − ĥ) + d̃ − Sdε}‖2

≤ 3n−1‖R−1/2S̃(h − ĥ)‖2 + 3n−1‖R−1/2d̃‖2 + 3n−1‖R−1/2Sdε‖2.

The first term is oP (1) by Lemma A.6 and Corollary A.2, the second and third
terms are both oP (1) by (A.8), (A.15) and similar derivations for (A.7). Thus,
I1 = oP (1).

Second, consider I3 = n−1 ∑n
i=1

∑n
j=1 ε(ti)ε(tj )V (i, j). Then,

E(I3) = n−1E(εT R−1ε) = n−1trace{E(εεT )R−1} = σ 2,

E(I 2
3 ) = n−2

n∑
k1=1

n∑
k2=1

n∑
k3=1

n∑
k4=1

e(k1, k2, k3, k4)V (k1, k2)V (k3, k4),

where e(k1, k2, k3, k4) = E{ε(tk1)ε(tk2)ε(tk3)ε(tk4)}. There are only four possible
cases in which e(k1, k2, k3, k4) is nonzero. In Case 1, for any i ∈ {k1, k2, k3, k4},
there exists j ∈ {k1, k2, k3, k4}, i �= j , such that |i − j | ≤ g. Then,∣∣∣∣∣n−2

∑∑∑∑
Case 1

e(k1, k2, k3, k4)V (k1, k2)V (k3, k4)

∣∣∣∣∣
≤ n−2

n∑
k1=1

∑
k2:|k2−k1|≤g

∑
k3:|k3−k1|≤g

∑
k4:|k4−k1|≤g

E[{ε(t1)}4]

× |V (k1, k2)| · |V (k3, k4)|
≤ n−2C2.
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In Case 2, |k1 − k2| ≤ g and |k3 − k4| ≤ g, but for any i ∈ {k1, k2} and j ∈ {k3, k4},
|i − j | > g. Then,

n−2
∑∑∑∑

Case 2

e(k1, k2, k3, k4)V (k1, k2)V (k3, k4)

= n−2σ 4
∑∑

k1,k2

ρ(|k2 − k1|)V (k1, k2)
∑∑

k3,k4

ρ(|k3 − k4|)V (k3, k4)

− n−2σ 4
∑∑∑∑

Case 1

ρ(|k2 − k1|)ρ(|k3 − k4|)V (k1, k2)V (k3, k4)

= {E(I3)}2 − O(n−2).

In Case 3, |k1 − k3| ≤ g and |k2 − k4| ≤ g, but for any i ∈ {k1, k3} and j ∈ {k2, k4},
|i − j | > g. Then,∣∣∣∣∣n−2

∑∑∑∑
Case 3

e(k1, k2, k3, k4)V (k1, k2)V (k3, k4)

∣∣∣∣∣
≤ n−2σ 4

n∑
k1=1

∑
k3:|k3−k1|≤g

n∑
k2=1

∑
k4:|k4−k2|≤g

ρ(|k3 − k1|)ρ(|k4 − k2|)

× |V (k1, k2)| · |V (k3, k4)|
≤ n−1C2.

A similar result holds for Case 4, where |k1 − k4| ≤ g and |k2 − k3| ≤ g, but for
any i ∈ {k1, k4} and j ∈ {k2, k3}, |i − j | > g. Combining Cases 1–4, E(I 2

3 ) →
{E(I3)}2, which leads to I3

P→E(I3) = σ 2.
Third, consider I2. By the Cauchy–Schwarz inequality, I2 = oP (1).
Fourth, to deduce n−1̂rT (R̂−1 − R−1)̂r = oP (1), it is sufficient to show that

n−1{̃S(h − ĥ)}T (R̂−1 − R−1)̃S(h − ĥ) = oP (1),(A.20)

n−1d̃T (R̂−1 − R−1)̃d = oP (1),(A.21)

n−1ε̃T (R̂−1 − R−1)̃ε = oP (1).(A.22)

It is easy to see that (A.20) follows from (A.16) and Corollary A.2, whereas
(A.21)–(A.22) are obtained by similar arguments for (A.16)–(A.18). �

LEMMA A.9. Assume Condition A. Then:

1. n−1/2S̃T R̂−1˜̂d = oP (1);

2. (Aĥbc − Ah)T {A(̃ST R̂−1S̃)−1AT }−1(Aĥbc − Ah)
L→σ 2χ2

k ;

3. n−1̂rT
bcR̂

−1̂rbc
P→σ 2.
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PROOF. To show the first part, note that ˜̂d = (I−Sd )̂d = (I−Sd)Sd(y−Sĥ) =
Sd(I − Sd)(y − Sĥ) = Sd r̂. Thus from (A.19),˜̂d = (I − Sd)SdS(h − ĥ) + Sd d̃ + (I − Sd)Sdε,(A.23)

in which

(I − Sd)Sdξ j,� = (I − Sd)Sd [{ξ j,� − E(ξ j,�)} − {pj 1 − E(ξ j,�)}]
= (I − Sd)[Sd{ξ j,� − E(ξ j,�)} − Sd(pj 1T

j−1,0T
n−j+1)

T ].
Note that n−1/2S̃T R−1˜̂d = I1 + I2 + I3, where I1 = n−1/2S̃T R−1(I −Sd)SdS(h −
ĥ), I2 = n−1/2S̃T R−1Sd d̃ and I3 = n−1/2S̃T R−1(I − Sd)Sdε. We now show that
each term is oP (1). For I1, from Lemma A.7, we have n1/2(h − ĥ) = OP (1), thus
we only need to consider the matrix n−1S̃T R−1(I − Sd)SdS. For its block matrix
n−1S̃T

j1
R−1(I − Sd)SdSj2 , the (�1, �2)th entry satisfies

|n−1eT
�1

S̃T
j1

R−1(I − Sd)SdSj2e�2 |
≤ n−1/2‖R−1/2S̃j1e�1‖n−1/2‖R−1/2(I − Sd)Sdξ j2,�2

‖
≤ I11(I12 + I13),

where I11 = n−1/2‖R−1/2S̃j1e�1‖, I12 = n−1/2‖R−1/2(I − Sd)Sd{ξ j2,�2
−

E(ξ j2,�2
)}‖ and I13 = n−1/2‖R−1/2(I − Sd)Sd(pj21T

j2−1,0T
n−j2+1)

T ‖. Then by
Lemma A.6, I11 = OP (1). By (A.8), I12 = o(1) and, similarly, I13 = o(1).
Thus I1 = oP (1). For I2, using the same procedures as in Lemma A.7 for
proving J1 = oP (1), we can show I2 = oP (1). For I3, using the same proce-
dures as in Lemma A.7 for proving J22 = oP (1), we obtain I3 = oP (1). Thus,
n−1/2S̃T R−1˜̂d = oP (1). It remains to show that n−1/2S̃T (R̂−1 − R−1 )̃̂d = oP (1),
whose proof is similar to that of (A.17).

To show the second part, recall that ĥbc = ĥ − (n−1S̃T R̂−1S̃)−1(n−1S̃T R̂−1˜̂d).
Using the first part together with Lemma 6 and Corollary 2 leads to the second
part.

To show the third part, note that r̂bc = r̂ −˜̂d and n−1̂rT
bcR̂

−1̂rbc = n−1̂rT
bcR

−1 ×
r̂bc + n−1̂rT

bc(R̂
−1 − R−1)̂rbc, in which

n−1̂rT
bcR

−1̂rbc = n−1‖R−1/2(̂r − ˜̂d)‖2 ≡ J1 − 2J2 + J3,

where J1 = n−1‖R−1/2̂r‖2, J2 = 2n−1̂rT R−1˜̂d and J3 = n−1‖R−1/2˜̂d‖2. From
Lemma A.8, J1 = σ 2 + oP (1). From (A.23),

J3 = n−1‖R−1/2{(I − Sd)SdS(h − ĥ) + Sd d̃ + (I − Sd)Sdε}‖2

≤ 3n−1{‖R−1/2(I − Sd)SdS(h − ĥ)‖2

+ ‖R−1/2Sd d̃‖2 + ‖R−1/2(I − Sd)Sdε‖2}.



SEMI-PARAMETRIC DETECTION FOR FMRI 1723

Using similar proofs for the numerator, we obtain J3 = oP (1). By the Cauchy–

Schwarz inequality, J2 = oP (1). Thus, n−1̂rT
bcR

−1̂rbc
P→σ 2. To show n−1̂rT

bc ×
(R̂−1 − R−1)̂rbc = oP (1), it is sufficient to show that

n−1̂rT (R̂−1 − R−1)̂r = oP (1),(A.24)

n−1˜̂dT
(R̂−1 − R−1 )̃̂d = oP (1),(A.25)

where (A.24) directly follows from the fourth step of the proof for Lemma A.8 and
(A.25) uses similar proofs for (A.21)–(A.22). �

A.1. Proof of Theorem 4.1. From Corollary A.2, under H0 in (4.1), the nu-
merator of K converges in distribution to σ 2χ2

k . This, combined with Lemma A.8,
gives the desired result for K.

A.2. Proof of Theorem 4.2. Under H0 in (4.1), the second and third parts of
Lemma A.9 complete the proof for Kbc.

A.3. Proof of Theorem 4.3. The numerator of K can be decomposed into
three additive terms:

I1 = (Aĥ − Ah)T {A(̃ST R̂−1S̃)−1AT }−1(Aĥ − Ah);
I2 = 2n(Ah)T {A(n−1S̃T R̂−1S̃)−1AT }−1(Aĥ − Ah);
I3 = n(Ah)T {A(n−1S̃T R̂−1S̃)−1AT }−1(Ah).

Notice that I1
L→σ 2χ2

k by the second part of Corollary A.2; I3 = n(Ah)T ×
(AM−1AT )−1Ah{1+oP (1)} by Lemma A.7 and H1 in (4.1); I2 = OP (

√
n) by the

Cauchy–Schwarz inequality. These, along with Lemma A.8, complete the proof
for K. The proof for Kbc is similar and is hence omitted.

A.4. Proof of Theorem 4.4. Following Lemma A.7, under H1n in (4.2),

n1/2Aĥ
L→N(c, σ 2AM−1AT ). Thus

{A(n−1S̃T R̂−1S̃)−1AT }−1/2n1/2Aĥ

(̂rT R̂−1̂r)1/2
L→N((AM−1AT )−1/2c/σ, Ik).

This completes the proof for K. Similar proofs for Kbc are omitted.
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