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SINGLE-INDEX MODULATED MULTIPLE TESTING
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In the context of large-scale multiple testing, hypotheses are often ac-
companied with certain prior information. In this paper, we present a single-
index modulated (SIM) multiple testing procedure, which maintains control
of the false discovery rate while incorporating prior information, by assuming
the availability of a bivariate p-value, (p1,p2), for each hypothesis, where p1
is a preliminary p-value from prior information and p2 is the primary p-value
for the ultimate analysis. To find the optimal rejection region for the bivari-
ate p-value, we propose a criteria based on the ratio of probability density
functions of (p1,p2) under the true null and nonnull. This criteria in the bi-
variate normal setting further motivates us to project the bivariate p-value to a
single-index, p(θ), for a wide range of directions θ . The true null distribution
of p(θ) is estimated via parametric and nonparametric approaches, leading to
two procedures for estimating and controlling the false discovery rate. To de-
rive the optimal projection direction θ , we propose a new approach based on
power comparison, which is further shown to be consistent under some mild
conditions. Simulation evaluations indicate that the SIM multiple testing pro-
cedure improves the detection power significantly while controlling the false
discovery rate. Analysis of a real dataset will be illustrated.

1. Introduction. Large-scale simultaneous hypothesis testing problems, with
thousands or even tens of thousands of cases considered together, have become
a familiar feature in scientific fields such as biology, medicine, genetics, neuro-
science, economics and finance. For example, in genome-wide association study,
testing for association between genetic variation and a complex disease typically
requires scanning hundreds of thousands of genetic polymorphisms; in functional
magnetic resonance imaging (fMRI), time-course measurements over 104–105

voxels in the brain are typically available to allow investigators to determine which
areas of the brain are involved in a cognitive task. Multiple testing procedures, es-
pecially the false discovery rate (FDR) control method [2], have been widely used
to screen the massive data sets to identify a few interesting cases.

In many real-world applications, the tests are accompanied with a scientifically
meaningful structure. In fMRI, each test corresponds to a specific brain location;
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in microarray studies, each test is related to a specific gene. These types of struc-
tural information usually provide valuable prior information. For example, pre-
vious studies may suggest that some null hypotheses are more or less likely to
be false; similarly, in spatially-structured problems, nonnull hypotheses are more
likely to be clustered than true nulls. It is thus anticipated that exploiting structural
prior information will improve the performance of conventional multiple testing
procedures. Several attempts have been made in the literature to incorporate prior
information. For instance, methods that up-weight or down-weight hypotheses ap-
peared in [3, 15] and [18]. A comprehensive review of weighted hypothesis testing
can be found in [27] and the references therein. A different approach, based on a
two-stage approach mainly arising from the microarray literature [6, 16, 24, 25,
33, 34], extracted the prior information to remove a subset of genes which seem
to generate uninformative signals in the filtering stage, followed by applying some
multiple testing procedure to the remaining genes which have passed the filter in
the selection stage.

Very little work, however, has been published on theoretically quantifying the
extent to which the pair of filter and test statistics in the above two-stage proce-
dure, as well as the pair of random weight and test statistics in weighted hypothesis
testing affect FDR and power. This issue is critically important, because arbitrar-
ily choosing a filter (or weight) statistic may lead to loss of type I error control.
To guarantee the validity of filtering in the two-stage multiple testing procedure,
[6] recommended the use of a filter statistic (i.e., overall sample variance) which
is independent of the test statistic to reduce the impact that multiple testing ad-
justment has on detection power. Analogously, the weight and test statistics are as-
sumed to be independent in the literature of weighted hypothesis testing. However,
questions always arise about (I) the adequacy of the independence assumption be-
tween the filter (or weight) and test statistics, and (II) the subjectiveness in setting
the proportion of hypotheses to be removed in the filtering stage.

We intend to incorporate the prior information into large-scale multiple test-
ing, via a proposed single-index modulated (SIM) multiple testing procedure. This
inspires us to study a bivariate p-value (pi1,pi2) for each of the ith hypothe-
sis, i = 1, . . . ,m, where m is the number of hypotheses, pi1 is the preliminary
p-value from the prior information (e.g., the filter or weight), and pi2 is the pri-
mary p-value for the ultimate analysis (from the test statistic). Unlike [6] and [15],
we do not impose the independence assumption between the filter (or weight) and
test statistics. This greatly broadens the scope of filters (or weights) that can be
chosen. Moreover, we wish to point out that [8] explored a FDR procedure which
can achieve the control of FDR with asymptotically maximum power through
nested regions of multivariate p-values of test statistics. However, that approach
assumed independence between components in each multivariate p-value under
true null hypotheses, thus is not directly applicable to our study.

In our approach, the bivariate p-value in multiple testing is projected into a
single-index, p(θ), where the direction θ takes value in the interval [0, π/2]. Due
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to the projection, the true null distribution of the single-index p(θ) is no longer uni-
form and thus needs to be estimated. We propose a parametric and a nonparametric
approach to estimate it. A data-driven estimator based on power comparison is de-
veloped for the optimal projection direction θ . This estimator is further shown to
be consistent under some mild conditions. The resulting method leads to the esti-
mation and control of FDR for the SIM multiple testing procedure. Compared with
the conventional multiple testing procedure which ignores the prior information,
the SIM multiple testing procedure can improve the detection power substantially
as long as components in the bivariate p-value are not highly positively correlated.
Extensive simulation studies support the validity and detection power of our ap-
proach. Analysis of a real dataset illustrates the practical utility of the proposed
SIM procedure.

The rest of the paper is organized as follows. Section 2 reviews the conven-
tional multiple testing procedure, and outlines the proposed SIM multiple testing
procedure. Section 3 supplies theoretical derivation of the SIM multiple testing
procedure. Section 4 presents methods for estimating and controlling FDR used
in the SIM multiple testing procedure and Section 5 investigates their theoretical
properties. Section 6 evaluates the performance of the proposed procedure in sim-
ulation studies. Section 7 analyzes a real dataset. Section 8 ends the paper with a
brief discussion. All technical proofs are relegated to Appendices A and B.

2. Overview of the single-index modulated multiple testing procedure.

2.1. Review of the conventional multiple testing procedure. For the sake of
discussion, we begin with a brief review of the conventional multiple testing
procedure. For testing a family of null hypotheses, {H0(i)}mi=1, with the corre-
sponding p-values {p1, . . . , pm}, Table 1 describes the outcomes when applying
some significance rule, which means rejecting null hypotheses with correspond-
ing p-values less than or equal to some threshold. The false discovery rate (FDR),
FDR = E( V

R∨1), depicts the expected proportion of incorrectly rejected null hy-
potheses [2], where R ∨ 1 = max{R,1}. An empirical process definition of FDR,

FDR(t) = E

{
V (t)

R(t) ∨ 1

}
, t ∈ [0,1],

TABLE 1
Outcomes from testing m null hypotheses based on a significance rule

Retain null Reject null Total

Null is true U V m0
Nonnull is true T S m1
Total W R m
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was introduced by [32], where V (t) = #{true null pi :pi ≤ t}, and R(t) =
#{pi :pi ≤ t}.

Compared with the frequentist framework of FDR, FDR methods also have
a Bayesian rationale in terms of the two-groups model. Let F0(t) and F1(t) be
the cumulative distribution functions (CDF) of a p-value under the true null and
nonnull, respectively, and define F(t) = π0F0(t) + π1F1(t) as its marginal CDF,
where π0 = P(null is true) and π1 = 1 − π0. Then the Bayes formula yields the
posterior probability,

Fdr(t) = P(true null|p ≤ t) = π0F0(t)

π0F0(t) + π1F1(t)
= π0F0(t)

F (t)
,(2.1)

of a null hypothesis being true given that its p-value is less than or equal to some
threshold t .

Assuming that p-values under the true null are independent (or weakly depen-
dent) and uniformly distributed on the interval [0,1], [30] proposed a point esti-
mate of FDR by

F̂DR(t) = mπ̂0t

R(t) ∨ 1
= π̂0t

{R(t) ∨ 1}/m
.(2.2)

For a chosen level α, a data-driven threshold for the p-values is determined by

tα(F̂DR) = sup
{
0 ≤ t ≤ 1 : F̂DR(t) ≤ α

}
.(2.3)

Reject a null hypothesis if its p-value is less than or equal to tα(F̂DR). Hereafter,
we will refer to (2.2) as the estimation approach for FDR and (2.3) as the control-
ling approach for FDR.

2.2. Outline of the single-index modulated multiple testing. Before describing
the details of our proposed single-index modulated multiple testing, we outline the
major idea and methodology.

(a) For each bivariate p-value (pi1,pi2), i = 1, . . . ,m, project it into a se-
quence of single indices, {pi(θl)}Ll=1, according to pi(θ) = �(cos(θ)�−1(pi1) +
sin(θ)�−1(pi2)), where {θl}Ll=1 are equally spaced on the interval [0, π/2].

(b) For each θl , estimate the true null distribution function of {pi(θl) : i =
1, . . . ,m} by F̂0(t, θl) using either a parametric or nonparametric approach.

(c) For each θl , calculate R(t̂∗α′(θl), θl), where R(t, θ) = #{pi(θ) ≤ t}, and
t̂∗α′(θl) = sup{0 ≤ t ≤ 1 :mF̂0(t, θl)/{R(t, θl) ∨ 1} ≤ α′}, with α′ ∈ (0,1). De-
termine the data-driven optimal projection direction θ̂ (α′) = θL∗ , where L∗ =
arg max1≤l≤L R(t̂∗α′(θl), θl).

(d) Estimate the proportion π0 of true null hypotheses by π̂0.
(e) For the projected p-values {pi(θ̂(α′)) : i = 1, . . . ,m}, set the threshold t̂α

to be sup{0 ≤ t ≤ 1 :mπ̂0F̂0(t, θ̂ (α′))/{R(t, θ̂(α′)) ∨ 1} ≤ α}, where α ∈ (0,1).
Reject a null hypothesis H0(i) if the corresponding pi(θ̂(α′)) is less than or equal
to t̂α .
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The idea of the single-index projection in part (a) is not straightforward, evolv-
ing from Sections 3.1 and 3.2, to Section 3.3. Section 3.1 starts with an intuitive
idea of using a rectangular shape of the rejection region for bivariate p-values;
Section 3.2 derives a general form of optimal rejection region using local false dis-
covery rate [11]; Section 3.3 is motivated from the bivariate normal setting, where
the optimal rejection region in Section 3.2 will lead to the projected p-value, that
is, the single-index p(θ). The parametric and nonparametric estimators in part (b)
will be given in Section 4.2. Incorporating this, the estimator for the proportion of
true null hypotheses in part (d) is derived in Section 4.3. The optimal projection
direction in part (c) is estimated by a novel approach given in Section 4.4. The pro-
cedure in part (e) for estimation and control of the false discovery rate is provided
in Section 4.5.

3. Optimal rejection region for bivariate p-values. Recall that for univari-
ate p-values, the rejection region is an interval [0, t]. In this section, we will dis-
cuss the rejection region for bivariate p-values and its optimal choice.

3.1. Optimal rejection region based on a rectangle. Intuitively, the false dis-
covery rate for the bivariate p-values can be defined based on a rectangular
rejection region, [0, t1] × [0, t2]. For notational simplicity, let p = (p1,p2) de-
note the bivariate p-value, and define F0(p), F1(p) and F(p) to be the true null
joint distribution, nonnull joint distribution and joint distribution of p, respectively.
Also, let f0(p), f1(p) and f (p) be the corresponding probability density func-
tions (p.d.f.). Then the Bayesian Fdr for the bivariate p-value based on a rectangu-
lar rejection region is formulated as

Fdr(t) = P(true null|p ≤ t) = π0F0(t)
π0F0(t) + π1F1(t)

,(3.1)

where t = (t1, t2) and {p ≤ t} denotes the event {p1 ≤ t1,p2 ≤ t2}. There are infi-
nite choices of rejection regions [0, t1] × [0, t2] such that Fdr(t) ≤ α. A possible
criteria to choose t∗ = (t∗1 , t∗2 ) for a best rejection region is based on power com-
parison. Specifically, that choice is

t∗ = arg max
t

{
F1(t) : Fdr(t) ≤ α

}
.(3.2)

REMARK 1. The Bayesian Fdr formula (3.1) can also be derived using condi-
tional probability,

Fdr(t) = P(true null|p1 ≤ t1)P(p2 ≤ t2|p1 ≤ t1, true null)

P(p2 ≤ t2|p1 ≤ t1)
(3.3)

= Fdrp1(t1)P(p2 ≤ t2|p1 ≤ t1, true null)

P(p2 ≤ t2|p1 ≤ t1)
,
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where Fdrp1(t1) = P(true null|p1 ≤ t1). From formula (3.3), the Bayesian Fdr for
the bivariate p-value based on a rectangular rejection region is not simply the prod-
uct of those with respect to the preliminary p-value and primary p-value, that is,
Fdr(t) �= Fdrp1(t1) × Fdrp2(t2), where Fdrp2(t2) = P(true null|p2 ≤ t2). Further-
more, formula (3.3) provides an insight into the two-stage multiple testing in [6] if
p1 is utilized as the filter in the filtering stage and p2 is obtained from a test statis-
tic in the selection stage. Comparing (3.3) with (2.1), we find that Fdrp1(t1) in the
filtering stage is the proportion of the true null hypotheses served in the selection
stage. On the one hand, in order to improve the power in the selection stage, we can
control Fdrp1(t1) to be small. On the other hand, increasing Fdrp1(t1) will assure
that we do not screen out too many nonnull hypotheses from the filtering stage.

3.2. General form of optimal rejection region. In Section 3.1, we observe that
among infinite choices of rectangular rejection regions [0, t1] × [0, t2] such that
the Bayesian Fdr is less than or equal to α, there exists one “best” rectangle
[0, t∗1 ] × [0, t∗2 ] with highest power. In this section, we seek a general form of
optimal rejection region, by relaxing the shape of rejection region. Let S denote a
rejection region. Following (3.1), the Bayesian Fdr can be generalized to

Fdr(S) = P(true null|p ∈ S) = π0F0(S)

π0F0(S) + π1F1(S)
,(3.4)

where Fj (S) = ∫
S fj (p) dp, j = 0,1. An optimal rejection region S∗ is based on

the following definition:

S∗ = arg max
S

{
F1(S) : Fdr(S) ≤ α

}
.(3.5)

Note that (3.2) is a special case of (3.5), by restricting S to be rectangular.

PROPOSITION 1. Assume the two-groups model holds for the bivariate
p-values and let fdr(p) = π0f0(p)/{π0f0(p) + π1f1(p)} be the generalization
of local false discovery rate; see [11] and [12]. Further suppose that for any con-
stant C0,

P
(
p : fdr(p) = C0

) = 0.(3.6)

Denote by SOR the rejection region to be formed by SOR = {p : fdr(p) ≤ C}, where
C is a constant such that Fdr(SOR) = α. Then for any rejection region S satisfying
Fdr(S) ≤ α, we have F1(S) ≤ F1(SOR).

From Proposition 1, the general form of optimal rejection region (3.5) can be
equivalently described as follows: within the rejection region S∗, the local false
discovery rate fdr(p) should be less than or equal to some threshold, which is
equivalent to setting f1(p)/f0(p) to be larger than or equal to some threshold.
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Thus, we propose the optimal rejection region (3.5) to be formed by

S∗ = {
p :f1(p)/f0(p) ≥ C

}
,(3.7)

where C is a constant such that Fdr(S∗) = α.

REMARK 2. In traditional hypothesis testing, the Neyman–Pearson lemma in-
dicates that the rejection region of the uniformly most powerful (UMP) test is in
the form of likelihood ratio of test statistics if both the null and nonnull hypothe-
ses are simple. Hence, the form of the optimal rejection region S∗ using local false
discovery rate is similar to that derived from the UMP test. (3.7) is also a homo-
geneous version of the optimal discovery procedure proposed by [31], where the
null and nonnull distributions across the tests are less homogeneous and strongly
correlated.

3.3. Optimal rejection region under bivariate normality. In this subsection,
we will first derive the true null and nonnull distributions of a bivariate p-value
under bivariate normality, followed by approximating the shape of the optimal
rejection region using criteria (3.7).

Efron [10] introduced a z-value (�−1(p)) into traditional multiple testing prob-
lem and assumed that the empirical null distribution of z-value is normal with
mean μ and standard deviation σ . To derive an explicit form of the true null dis-
tribution of p, we borrow the idea of empirical null distribution in [10] and make
extension to the case of bivariate p-values, assuming the bivariate normality as
follows:

(N1) Under the true null hypothesis, the transformed p-value (�−1(p1),

�−1(p2)) follows a bivariate normal distribution N (μ0,�0), where

μ0 = (μ0;1,μ0;2)T , �0 =
(

σ 2
0;1 ρ0σ0;1σ0;2

ρ0σ0;1σ0;2 σ 2
0;2

)
.(3.8)

(N2) Under the nonnull, the transformed p-value (�−1(p1),�
−1(p2)) also fol-

lows a bivariate normal distribution N (μ1,�1), where

μ1 = (μ1;1,μ1;2)T , �1 =
(

σ 2
1;1 ρ1σ1;1σ1;2

ρ1σ1;1σ1;2 σ 2
1;2

)
.(3.9)

REMARK 3. The assumption (N1) is strictly satisfied if the components of
bivariate p-value are independent under the true null. For the dependence case,
this assumption is approximately true. As a specific example, (N1) holds if the
preliminary test statistic and primary test statistic (bivariate test statistic) under the
true null follows a bivariate normal distribution for one-sided hypotheses; see (B.2)
in Appendix B. The assumption (N2) is not required for the general theory in
Section 5 and only serves as a motivation for developing the proposed rejection
region (3.13).
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If (N1) and (N2) hold, some algebraic calculations yield the densities of p under
the true null and nonnull,

f0(p) = 1

σ0;1σ0;2
√

1 − ρ2
0

exp
({�−1(p1)}2 + {�−1(p2)}2

2

)

× exp
(
−

({
�−1(p1) − μ0;1

σ0;1

}2

+
{
�−1(p2) − μ0;2

σ0;2

}2

− 2ρ0

{
�−1(p1) − μ0;1

σ0;1

}{
�−1(p2) − μ0;2

σ0;2

})
/(

2
(
1 − ρ2

0
)))

,

(3.10)

f1(p) = 1

σ1;1σ1;2
√

1 − ρ2
1

exp
({�−1(p1)}2 + {�−1(p2)}2

2

)

× exp
(
−

({
�−1(p1) − μ1;1

σ1;1

}2

+
{
�−1(p2) − μ1;2

σ1;2

}2

− 2ρ1

{
�−1(p1) − μ1;1

σ1;1

}{
�−1(p2) − μ1;2

σ1;2

})
/(

2
(
1 − ρ2

1
)))

.

By combining (3.10) with the criteria (3.7), the optimal rejection region under
bivariate normality takes the form

S∗ = {
p : ZT β ≥ C

}
,(3.11)

with a constant C such that Fdr(S∗) = α, where

Z = ({
�−1(p1)

}2
,
{
�−1(p2)

}2
,�−1(p1)�

−1(p2),�
−1(p1),�

−1(p2)
)

and β is the corresponding vector of coefficients determined by μ0, μ1, �0 and �1.
If the covariance matrices satisfy �0 = �1, the optimal rejection region in (3.11)

can be formulated in term of a single-index β1�
−1(p1) + β2�

−1(p2), where
(β1, β2) is determined by μ0, μ1, �0. This is more intuitive than the form (3.11)
from two perspectives. From dimension reduction viewpoint, researchers always
prefer reducing the number of variables to choosing Z. From principal component
analysis aspect, the transformed p-value (�−1(p1),�

−1(p2)) can be visualized
from two orthogonal directions. Instead of searching for the eigenvectors of com-
mon covariance matrix �0, our goal is to find a direction (β1, β2), such that the
projected points corresponding to the true null hypotheses deviate from those cor-
responding to the true nonnull as far as possible. Then (3.7) will prompt us to
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introduce a “single-index p-value,”

p(θ) = �
(
cos(θ)�−1(p1) + sin(θ)�−1(p2)

)
,(3.12)

where 0 ≤ θ ≤ π/2 acts as a tuning parameter. This in turn yields our proposed
rejection region [which is optimal under (N1) and (N2)] defined as

S∗(θ) = {
p :p(θ) ≤ t

}
,(3.13)

where the threshold t is chosen to control FDR. We call this the “single-index
modulated (SIM) multiple testing procedure.”

As a comparison, the shape of the rejection region S∗(θ) is different from the
rectangle used in the two-stage multiple testing procedure of [6]; see Figure 1. In
addition, the philosophy underlying the two procedures varies. For the two-stage
procedure, a multiple testing procedure is only applied to the subset of hypotheses
survived from the filtering stage. In contrast, the proposed SIM procedure does
not screen any hypotheses out, but projects the bivariate p-value into a single-
index p(θ). After that, methods in Section 4 for estimation and control of FDR are
implemented using all the m hypotheses.

To draw connection to the weighted multiple testing procedure of [15], we first
generate the weights from the preliminary p-values and then combine the primary
p-values with the weights. To be specific, in the first stage, we generate cumulative
weights [26] proportional to {vi = �(�−1(1 − pi1) − B) : i = 1, . . . ,m}, where
B is a tuning parameter. Because the weights are constrained to have mean 1,
wi = vi/v̄m is a valid choice, where v̄m = ∑m

i=1 �(�−1(1 − pi1) − B)/m. In
the second stage, standard BH procedure [2] is applied to the weighted p-values,
that is, {pi2/wi : i = 1, . . . ,m}. The rejection region of the weighted multiple test-

ing procedure is formed by W(B) = {p :p2 ≤ �(�−1(1−p1)−B)
v̄m

t}; see Figure 1 for
the graphical illustration. Surprisingly, the SIM multiple testing procedure and the
weighted multiple testing procedure share similar patterns of rejection.

FIG. 1. Compare shapes of rejection regions S∗(θ), W(B) and a rectangle. Here, the threshold
t = 0.1 is used in S∗(θ) and W(B).
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4. Estimation and control of FDR for the SIM procedure. In this section,
we will first investigate properties of the single-index p(θ), followed by utiliz-
ing these properties to estimate and control the false discovery rate. For each
possible direction θ , denote by {pi(θ) : i = 1, . . . ,m} the sequence of projected
p-values. Let F0(t, θ), F1(t, θ) and F(t, θ) be the true null distribution, nonnull
distribution and marginal distribution of p(θ), respectively. Similarly, f0(t, θ),
f1(t, θ) and f (t, θ) are their corresponding density functions. Following notations
in Section 2.1, the frequentist FDR and Bayesian Fdr for the projected p-values
{pi(θ) : i = 1, . . . ,m} are defined by

FDR(t, θ) = E

{
V (t, θ)

R(t, θ) ∨ 1

}
,

Fdr(t, θ) = π0F0(t, θ)

F (t, θ)
,

respectively, where V (t, θ) = #{true null pi(θ) :pi(θ) ≤ t} and R(t, θ) = #{pi(θ) :
pi(θ) ≤ t} are the number of hypotheses erroneously rejected and the number of
hypotheses rejected, based on some significance rule for the sequence of projected
p-values.

4.1. Property of the single-index p(θ). The true null distribution of p(θ)

in (3.12) plays an important role in estimating the false discovery rate. From the
theory of statistics, the theoretical true null distributions of p1 and p2 are uni-
form. In the special case where p1 and p2 are independent under the true null,
it is straightforward to show that p(θ) under the true null also follows a uniform
distribution. In general, the assumption (N1) with μ0 = 0 facilitates us to derive
the CDF of p(θ) under the true null hypothesis. To be specific,

F0(t, θ) = P
(
p(θ) ≤ t |true null

) = �

(
�−1(t)

σ0(θ)

)
,

where

σ0(θ) =
√{

cos(θ)
}2

σ 2
0;1 + {

sin(θ)
}2

σ 2
0;2 + 2ρ0σ0;1σ0;2 cos(θ) sin(θ),(4.1)

and σ0;1, σ0;2 and ρ0 are as defined in (3.8). The following two categories summa-
rize some properties of p(θ).

(I) If σ0(θ) = 1, p(θ) under the true null hypothesis follows a standard uni-
form distribution.

(II) If σ0(θ) �= 1, the true null distribution of p(θ) is not uniform but symmetric
with respect to 1/2.

If p1 and p2 are both uniformly distributed under the true null, the expression
of σ0(θ) can be further simplified to

√
1 + ρ0 sin(2θ). Under the independence
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assumption (i.e., ρ0 = 0), p(θ) is uniform for all θ , which belongs to category (I).
The case of negative correlation (i.e., ρ0 < 0) implies σ0(θ) < 1, shrinking most
of the projected points corresponding to the true null concentrating around the
point 1/2. Consequently, this case has better potential to be powerful. The positive
correlation worsens the structure of p-values a little, shifting some of the combined
p-values corresponding to the true null to the area adjacent to 0 or 1, but it is still
symmetric with respect to 1/2. [36] employed a p∗-value, the median of p-values
in the neighborhood of the original p-value, to capture the geometric feature in
brain imaging. The true null distribution of p∗ is beta, which is symmetric with
respect to 1/2. Thus, the pair (p,p∗) of p-values belongs to category (II).

Although the assumption (N1) is imposed when deriving the specific form of
F0(t, θ), we could relax the normality assumption by assuming that the true null
distribution of p(θ) is symmetric about 1/2 for all θ . The symmetry property as-
sumption can be equivalently stated as:

(N3) The probability density function of p under the true null is centrally sym-
metric with respect to the point (1/2,1/2), that is, f0(p1,p2) = f0(1−p1,1−p2).

(N3) provides flexibility in accommodating a wider range of distributions for p.
For example, (N3) holds if the bivariate test statistic under the true null follows a
bivariate t distribution for one-sided hypotheses; see (B.3) in Appendix B. In addi-
tion to estimating the parameter σ0(θ), Section 4.2 will develop an adaptive data-
driven estimator for F0(t, θ) using a nonparametric approach based on (N3). While
this relaxed assumption causes certain loss in efficiency for estimating F0(t, θ), it
achieves a gain in robustness.

4.2. Estimating the true null distribution of p(θ). Recall the properties of
p(θ) in Section 4.1. If the normality assumption (N1) holds, one can estimate
the true null distribution of p(θ) using the following parametric approach:

F̂ I
0(t, θ) = �

(
�−1(t)

σ̂0(θ)

)
,(4.2)

where σ̂0(θ) stands for some parametric estimator of σ0(θ). Here, we will provide
a simple and efficient estimator in the following procedure:

(a) Select a constant c ≥ 0, such that z-values, z(θ) = �−1(p(θ)), from
(−c,∞] are more likely to come from the true null hypothesis.

(b) Split the data {zi(θ) : i = 1, . . . ,m} into three parts, that is, Z̃[−∞,−c],
Z̃(−c,c], and Z̃(c,∞], where the notation Z̃I denotes the sample from interval I .
Here, I can be a closed, open or half-open interval.

(c) Drop the sample Z̃[−∞,−c] and impute −Z̃[c,∞] into the interval [−∞,−c].
σ̂0(θ) is the standard error of the newly constructed data Z̃∗ = {−Z̃[c,∞), Z̃(−c,c],
Z̃(c,∞)}.
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If the normality assumption (N1) is violated, we provide a nonparametric es-
timator based on the assumption (N3). The nonparametric approach follows the
idea of [36]. To be specific, F0(t, θ) can be estimated by the empirical distribution
function,

F̂ II
0 (t, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m
i=1 I{pi(θ) ≥ (1 − t)}

2
∑m

i=1 I{pi(θ) > 0.5} + ∑m
i=1 I{pi(θ) = 0.5} ,

if 0 ≤ t ≤ 0.5,

1 −
∑m

i=1 I{pi(θ) ≥ t}
2

∑m
i=1 I{pi(θ) > 0.5} + ∑m

i=1 I{pi(θ) = 0.5} ,
if 0.5 < t ≤ 1.

(4.3)

4.3. Estimating the proportion π0 of true null hypotheses. There is an active
research pursued in estimating π0 (e.g., [4, 5, 17, 23, 29, 30, 32]). [30] and [32]
proposed an estimator π̂0(λ) = {m − R(λ)}/{(1 − λ)m} with a tuning parameter λ

in [0,1) to be specified. [23] summarized many adaptive and dynamically adaptive
procedures for estimating π0 and proposed a unified dynamically adaptive proce-
dure. In this paper, we follow the same principle in [23] and propose two estimators
of π0 dynamically according to two estimators of the true null distribution of p(θ)

proposed in (4.2) and (4.3), respectively,

π̂ I
0(θ) = m − R(λ̂I(θ), θ)

{1 − F̂ I
0(λ̂

I(θ), θ)}m,

(4.4)

π̂ II
0 (θ) = m − R(λ̂II(θ), θ)

{1 − F̂ II
0 (λ̂II(θ), θ)}m,

where λ̂I(θ) and λ̂II(θ) are dynamically chosen as in the algorithm below.

ALGORITHM (For choosing λ). For a sequence of values 0 ≡ λ0 < λ1 < · · · <
λn ≤ 1/2, λ̂(θ) is chosen to be λI∗ , where I ∗ = min{1 ≤ j ≤ n − 1 : π̂0(λj , θ) ≥
π̂0(λj−1, θ)} if π̂0(λj , θ) ≥ π̂0(λj−1, θ) for some j = 1, . . . , n − 1 and λI∗ =
λn otherwise. Here, π̂0(λ, θ) is defined as

∑m
i=1 I{pi(θ) > λ}/[{1 − F̂0(λ, θ)}m],

where the estimator F̂0 can be either (4.2) or (4.3) for the CDF of p(θ) under the
true null hypothesis.

REMARK 4. We make the remarks concerning the algorithm.

• The range (0,1/2] of the sequence of values {λi : i = 1, . . . , n} is different from
that in the right boundary procedure proposed by [23], where λ can be loosely
selected from [0,1). We restrict the range to 1/2 from two perspectives. On the
one hand, it can be verified that π̂ II

0 (λ, θ) is a constant for all λ ≥ 1/2 and θ . On
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the other hand, condition (C5) in Appendix A that F1(1/2, θ) = 1 for all θ , guar-
anteeing the consistency of F̂ II

0 (t, θ), enables us to search for λ in a narrower
range, which will be more efficient in practice.

• Theoretically, it is equivalent to get λ(θ) as λ(θ) = inf0≤t≤1/2{t :F1(t, θ) = 1}.
If t ≤ λ(θ), there is an upward-bias for estimating π0, that is, π1 × 1−F1(t,θ)

1−F0(t,θ)
;

if t > λ(θ), the variance of π̂0(t, θ) is proportional to 1/[{1 − F0(t, θ)}2m]. In-
stead of estimating F1(t, θ), the algorithm described in the algorithm paragraph
provides a rough but simple approach to estimate λ(θ). Here, we would like to
point out that fixing λ is not applicable to our approach, since λ(θ) varies with
the tuning parameter θ .

4.4. Selection of projection direction θ . A specific θ corresponds to a
projection direction, (cos(θ), sin(θ)) in (3.12), for the transformed p-value
(�−1(p1),�

−1(p2)). The choice of θ = 0 amounts to utilizing p1 alone, whereas
setting θ = π/2 is equivalent to making inference with the information from p2
alone. This indicates that our method indeed generalizes the conventional multiple
testing. Recalling the shape of rejection region (3.13) and the criteria (3.5), differ-
ent values of θ correspond to different shapes of rejection regions and the one with
the highest power is preferred. Denote by θ0(α

′) the optimal value of θ , that is,

θ0
(
α′) = arg max

0≤θ≤π/2
F1

(
t∗α′(θ), θ

)
,(4.5)

where t∗α′(θ) = sup{0 ≤ t ≤ 1 :F0(t, θ)/F (t, θ) ≤ α′} and 0 < α′ < 1. The thresh-
old t∗α′(θ) in criteria (4.5) is chosen such that Fdr with respect to various θ is
controlled at level π0α

′.

PROPOSITION 2. Suppose that F0(t, θ) and F1(t, θ) are continuously differ-
entiable and ∂F1(t,θ)

∂t
− β

∂F0(t,θ)
∂t

�= 0 with β = (1/α′ − π0)/π1, for any interior
point (t, θ, α′) in [0,1]× [0, π/2]× [0,1/π0]. Then θ0(α

′) in criteria (4.5) is con-
stant for all 0 < α′ < 1/π0, if and only if the solution θ of t of the equation

∂F1(t, θ)

∂t

/∂F1(t, θ)

∂θ
= ∂F0(t, θ)

∂t

/∂F0(t, θ)

∂θ
(4.6)

is unique and equals a constant. Particularly, the above condition is satisfied under
assumptions (N1) and (N2) with �0 = �1.

Proposition 2 implies that θ0(α
′) does not depend on α′ when (�−1(p1),

�−1(p2)) is bivariate normally distributed with identical covariance matrix un-
der the true null and nonnull. For bivariate normal models with unequal covari-
ance matrices, Figure 2 shows that θ(α′) varies slightly with α′. Numerical studies
in Section 6 further confirm that θ0(α

′) is robust to other bivariate distributions.
Hence, the selection of α′ can be quite flexible except that only mild restriction
needs to be imposed to make θ0(α

′) identifiable based on conditions (C7) to (C10)



SINGLE-INDEX MODULATED MULTIPLE TESTING 1275

FIG. 2. Illustrate the optimal projection direction θ0(α′) in (4.5) for various choices of α′ when
(�−1(p1),�−1(p2)) follows (3.8) with μ0 = 0, σ0;1 = σ0;2 = 1, ρ0 = 0.2 under the true null,
and follows (3.9) with μ1 = (−2,−1.5)T , σ1;1 = σ1;2 = 1, ρ1 = 0.6 under nonnull, respectively.
The solid line is the implicit curve t = t (θ) satisfying (4.6) in Proposition 2. From the proof of
Proposition 2, the x-coordinates of the intersection points are θ0(α′).

in Appendix A. In particular, setting α′ = α/π0 will ensure that the Fdr for various
θ be controlled exactly at α.

The Bayesian Fdr formula is equivalent to F1(t, θ) = 1−π0α
′

1−π0
F(t, θ), implying

that the criteria in (4.5) can be replaced by θ0(α
′) = arg max0≤θ≤π/2 F(t∗α′(θ), θ).

In Section 4.2, we have two types of estimators for F0(t, θ), which can be used to
develop estimation approach for θ . Denoting F̂0(t, θ) to be either type of estimator,
the plug-in method for choosing the optimal direction θ0(α

′) is thus given by

θ̂
(
α′) = arg max

0≤θ≤π/2

R(t̂∗α′(θ), θ)

m
,(4.7)

where t̂∗α′(θ) = sup{0 ≤ t ≤ 1 :mF̂0(t, θ)/{R(t, θ) ∨ 1} ≤ α′}. For notational
clarity, we denote by {t̂∗I

α′(θ), θ̂ I(α′)} and {t̂∗II
α′ (θ), θ̂ II(α′)} the estimators of

{t∗α′(θ), θ0(α
′)} obtained by the parametric and nonparametric approaches, respec-

tively.

4.5. Procedures for estimating and controlling FDR. For each fixed θ , we
provide two methods for FDR estimation with respect to the projected p-values
{pi(θ) : i = 1, . . . ,m} according to two estimators of F0(t, θ) proposed in Sec-
tion 4.2.

Method I. Incorporating the parametric approach for estimating F0(t, θ) and π0

leads to a procedure for estimation and control of FDR. Combining (4.2) and (4.4),
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we propose

F̂DRI(t, θ) = π̂ I
0(θ)F̂ I

0(t, θ)

{R(t, θ) ∨ 1}/m
(4.8)

for our FDR estimation. A conservative FDR estimator naturally leads to a proce-
dure for controlling FDR. Similar to (2.3), the data-driven threshold for the pro-
jected p-values {pi(θ) : i = 1, . . . ,m} is determined by

tα
(
F̂DRI(:, θ)

) = sup
{
0 ≤ t ≤ 1 : F̂DRI(t, θ) ≤ α

}
.(4.9)

A null hypothesis is rejected if the corresponding p(θ) is less than or equal to the
threshold tα(F̂DRI(:, θ)). The data-driven threshold (4.9) together with the point
estimation method (4.8) for the false discovery rate comprises the first FDR pro-
cedure, denoted by FDRI.

Method II. The nonparametric approach proposed for estimating F0(t, θ) and
π0 can substitute the parametric counterpart in method I. Similar to (4.8) and (4.9),
the procedure for the estimation and control of FDR is given by

F̂DRII(t, θ) = π̂ II
0 (θ)F̂ II

0 (t, θ)

{R(t, θ) ∨ 1}/m
,(4.10)

tα
(
F̂DRII(:, θ)

) = sup
{
0 ≤ t ≤ 1 : F̂DRII(t, θ) ≤ α

}
.(4.11)

The second FDR procedure, denoted by FDRII, consists of (4.10) and (4.11).

REMARK 5. Incorporating θ̂ I(α′) and θ̂ II(α′) obtained from Section 4.4 into
FDRI and FDRII, respectively, we obtain our final procedure for estimating and
controlling FDR.

4.6. Issue on stability and power for the SIM procedure. In this subsection, we
first investigate the stability of the SIM procedure when the preliminary p-value
is not accurate. Suppose that the bivariate p-value (p1,p2) is calculated from the
bivariate test statistic (X1,X2) with marginal true null CDFs F0;X1 and F0;X2 . Due
to some perturbation on X1, we observe a contaminated version X̃1 with the true
null CDF F0;X̃1

. By using the incorrect true null CDF F0;X1 , the preliminary p1 is
incorrectly calculated as p̃1. A natural question is how sensitive our SIM methods
are if X1 carries some wrong information.

PROPOSITION 3. Suppose (X1,X2) are the preliminary and primary test
statistics for one-sided hypotheses, where F0;X1 and F0;X2 are their marginal
CDFs under the true null, respectively. Assume the classical errors-in-variables
model on X1, that is, X̃1 = X1 + η, where η is independent of (X1,X2) and the
p.d.f.s of X1 under the true null and η are both symmetric with respect to 0.
If the joint p.d.f. of (p1,p2) under the true null, where (p1,p2) = (F0;X1(X1),

F0;X2(X2)) for left-sided hypotheses or (p1,p2) = (1−F0;X1(X1),1−F0;X2(X2))
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for right-sided hypotheses, is centrally symmetric with respect to (1/2,1/2),
then the joint p.d.f. of (p̃1,p2) under the true null is also centrally symmetric
with respect to (1/2,1/2), where p̃1 = F0;X1(X̃1) for left-sided hypotheses or
p̃1 = 1 − F0;X1(X̃1) for right-sided hypotheses.

Proposition 3 indicates that FDR of method II can still be controlled even if the
preliminary test statistic is measured with classical additive error [7]. Although
our discussion is restricted to the situation where the p.d.f. of preliminary test
statistic under the true null is symmetric about 0, it indeed includes a large class of
distributions, for example, normal distribution and t distribution. In general, it can
be verified that method II is valid if

f0;(p̃1,p2)(p̃1,p2) ≤ f0;(p̃1,p2)(1 − p̃1,1 − p2),(4.12)

where f0;(p̃1,p2)(p̃1,p2) is the p.d.f. of (p̃1,p2) under the true null and p̃1 + p2 ≤
1. Under (4.12), the probability mass under the true null in the upper-right tail of
(p̃1,p2) is no less than that in the lower-left tail, resulting in some conservative
procedure. To simplify the argument, we only consider the case where p̃1 and p2
are independent, which simplifies the sufficient condition (4.12) to

f0;p̃1(p̃1) ≤ f0;p̃1(1 − p̃1),(4.13)

where f0;p̃1(p̃1) is the p.d.f. of p̃1 under the true null and 0 ≤ p̃1 ≤ 1/2. Some
pairs of asymmetric distributions of X1 and X̃1, satisfying the condition (4.13),
are summarized below:

• X1 ∼ Exp(λ̄1) and X̃1 ∼ Exp(λ̄2) with λ̄1 > λ̄2 > 0, where Exp(λ) denotes the
exponential distribution with parameter λ.

• X1 ∼ χ2
r and X̃1 ∼ χ2

s with r < s.
• Chi-square versus weighted chi-square distribution

X1 ∼ χ2
r and X̃1 ∼ ∑r

i=1 ωiZ
2
i , where {Zi}ri=1

i.i.d.∼ N(0,1) and ωi ≥ 1, i =
1, . . . , r .

• F versus generalized F distribution

X1 ∼ F(r, s) and X̃1 ∼ (
∑r

i=1 ωiZ
2
i )/r

χ2
s /s

, where {Zi}ri=1
i.i.d.∼ N(0,1),

∑r
i=1 ωiZ

2
i is

independent of χ2
s , and ωi ≥ 1, i = 1, . . . , r .

Having established that the SIM procedure controls FDR when the preliminary
p-values carry some wrong information, we next turn to theoretically justify why
the current way of combination of the bivariate p-value achieves a higher power.
Let tα(θ) denotes the threshold such that π0F0(t, θ)/F (t, θ) = α. Then the power
function can be formulated by F1(tα(θ), θ) = β ′F0(tα(θ), θ), with β ′ = (1/α −
1)π0/π1. Our goal is to quantify how much power can be improved via combining
the bivariate p-value. From the Bayesian Fdr formula, the ratio of power of the
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SIM procedure to conventional multiple testing procedure using p2 alone (θ =
π/2) can be derived as

F1(tα(θ), θ)

F1(tα(π/2),π/2)
= F0(tα(θ), θ)

F0(tα(π/2),π/2)

= 1 + (∂/(∂θ)){F0(tα(θ), θ)}|θ=π/2(θ − π/2)

F0(tα(π/2),π/2)

+ O
(
(θ − π/2)2)

= 1 + �(θ) + O
(
(θ − π/2)2)

.

More derivations in Appendix B yield that the ratio of power improved when θ is
close to π/2 is approximated by

1 + �(θ) = 1 + φ[�−1{tα(π/2)}]f1;p2(tα(π/2))f0;p2(tα(π/2))

f1;p2(tα(π/2)) − β ′f0;p2(tα(π/2))
(4.14)

× (θ − π/2)

F0(tα(π/2),π/2)
× I(p1),

where I(p1) = EH0{�−1(p1)|p2 = tα(π/2)} − EH1{�−1(p1)|p2 = tα(π/2)},
f0;p2 and f1;p2 are the p.d.f.s of p2 under true null and nonnull, respectively. If the
alternative distribution of p2 is strictly concave, similar argument in [14] yields
that f1;p2(tα(π/2)) − β ′f0;p2(tα(π/2)) < 0. The term I(p1) is positive, provided
that the preliminary p-values have some potential to detect the power. Combining
these, we have 1 + �(θ) > 1.

Under assumptions (N1) and (N2), I(p1) has an explicit form[
μ0;1 + ρ0σ0;1/σ0;2

{
�−1(

tα(π/2)
) − μ0;2

}]
(4.15)

− [
μ1;1 + ρ1σ1;1/σ1;2

{
�−1(

tα(π/2)
) − μ1;2

}]
.

From (4.15), the correlation (ρ0) between components of the bivariate p-value
under the true null and that (ρ1) under nonnull play different roles in improving
power. The SIM procedure using prior information and primary p-values that are
negatively correlated under the null hypothesis but positively correlated under the
alternative is a general approach that can substantially increase power in practice.

5. Asymptotic justification. In many applications such as biology, medicine,
genetics, neuroscience, economics and finance, tens of thousands of hypotheses are
tested simultaneously. It is hence natural to investigate the behavior of the two ap-
proaches we proposed for the large number m of hypotheses. In this section, we fo-
cus on the asymptotic properties of the nonparametric estimator, F̂DRII(t, θ̂ II(α′)).
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All theorems presented in this section can be derived similarly for the parametric
approach as long as the bivariate normality for (�−1(p1),�

−1(p2)) is satisfied.
Theorem 1 below establishes the consistency of θ̂ II(α′). Intuitively, θ̂ II(α′) is

analogous to an M-estimator such as least-squares estimators and many maximum-
likelihood estimators. However, typical proof of consistency of M-estimators is
not applicable to θ̂ (α′) because the CDF involved in (4.7) is not differentiable.
Hence, the theoretical derivation is nontrivial and challenging. We will provide
Lemmas 1–3 in Appendix A, which are necessary for proving Theorem 1.

THEOREM 1. Assume conditions (C1) to (C9) in Appendix A. Then θ̂ II(α′)
converges to θ0(α

′) almost surely.

Theorem 2 below reveals that the proposed estimator F̂DRII not only controls
the FDR simultaneously for all t ≥ δ and δ > 0 for fixed θ , but also provides si-
multaneous and conservative control when incorporating the data-driven estimator
θ̂ II(α′).

THEOREM 2. Assume conditions (C1) to (C10) in Appendix A. Then
F̂DRII(t, θ̂ II(α′)) provides simultaneously conservative control of FDR(t, θ0(α

′))
in the sense that

lim
m→∞ inf

t≥δ

{
F̂DRII(t, θ̂ II(α′)) − FDR

(
t, θ0

(
α′))} ≥ 0,

lim
m→∞ inf

t≥δ

{
F̂DRII(t, θ̂ II(α′)) − V (t, θ0(α

′))
R(t, θ0(α′)) ∨ 1

}
≥ 0

with probability 1.

To show that the proposed estimator F̂DRII(t, θ̂ II(α′)) provides strong control
of FDR(t, θ0(α

′)) asymptotically, we define

F̂DR∞
λ (t, θ) = {π0 + π1((1 − F1(λ, θ))/(1 − F0(λ, θ)))}F0(t, θ)

F (t, θ)
,

which is a pointwise limit of F̂DRII
λ (t, θ) = π̂ II

0 (λ,θ)F̂ II
0 (t,θ)

{R(t,θ)∨1}/m
under conditions (C1)

and (C2) and Lemma 2 in Appendix A. The notations π̂ I
0(λ, θ) and π̂ II

0 (λ, θ) are
defined in a way similar to those in the algorithm of Section 4.3.

THEOREM 3. Assume conditions (C1) to (C10) in Appendix A. Also, suppose
that the sequence of values {λj : j = 1, . . . , n} ∈ (0,1/2]n and n is a fixed finite
integer. If for each λj , there is tj ∈ (0,1] such that F̂DR∞

λj
(tj , θ0(α

′)) < α, then

lim sup
m→∞

FDR
(
tα′

(
F̂DRII(:, θ̂ II(α′))), θ̂ II(α′)) ≤ α.
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6. Numerical studies. In this section, we carry out simulation studies to eval-
uate the performance of the SIM procedure in the aspects of controlling FDR and
detection power, using the two proposed methods under various bivariate mod-
els for the preliminary and primary test statistics. The sequence of values {λj : j =
1, . . . , n} in the algorithm of Section 4.3 is {0.02,0.04,0.06,0.08,0.1,0.125,0.15,

. . . ,0.5}. For simplicity, the constant c in Section 4.2 is set to be 0. Unless other-
wise stated, α′ is simply set to be α throughout this section, following Proposi-
tion 2. All simulations are based on 500 replications.

The following procedures are compared:

• Conventional FDR procedure: the FDR method using (2.2) and (2.3) with π0
dynamically selected by the algorithm in Section 4.3.

• Weighted multiple testing procedure: the weighted multiple testing procedure
proposed by [15], where the weighting scheme is determined automatically by
the preliminary p-values; refer to the cumulative weights with B = 2 in Sec-
tion 3.3 for detail.

• Two-stage multiple testing procedure: the two-stage procedure defined by [6]
with the first stage being preliminary p-values filtering. The proportion of hy-
potheses to be removed in the filtering stage is set to be 50%.

Note that the “50% variance filter” in [6] shares the same spirit as the “two-stage
multiple testing procedure” except that the overall sample variance serves as the
filter statistic.

6.1. Example 1: Bivariate normal model. This example comes from hypoth-
esis testing of mean shift in normal models, that is, X = μ + ε with ε ∼ N(0,1).
We perform m = 10,000 independent right-sided hypotheses testing for H0 :μ = 0
versus H1 :μ > 0. Among all the null hypotheses, a proportion π0 of them are
from the true null hypotheses. For the ith test, we generate a bivariate test statis-
tic (xi1, xi2) from a bivariate normal distribution N (μ,�) where � = (σij )2×2
with σ11 = 1, σ12 = σ21 = ρ and σ22 = 1. We set μ = 0 under the true null
and μ = (μ1,μ2) under nonnull. The marginal p-values for the ith test are
pi1 = 1 − �(xi1) and pi2 = 1 − �(xi2), for i = 1, . . . ,m.

To evaluate the overall performance of the estimated FDR(t, θ) of meth-
ods I and II at the same threshold t ∈ [0,1], we consider the scenario where
μ1 = μ2 = 2, π0 = 0.75 and ρ = 0.2. For notational convenience, denote by
FDP(t, θ) = V (t, θ)/{R(t, θ) ∨ 1} the false discovery proportion at threshold t

with respect to {pi(θ) : i = 1, . . . ,m}. Figure 3 compares the average values of
F̂DRI(t, θ), F̂DRII(t, θ) and FDP(t, θ) for θ = π/8, π/4, 3π/8. For each case,
these two types of estimators are very close to true FDP, lending support to the
parametric and nonparametric estimation procedures in Section 4.

To illustrate the role of θ for detecting power in our proposed procedure, a
sequence of values {θl = (l − 1)/10 × π/2 : l = 1, . . . ,11} are designed. For sim-
plicity, we consider the scenario where μ1 = 2,μ2 = 2.5, π0 = 0.75, α = 0.05
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FIG. 3. Estimated FDR for methods I and II and the corresponding true FDP as a function of
threshold t and θ in Example 1. Here, μ1 = μ2 = 2, π0 = 0.75 and ρ = 0.2.

and ρ = {0,0.5,−0.5}. Figure 4 corresponds to the calculated FDP [i.e., FDP(t̂α)]
and the calculated power [i.e., S(t̂α)/m1] as a function of θ , for ρ = 0,0.5,−0.5,
respectively. In either case, we observe that the average values of the calculated

FIG. 4. Calculated FDP and power as a function of θ and ρ in Example 1. Here, μ1 = 2, μ2 = 2.5,
π0 = 0.75 and α = 0.05.
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TABLE 2
Mean and standard error of θ̂ (α′) by FDRI and FDRII for 10 scenarios, where π0 = 0.75, ρ = 0.2,

α′ = {0.05,0.10} and (μ1,μ2) are set to be (2,1), (2,1.5), (2,2), (2,2.5), (2,3), respectively

α′ = 0.05 α′ = 0.10

(μ1,μ2) FDRI FDRII FDRI FDRII θ0

(2, 1) 0.3231 (0.07) 0.3273 (0.13) 0.3190 (0.07) 0.3192 (0.10) 0.3218
(2, 1.5) 0.5706 (0.07) 0.5713 (0.12) 0.5684 (0.07) 0.5687 (0.10) 0.5743
(2, 2) 0.7785 (0.06) 0.7828 (0.11) 0.7813 (0.07) 0.7808 (0.09) 0.7854
(2, 2.5) 0.9523 (0.06) 0.9525 (0.09) 0.9436 (0.07) 0.9490 (0.09) 0.9505
(2, 3) 1.0732 (0.06) 1.0734 (0.09) 1.0720 (0.08) 1.0755 (0.11) 1.0769

FDP for both FDRI and FDRII are almost controlled at α = 0.05 for all θ , and by
appropriately choosing θ , the SIM methods outperform the conventional FDR pro-
cedure using p2 alone (with θ = π/2). The correlation between the components
of the bivariate p-value sensitively affects the optimal power. Negative correlation
distinguishes p1 and p2 most significantly, thus it is expected that this case can
improve the power most via combining the bivariate p-value. As a comparison,
positive correlation diminishes the detection slightly. However, the power is still
improved significantly when comparing to the conventional FDR procedure using
p2 alone.

To confirm the consistency of θ̂ (α′), we compare 10 scenarios, where π0 =
0.75, ρ = 0.2, α′ = {0.05,0.1} and (μ1,μ2) takes five different pair-values. From
Proposition 2, the optimal value θ0(α

′) is constant for different α′, denoted by θ0.
Table 2 compares the average value of θ̂ (α′) and its standard error of meth-
ods I and II with the optimal value θ0. In all situations, estimators are very close to
the optimal value θ0 except that the standard error of θ̂ (α′) by method II is slightly
larger than that by method I. This phenomenon is not surprising, since the nonpara-
metric fit for F0(t, θ) and F(t, θ) contaminates the estimator θ̂ II(α′). For unequal
covariance matrices in bivariate normal models for (xi1, xi2) with the correlation
coefficients ρ0 and ρ1 in the true null and nonnull, respectively, Figure 5 shows the
stability of θ̂ (α′) for various choices of α′ using both methods I and II.

In the previous simulation results, we have demonstrated that for a fixed value
of θ , F̂DRI and F̂DRII provide simultaneous and conservative control of FDR; and
that power can improve significantly by appropriately choosing θ . Does the con-
clusion continue to hold for random θ̂ (α)? Figure 6 examines the control of FDR
as well as power comparison of the SIM methods, their corresponding contami-
nated versions and the conventional FDR procedure for various combinations of
(μ2, π0). The left panels of Figure 6 compare the calculated FDP of all settings.
Clearly, the calculated FDP for the SIM methods and their contaminated versions
is controlled at the prespecified α = 0.05, confirming that the SIM methods are still
valid when the preliminary test statistics carry some wrong information. The right
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FIG. 5. θ̂ (α′) as a function of α′ for various combination of (μ1,μ2, ρ0, ρ1) in bivariate normal
models for (xi1, xi2). Here, π0 = 0.75.

panels correspond to the power of all the approaches. We observe that the average

values of power of FDRI(t, θ̂ (α)) and FDRII(t, θ̂ (α)) are consistently higher than
that of the conventional FDR procedure using p2 alone. Remarkably, the power
of the contaminated versions of the SIM methods is not adversely affected, but
between that of the SIM methods and the conventional FDR procedure.

To further illustrate the advantage of the SIM methods, Figure 7 compares them
with the weighted multiple testing procedure and the two-stage multiple testing
procedure which virtually use the same amount of information from preliminary
p-values and primary p-values for various levels α and ρ when the nonnull is a
mixture of three bivariate normal distributions with small, moderate and strong
signals. When the preliminary p-value and primary p-value are independent, all
the approaches are valid but the SIM methods outperform the weighted multiple
testing procedure and the two-stage multiple testing procedure for all significant
levels α. Note that both the weighted multiple testing procedure and the two-stage
multiple testing procedure are out of control if the components of bivariate p-value
are positively correlated and much more conservative under negative dependence.
In contrast, the SIM methods consistently estimate the FDR under any dependence
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FIG. 6. Calculated FDP and power as a function of μ2 and π0 for the SIM methods, their contam-
inated versions (SIM method I-C, SIM method II-C) and the conventional FDR procedure (storey
with p2) in Example 1. The contamination scheme is X̃1 = X1 + η, where X̃1 is the observable
preliminary test statistic and η is a standard normal noise independent of the unobservable one X1.
Here, μ1 = 2, α = 0.05 and ρ = 0.2.

structure between the components of bivariate p-value, providing much flexibility
to choose filters or weights in practice.

6.2. Example 2: Bivariate t distribution. In this example, we consider a set-
up similar to Example 1 except that the datasets are generated from a bivariate t

distribution. To be specific, {(xi1, xi2) : i = 1, . . . ,m}, are sampled independently
from a bivariate t distribution with 3 degrees of freedom and covariance matrix
identical to that in Example 1. Among all the null hypotheses, a proportion π0 of
them come from the true null hypotheses with mean zero, while the rest are coming
from nonnull hypotheses with mean vector μ = (μ1,μ2).

Figure 8 compares the average values of the true FDP, F̂DRI(t, θ) and
F̂DRII(t, θ) in a zoomed-in region of t ∈ [0,0.05] for different combinations of
(π0, θ). On the right panels where θ = π/2 (using p2), both methods I and II
provide conservative estimates of FDR. For the case θ = π/4 on the left panels,
method II provides conservative estimation of FDR and is less conservative as π0
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FIG. 7. Calculated FDP and power as a function of α and ρ for the SIM methods, the weighed
multiple testing procedure (weighted BH), the two-stage multiple testing procedure (two-stage) and
the conventional FDR procedure (storey with p2) in Example 1. Here, the nonnull is a mixture of
three bivariate normal distributions with signals (1,1), (2,2) and (3,3), respectively, and π0 = 0.9.

increases. Unlike method II, method I underestimates the true FDR for small t

and overestimates it for large t , which makes the FDR out of control for small α.
This is not surprising, since the bivariate t distribution with very low degrees of
freedom violates the normality assumption.

Before assessing the performance of the SIM methods incorporating random
θ̂ (α), we first demonstrate that θ̂ (α′) is robust to α′ for various bivariate t distribu-
tions in Figure 9, which lends support to setting α′ = α when choosing the optimal
projection direction. Based on this setting, Figure 10 summarizes the average val-
ues of the calculated FDP and power of the SIM methods, the contaminated ver-
sion of method II and the conventional FDR procedure for various combinations of
(μ1,μ2). We observe that the conventional FDR procedure lacks the ability to de-
tect statistical significance for various signals even when α = 0.05. Nonetheless,
by incorporating the prior information from p1 into p2, method II improves the
power while controlling the FDR. Similar to the previous case (Figure 6), the cal-
culated FDP for the contaminated version of method II is controlled at α = 0.05
and the corresponding power is very close to that of method II. This illustrates
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FIG. 8. Estimated FDR for methods I and II and the corresponding true FDP as a function of t in
Example 2. Here, μ1 = μ2 = 4 and ρ = 0.2.

the stability of method II when the preliminary p-value is not accurate. Note that,
even if method I appears more powerful than method II, the calculated FDP for
method I is out of control at level higher than α = 0.05. The uncontrolled perfor-

FIG. 9. θ̂ (α′) versus α′ for various combination of (μ1,μ2, ρ0, ρ1) for bivariate t distributions.
Here, π0 = 0.75.
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FIG. 10. Calculated FDP and power as a function of μ (μ = μ1 = μ2) for the SIM methods, the
contaminated version of method II (SIM method II-C) and the conventional FDR procedure (storey
with p2) in Example 2. The contamination scheme is X̃1 = X1 + η, where X̃1 is the observable
preliminary test statistic and η is a standard normal noise independent of the unobservable one X1
in Example 2. Here, α = 0.05, ρ = 0.2, π0 = 0.9 and df = 3.

mance of method I indicates that the nonparametric approach has certain advantage
in accommodating a larger class of bivariate distributions, and hence is practically
more applicable.

Under a mixture of three bivariate t distributions on the nonnull, the compar-
ison of the SIM methods with the weighted multiple testing procedure and the
two-stage multiple testing procedure is demonstrated in Figure 11. The story of
bivariate t distributions is similar to that of bivariate normal models in Figure 7
except that method I loses its validity for controlling FDR in all settings. In sum-
mary, method II has the merit of correctly and efficiently incorporating the prior
information, such as filters in the two-stage multiple testing procedure and weights
in the weighted multiple testing procedure, into the conventional FDR procedure
under any dependence structure (ρ).

6.3. Example 3: Multiple testing with serially clustered signals. In practice,
nonnull hypotheses are typically clustered. Thus, we can take a preliminary
p-value pi1 to be the local aggregation of pj2, for j located in the neighborhood
of the ith hypothesis, where {pi2 : i = 1, . . . ,m} are the primary p-values. The new
pairs {(pi1,pi2) : i = 1, . . . ,m} consist of the bivariate p-values. In this example,
we mimic the situation of serially clustered signals to evaluate the performance
of the SIM methods. To be specific, we perform m = 10,000 one-sided hypothe-
ses testing independently, where test statistics follow N(0,1) and N(μ,1) for the
true null and nonnull, respectively, for μ randomly chosen from {1.5,2,2.5}. The
serial structure is designed as follows: the nonnull hypotheses consist of three clus-
ters, that is, C1 = {i = 1001, . . . ,2000},C2 = {i = 5001, . . . ,6000} and C3 = {i =
8001, . . . ,9000}. There are various types of preliminary p-values we can take,
such as the mean or median of the p-values in the neighborhood of the original
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FIG. 11. Calculated FDP and power as a function of α and ρ for the SIM methods, the weighed
multiple testing procedure (weight BH), the two-stage multiple testing procedure (two-stage) and the
conventional FDR procedure (storey with p2) in Example 2. Here, the nonnull is a mixture of three
bivariate t distributions with signals (3,3), (6,6) and (8,8), respectively, and π0 = 0.9.

hypothesis; refer to [36] for details. For simplicity, the p-values in the neighbor-
hood of pi2 is chosen as {pi−1,2,pi+1,2} and the preliminary p-value is defined as
pi1 = (pi−1,2 + pi+1,2)/2, for i = 1, . . . ,m. Besides the conventional FDR pro-
cedure, the mean filter, p∗

i = (pi−1,2 + pi,2 + pi+1,2)/3 proposed by [36], also
serves as a competitor. The results are shown in Table 3. Method II, the mean filter
using p∗

i and the conventional FDR procedure using p2 provide conservative con-
trol of FDR, whereas FDR of method I is slightly out of control for small α. This is
reasonable as the normality assumption is not strictly satisfied for the transformed
p-value (�−1(pi1),�

−1(pi2)). In general, by utilizing the structural information
of the primary p-values, both method II and the mean filter using p∗

i are more
powerful than the conventional FDR procedure using p2 alone. Rather than giv-
ing the same weight (1/3) to the neighborhood (pi−1,2,pi,2,pi+1,2) in the mean
filter p∗

i , the data-driven procedure for selecting θ based on power comparison
for method II adjusts different weights to the bivariate p-value (pi1,pi2) accord-
ing to their corresponding potential for detecting power. Consequently, method II
outperforms the mean filter using p∗

i for all possible α.
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TABLE 3
Calculated FDP and power comparison of methods I and II, the mean filter using p∗

i and the
conventional FDR procedure (storey with p2) in Example 3

FDRI using (p1,p2) FDRII using (p1,p2) Mean filter using p∗
i Storey with p2

α FDP Power FDP Power FDP Power FDP Power

0.01 0.013 0.617 0.010 0.578 0.010 0.505 0.010 0.059
0.02 0.024 0.708 0.020 0.684 0.020 0.616 0.019 0.115
0.03 0.034 0.759 0.030 0.742 0.030 0.682 0.029 0.164
0.04 0.044 0.794 0.040 0.782 0.040 0.728 0.038 0.208
0.05 0.053 0.820 0.050 0.811 0.050 0.763 0.048 0.247
0.06 0.063 0.841 0.060 0.834 0.060 0.791 0.058 0.283
0.07 0.073 0.858 0.070 0.852 0.070 0.813 0.067 0.317
0.08 0.082 0.872 0.079 0.867 0.080 0.832 0.077 0.348
0.09 0.092 0.884 0.089 0.881 0.090 0.849 0.087 0.377
0.10 0.101 0.894 0.099 0.891 0.100 0.864 0.096 0.404
0.20 0.196 0.952 0.199 0.953 0.199 0.945 0.192 0.610
0.30 0.293 0.977 0.299 0.978 0.299 0.978 0.288 0.748

6.4. Example 4: Two-sample t test. In this example, we mimic the microar-
ray experiment, where two-sample t test is performed to detect differentially
expressed genes for two classes comparison. Suppose m = 10,000 genes are
examined independently, among which 10% are from the nonnull. For the ith
gene, let {xi,1, xi,2, . . . , xi,10} and {yi,1, yi,2, . . . , yi,10} be two independent sam-
ples from N(μ1,1) and N(μ2,1), respectively, where μ1 = μ2 is for nondiffer-
entially expressed genes and μ1 �= μ2 is for differentially expressed genes. The
primary p-value, pi2, is obtained by the standard two-sample t test. To get the
preliminary p-value, pi1, the sum of squared error of the two samples, which has
a chi-square distribution with 19 degrees of freedom and independent of t statistic
in the standard two-sample t test under the true null, can be utilized. In this sce-
nario, the independence between the components of bivariate p-value implies that
the true null distribution of the combined p-value is uniform for all θ . To make
a comprehensive comparison, the 50% variance filter proposed in [6] is also con-
sidered. Figure 12 shows that the performance of methods I and II is almost the
same and the corresponding power is improved for different size effect μ1 − μ2
for α = 0.05. Particularly, our method is superior to the 50% variance filter for all
cases. This is due to the fact that we employ a data-driven procedure for choosing
the tuning parameter θ , whereas the fraction 50% in the variance filtering proce-
dure is subjectively fixed.

7. Integrative analysis on prostate cancer data. Genomic DNA copy num-
ber (CN) alterations are key genetic events in the development and progression
of human cancers. In parallel, microarray gene expression (GE) measurements of
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FIG. 12. Calculated FDP and power of methods I and II, the 50% variance filter and the conven-
tional FDR procedure (storey with p2) for various size effect μ1 − μ2 in Example 4.

mRNA level provide an alternative for detecting some significant genes which
contribute to certain cancer diseases. As discussed by the previous study [20],
the amplified gene section was enriched with transcript overexpression, and the
deleted section was enriched with mRNA downregulation. Hence, integration of
CN aberration and GE to identify DNA CN alterations that induce changes in the
expressional levels of the associated genes is a common task in cancer studies. To
this end, several authors have explored integrative analysis of these two heteroge-
neous data sources to reveal higher levels of interactions that cannot be detected
based on individual observations; see [21] and the references therein.

To demonstrate the practical utility of the SIM procedure, we applied it to
data produced by [20] in a study on prostate cancer progression. This study used
an array comparative hybridization (aCGH) to profile genome-wide CN changes
through the isolation of pure cell populations representing entire spectrum of
prostate disease using laser capture microdissection (LCM) and OmniPlex Whole
Genomic (WGA) Application. Data on CN alterations and GE were matched for
m = 7534 genes using prostate cell populations from low-grade (n1 = 27) and
high-grade samples (n2 = 17) of cancerous tissue. We calculated two-sided t

statistics (t1, t2) and their p-values (p1,p2) for GE and CN aberrations for each
of 7534 genes. Here, the primary p-value p2 was obtained from the copy num-
ber in DNA level and its transcriptional gene expression served as the preliminary
p-value p1. Panel (a) of Figure 13 shows the scatter plot of gene expression and
copy number p-values, where the sample correlation coefficient of p1 and p2 is
−0.004. This motivates us to apply our SIM method I to target the genes evidenc-
ing statistical significance in either DNA or mRNA level. Using the significance
level α = 0.01, our SIM method I detects 174 rejections with their geometric lo-
cations showing in panel (b) of Figure 13. The projection direction is estimated as
θ̂ I = 0.465, supporting that the preliminary p-value from GE is informative.

Note that our SIM procedure is valid for testing the conjunction of null hypothe-
ses to favor genes with DNA copy number alterations or differential expressions
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FIG. 13. (a): Scatter plot of bivariate p-values (p1,p2), where the correlation coefficient of p1
and p2 is −0.004; (b): geometric locations of the rejected genes using method I with the significance

level α = 0.01. Here, the projection direction is θ̂ I = 0.465; (c): scatter plot of bivariate p-values
(p1,p2) of the trimmed genes, where the correlation coefficient of p1 and p2 is 0.833; (d): geometric
locations of the rejected genes using method II for the trimmed genes with the significance level
α = 0.01. Here, the projection direction is θ̂ II = 0.671.

under the alternative. Some genes are amplified or deleted in DNA level but have
insignificant GE in mRNA level, which can be accounted for by the inappropriate
use of “methylation;” while some upstream “transcription factor” genes found dif-
ferentially expressed with activation (or suppression) function will up (or down)
downstream genes. To further identify candidate genes with genetic alterations that
accompany corresponding transcriptomic changes, we utilized a weight function,
a product in DNA/RNA-Significance Analysis of Microarrays (DR-SAM) [28], to
screen out the genes which are significant only in DNA or mRNA level. Specif-
ically, the weight function, which is defined as w = min{ t1

t2
, t2

t1
} (0 ≤ w ≤ 1), is

the ratio of two t-scores. Small weight is applied to favor genes with unbalanced
contributions on copy number and gene expression. Based on this rationale, the
genes with weights larger than a threshold will serve as candidates for detecting
concordantly altered genes. Given a threshold, the scatter plot of genes passing
the threshold under the true null violates the normality and symmetry property
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assumptions. Fortunately, the genes with points above the line p1 + p2 > 1 sel-
dom come from the alternative. Hence, we modified the weight function on the
area with p1 + p2 > 1 as w′(p1,p2) = w(1 − p1,1 − p2) such that the genes
passing the threshold satisfy the symmetry property assumption. A small thresh-
old will enrich the alternative with some genes being significant only in DNA or
mRNA level, increasing the false discovery rate; while a large threshold will screen
out some genes exhibiting concordant changes, resulting in low power. Based on
this perspective, the selection of the threshold using the modified weight function
is fdr-power trade-off. For simplicity, we set the threshold such that 50% of the
genes will be screened out. Panel (c) of Figure 13 presents the scatter plot of the
trimmed genes, which will be used for testing. At α = 0.01, our SIM method II
estimates the projection direction as θ̂ II = 0.671 and selects 62 genes, as shown in
panel (d) of Figure 13. To make comprehensive comparisons, Table 4 shows the
numbers of rejected genes by applying the SIM methods, and the three competing
procedures as used in our numerical studies. In summary, all the three competing
procedures with either p1 or p2 as primary p-values, are more conservative than
our SIM procedures.

Of these 62 genes selected by our SIM method II with the trimmed genes,
38 were mapped to the official gene names (11,705 in total) for prostate cancer with
somatic mutation listed on Catalogue of Somatic Mutation in Cancer (COSMIC),
supporting these genes being putative oncogenes in prostate cancer. Notably, the
top five genes, that is, ABCA4, ABCA3, ACTG1, AADAC and ACACA, were
ranked as 426, 454, 700, 780 and 848, respectively. Particularly, the gene ACACA,
known to be involved in fatty and acid metabolism, was also identified in the pre-
vious study [22]. To integrate gene-set information from a complex system with

TABLE 4
Compare the numbers of rejections by the SIM methods, the

conventional FDR procedure (storey), the two-stage multiple testing
procedure (two-stage), and the weighted multiple testing procedure

(weighted BH) when α = 0.01. Here, (pi |pj ) indicates that pi is used
as the primary p-value while pj serves as the preliminary p-value

Methods Number of rejections

SIM method I with the whole data 174
SIM method II with the trimmed data 62

Storey with p1 31
Storey with p2 0

Two-stage with (p1|p2) 16
Two-stage with (p2|p1) 1

Weighted BH with (p1|p2) 14
Weighted BH with (p2|p1) 0
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TABLE 5
Summary of Gene Functional Classification from Gene Ontology (GO). 9 GO terms are inferred to
be active using MFA. Here, P.MFA represents the marginal posterior probability of activation, and

basic statistics on these terms are provided in the “size” column (#prostate cancer-associated
genes/set size)

GO ID Gene set (GO term) P.MFA Size

GO:0007031 Peroxisome organization 0.7909023 2/58
GO:0070307 Lens fiber cell development 0.7225289 1/12
GO:0001569 Patterning of blood vessels 0.7094174 2/35
GO:0001517 N-acetylglucosamine 6-O-sulfotransferase activity 0.7036159 1/6
GO:0008455 Alpha-1, 6-mannosylglycoprotein 0.6962325 1/1
GO:0043190 ATP-binding cassette (ABC) transporter complex 0.6593146 1/6
GO:0008332 Low voltage-gated calcium channel activity 0.6440800 1/3
GO:0030612 Arsenate reductase (thioredoxin) activity 0.6339682 1/1
GO:0004464 Leukotriene-C4 synthase activity 0.6276624 1/2

our experimentally-derived gene list, a larger gene list is necessary. For this pur-
pose, we performed our SIM method II to the trimmed genes at α = 0.05, which
yields 331 rejections. Among them, 102 could be mapped to recognized genes
by DAVID [19]. To assess the functional content of this gene list, we applied a
new approach termed as multifunctional analyzer (MFA) proposed by [35], in the
context of gene ontology terms. Compared with existing methods such as Fisher’s
exact test and model-based gene-set analysis (MGSA) [1], MFA has the merit of
alleviating the redundancy problem in Fisher’s exact test while improving the sta-
tistical efficiency of MGSA. Table 5 reports the gene sets which were inferred to
be activated by MFA in prostate cancer.

8. Discussion. This paper proposes a SIM multiple testing procedure to em-
bed prior information, such as the overall sample variance in a standard two-
sample t test in microarray experiments and the structurally spatial information
for large-scale imaging data, into the conventional FDR procedure, by assuming
the availability of a bivariate p-value for each null hypothesis. We discuss the op-
timal rejection region in terms of power comparison in a general bivariate model
and project the bivariate p-value into a single-index quantified by a projection
direction θ . A novel procedure is established to estimate the optimal projection di-
rection consistently under some mild conditions, followed by two procedures for
the estimation and control of FDR.

Although the operators � and �−1 in the single-index p(θ) come from
the normality assumption, generalizations, such as p(θ) = �(cos(θ)�−1(p1) +
sin(θ)�−1(p2)), can be made, where � is the CDF of some random variable. We
have shown in the simulation study that the normal operator � is robust to distri-
butions of other bivariate test statistics. A thorough investigation of the role of the
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operator is beyond the scope of this paper, but could be of interest in the future
research.

As discussed in Section 3, the essential spirit of multiple testing is on increas-
ing the detection power while maintaining the FDR rigorously. Theoretically, the
detection power is related to three quantities, that is, π0, F0(t) and F1(t), via the
Bayesian Fdr formula F1(t) = (1/α−1)π0/π1F0(t). Screening out a proportion of
uninformative hypotheses by an effective filter will enrich for nonnull hypotheses
while simultaneously reducing the number of hypotheses to be tested at the sec-
ond stage. From this point of view, the independence filter provided by [6] aims to
decrease π0 to improve the detection power. However, in our SIM multiple testing
procedure, we project the bivariate p-value into a single-index, which significantly
changes the true null and nonnull distributions (F0(t),F1(t)). Hence, the power is
increased by changing the structure of p-values while keeping π0 to be constant.
Our future research will be focused on constructing a more powerful multiple test-
ing procedure via reducing the proportion of true null hypothesis and changing the
structure of p-values simultaneously.

Beyond the weak dependence assumption made in (C2), the sequence of the
projected p-values will inevitably inherit strong dependence from the primary test
statistics, making the SIM procedure less accurate. Much published work has been
developed to handle multiple testing problem with some strong dependence struc-
ture; see [13] and the references therein. Much research is needed to investigate the
performance of the SIM methods for solving multiple testing problem with strong
dependence structure across the tests.

APPENDIX A: PROOFS OF MAIN RESULTS

For presentational fluency, denote F̃0(t, θ) = V (t, θ)/m0, F̃1(t, θ) = {R(t, θ)−
V (t, θ)}/m1 and F̂ (t, θ) = R(t, θ)/m. Analogously, define the following left-limit
processes:

F̃0(t−, θ) = m−1
0

m∑
i=1

I
{
pi(θ) < t,H0(i)

}
,

F̃1(t−, θ) = m−1
1

m∑
i=1

I
{
pi(θ) < t,H1(i)

}
,

F̂ (t−, θ) = m−1
m∑

i=1

I
{
pi(θ) < t

}
.

We only prove the main results involved the nonparametric estimator F̂ II
0 (t, θ).

For those involved the parametric estimator F̂ I
0(t, θ), all proofs will go through as

long as this estimator uniformly converges to the true null distribution F0(t, θ) for
all t and θ .

We first impose some regularity conditions, which are not the weakest possible
but facilitate the technical derivations.
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Conditions.

(C1) limm→∞ m0/m = π0 exists and 0 < π0 < 1.
(C2) limm→∞ m0

−1∑m
i=1 I(pij ≤ t,H0(i)) = G

j
0(t) and limm→∞ m1

−1 ×∑m
i=1 I(pij ≤ t,H1(i)) = G

j
1(t) almost surely, for j = 1,2.

(C3) For any rational number α ∈ [0,1], denote by qα(θ) the 100αth quan-
tile of the distribution function F(t, θ). Assume that F̂ (t, θ) and F(t, θ) satisfy
the Lipschitz continuity as follows: supm supα |F̂ (qα(θ), θ) − F̂ (qα(θ ′), θ ′)| ≤
C1|θ − θ ′| and supα |F(qα(θ), θ) − F(qα(θ ′), θ ′)| ≤ C1|θ − θ ′|, where C1 is a
generic positive constant, not depending on F̂ ,F and α. The Lipschitz continuity
conditions also hold for F̂ (t−, θ) and F(t−, θ). In addition, F0(t, θ), F0(t−, θ),
F̃0(t, θ) and F̃0(t−, θ) satisfy the Lipschitz continuity conditions.

(C4) The probability density function of (p1,p2) under the true null is cen-
trally symmetric with respect to (1/2,1/2).

(C5) F1(1/2, θ) = 1 for all θ .
(C6) infθ F (δ, θ) > 0, for any δ > 0.
(C7) F0(t, θ) and F(t, θ) are continuous in the region {(t, θ) : t∗α′(θ) ≤ t ≤ 1}

and |F(t, θ)−F(t∗α′(θ), θ)| ≤ C2|t − t∗α′(θ)|, where C2 is a constant not depending
on θ .

(C8)

lim
t→t∗

α′ (θ)

F0(t, θ)/F (t, θ) − F0(t
∗
α′(θ), θ)/F (t∗α′(θ), θ)

t − t∗α′(θ)
= k(θ)

uniformly for θ , where infθ |k(θ)| > 0.
(C9) (Identification). Given δ′ > 0, there exists ε > 0, such that

inf
θ : |θ−θ0(α

′)|>δ′
{
F

(
t∗α′

(
θ0(α

′)
)
, θ0(α

′)
) − F

(
t∗α′(θ), θ

)} ≥ ε.

(C10) |F(t, θ)−F(t, θ0(α
′))| ≤ C3|θ −θ0(α

′)| and |F0(t, θ)−F0(t, θ0(α
′))| ≤

C3|θ − θ0(α
′)|, where C3 is a constant not depending on θ and t .

Before proving the propositions and theorems, we first show Lemmas 1 and 2.

LEMMA 1. Assume conditions (C1) to (C3). Let pi(θ) = �(cos(θ)�−1(pi1)+
sin(θ)�−1(pi2)), i = 1, . . . ,m, where � is the CDF of a standard normal random
variable. Then we have

sup
0≤θ≤π/2

sup
0≤t≤1

∣∣∣∣∣ 1

m0

m∑
i=1

I
{
pi(θ) ≤ t,H0(i)

} − F0(t, θ)

∣∣∣∣∣ a.s.→ 0,

sup
0≤θ≤π/2

sup
0≤t≤1

∣∣∣∣∣ 1

m1

m∑
i=1

I
{
pi(θ) ≤ t,H1(i)

} − F1(t, θ)

∣∣∣∣∣ a.s.→ 0,

sup
0≤θ≤π/2

sup
0≤t≤1

∣∣∣∣∣ 1

m

m∑
i=1

I
{
pi(θ) ≤ t

} − F(t, θ)

∣∣∣∣∣ a.s.→ 0.
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PROOF. We first show the uniform consistency of F̂ (t, θ). For fixed t and θ ,
{pi(θ) : i = 1, . . . ,m} satisfy the weak dependence:∣∣∣∣∣ 1

m

m∑
i=1

I
{
pi(θ) ≤ t

} − F(t, θ)

∣∣∣∣∣ a.s.→ 0,

(A.1) ∣∣∣∣∣ 1

m

m∑
i=1

I
{
pi(θ) < t

} − F(t−, θ)

∣∣∣∣∣ a.s.→ 0.

This conclusion is directly implied by conditions (C1) and (C2). To prove the uni-
form consistency of F̂ (t, θ), we extend the argument in the proof of the Glivenko–
Cantelli theorem [9]. For 0 ≤ j ≤ k, partitioning the domain into grid points (t, θ)

as {qj/k(θl) : j = 0, . . . , k; l = 0, . . . ,Lk} such that {θl : l = 0, . . . ,Lk} are equally
spaced in [0, π/2] with unit length less than or equal to 1/(C1k), where C1 is given
in condition (C3). The pointwise convergence (A.1) implies that we can pick up
Nk(ω) such that ∣∣F̂ (

qj/k(θl), θl

) − F
(
qj/k(θl), θl

)∣∣ < k−1 and
(A.2) ∣∣F̂ (

qj/k(θl)−, θl

) − F
(
qj/k(θl)−, θl

)∣∣ < k−1

for 0 ≤ j ≤ k and 0 ≤ l ≤ Lk . For t ∈ (q(j−1)/k(θ), qj/k(θ)) and θ ∈ (θl−1, θl)

with 1 ≤ j ≤ k, 1 ≤ l ≤ Lk and m > Nk(ω), using the monotonicity of F̂ and F ,
F(qj/k(θ)−, θ) − F(qj−1/k(θ), θ) ≤ k−1 and condition (C3), we have

F̂ (t, θ) ≤ F̂
(
qj/k(θ)−, θ

)
≤ F̂

(
qj/k(θl−1)−, θl−1

) + k−1

≤ F
(
qj/k(θl−1)−, θl−1

) + 2k−1

≤ F
(
qj−1/k(θl−1), θl−1

) + 3k−1

≤ F
(
qj−1/k(θ), θ

) + 4k−1

≤ F(t, θ) + 4k−1.

Similar arguments lead to F̂ (t, θ) ≥ F(t, θ) − 4k−1. So supθ supt |F̂ (t, θ) −
F(t, θ)| ≤ 4k−1, and we have proved the result. The uniform convergence of
F̃0(t, θ) can be derived similarly. Combining these two results, we obtain the uni-
form convergence of F̃1(t, θ) immediately. �

LEMMA 2. Under conditions (C1)–(C5), the nonparametric estimator
F̂ II

0 (t, θ) uniformly converges to F0(t, θ) for all t and θ .

PROOF OF PROPOSITION 1. Let I(p ∈ SOR) be the indicator of p ∈ SOR and
I(p ∈ S) be the indicator of p ∈ S for any rejection region satisfying Fdr(S) ≤ α.
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Since Fdr(SOR) is the conditional expectation of fdr(p) given p ∈ SOR [11], some
derivations yield that

α = Fdr(SOR) = Ef

{
fdr(p)|p ∈ SOR

}
=

∫
{p : fdr(p)<C}

fdr(p) dP̃ +
∫
{p : fdr(p)=C}

fdr(p) dP̃

=
∫
{p : fdr(p)<C}

fdr(p) dP̃ < C,

where P̃ denotes the probability measure of p given p ∈ SOR and the last equality
holds by condition (3.6). As a result, C > 0 and 1 − α/C > 0. By condition (3.6),
there exists S′ such that S ⊆ S′ and Fdr(S′) = α. For every p,

I
(
p ∈ S′){1 − fdr(p)/C

} ≤ I(p ∈ SOR)
{
1 − fdr(p)/C

}
,(A.3)

where (A.3) is based on the observation that if p /∈ SOR, the left-hand side of (A.3)
is less than or equal to zero. By taking expectation for both sides of equation (A.3),∫

I
(
p ∈ S′){1 − fdr(p)/C

}
f (p) dp ≤

∫
I(p ∈ SOR)

{
1 − fdr(p)/C

}
f (p) dp,

we obtain the following inequality:

F
(
S′){1 − Fdr

(
S′)/C

} ≤ F(SOR)
{
1 − Fdr(SOR)/C

}
,(A.4)

where F(S) = π0F0(S) + π1F1(S). By definition, both 1 − Fdr(S′)/C and
1 − Fdr(SOR)/C are equal to 1 − α/C > 0. Hence, (A.4) implies that F(S′) ≤
F(SOR). From the Fdr formula, F(S′) = π1/(1 − α)F1(S′) and F(SOR) =
π1/(1 − α)F1(SOR). So F1(S′) ≤ F1(SOR). The proof is completed by the fact
that F1(S) ≤ F1(S′) for any S ⊆ S′. �

PROOF OF PROPOSITION 2. By continuity, t∗α′(θ) satisfies that F0(t, θ)/

F (t, θ) = α′. From the Fdr formula, for any θ , t∗α′(θ) is the solution of the equa-

tion F1(t, θ) = βF0(t, θ). Since ∂F1(t,θ)
∂t

− β
∂F0(t,θ)

∂t
�= 0 for any interior point

(t, θ, α′) in [0,1] × [0, π/2] × [0,1/π0], implicit function theorem implies that
there exists a unique continuously differentiable function t = g(α′, θ) such that
F1(g(α′, θ), θ) = βF0(g(α′, θ), θ). By uniqueness, t∗α′(θ) = g(α′, θ), indicating
that t∗α′(θ) is continuously differentiable with respect to θ and α′. Taking deriva-
tive with respect to θ for both sides of F1(t

∗
α′(θ), θ) = βF0(t

∗
α′(θ), θ) leads to{

∂F1(t, θ)

∂t

∂t∗α′(θ)

∂θ
+ ∂F1(t, θ)

∂θ

}∣∣∣∣
t=t∗

α′ (θ)

(A.5)

=
{
β

∂F0(t, θ)

∂t

∂t∗α′(θ)

∂θ
+ β

∂F0(t, θ)

∂θ

}∣∣∣∣
t=t∗

α′ (θ)

.
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From (A.5),
∂t∗

α′ (θ)

∂θ
can be expressed as

∂t∗α′(θ)

∂θ
=

{
β((∂F0(t, θ))/(∂θ)) − ((∂F1(t, θ))/(∂θ))

((∂F1(t, θ))/(∂t)) − β((∂F0(t, θ))/(∂t))

}∣∣∣∣
t=t∗

α′ (θ)

.(A.6)

Since F1(t
∗
α′(θ), θ) achieves the maximum at θ0(α

′), the following partial differ-
ential equation holds, that is,[{

∂F1(t, θ)

∂t

∂t∗α′(θ)

∂θ
+ ∂F1(t, θ)

∂θ

}∣∣∣∣
t=t∗

α′ (θ)

]∣∣∣∣
θ=θ0(α

′)
= 0.(A.7)

Plugging (A.6) into (A.7), the partial differential equation can be simplified as[{
∂F1(t, θ)

∂t

/∂F1(t, θ)

∂θ

}∣∣∣∣
t=t∗

α′ (θ)

]∣∣∣∣
θ=θ0(α

′)
(A.8)

=
[{

∂F0(t, θ)

∂t

/∂F0(t, θ)

∂θ

}∣∣∣∣
t=t∗

α′ (θ)

]∣∣∣∣
θ=θ0(α

′)
.

From (A.8), the x-coordinate of the point of intersection of the solution set {(θ, t)}
satisfying (4.6) and t = t∗α′(θ) is θ0(α

′).
“⇐”: θ0(α

′) is constant for all 0 < α′ < 1/π0 if the solution θ of t of the equa-
tion (4.6) is unique and equals a constant.

“⇒”: If the solution θ of t of the equation (4.6) is either not unique or not
equal to a constant, then there exists t1 and t2 such that θ(t1) �= θ(t2). Since t∗α′(θ)

are continuous and nondecreasing from [0,1/π0] with respect to α′ for any θ ,
there exists α′

1 and α′
2 such that t∗

α′
1
(θ(t1)) = t1 and t∗

α′
2
(θ(t2)) = t2. From (A.8),

θ(t1) = θ0(α
′
1) and θ(t2) = θ0(α

′
2), which implies that θ0(α

′) is not constant for all
0 < α′ < 1/π0.

Under the normality assumption, F1(t, θ) = �(
�−1(t)−μ1(θ)

σ0(θ)
) and F0(t, θ) =

�(
�−1(t)−μ0(θ)

σ0(θ)
), where μ0(θ) = μ0;1 cos(θ)+μ0;2 sin(θ), μ1(θ) = μ1;1 cos(θ)+

μ1;2 sin(θ) and σ0(θ) is appearing in (4.1). In this case, (A.8) reduces to
[ ∂
∂θ

{μ0(θ)
σ0(θ)

} = ∂
∂θ

{μ1(θ)
σ0(θ)

}]|θ=θ0(α
′), implying that θ0(α

′) is constant. �

PROOF OF PROPOSITION 3. For left-sided hypotheses, the joint CDF of
(p̃1,p2) under the true null can be derived as

P(p̃1 ≤ t̃1,p2 ≤ t2|H0)

= P
(
F0;X1(X̃1) ≤ t̃1,p2 ≤ t2|H0

)
(A.9)

= P
(
p1 ≤ F0;X1

(
F−1

0;X1
(t̃1) − η

)
,p2 ≤ t2|H0

)
=

∫ ∞
−∞

fη(η)

{∫ F0;X1 (F−1
0;X1

(t̃1)−η)

0

∫ t2

0
f0;(p1,p2)(p1,p2) dp1 dp2

}
dη,
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where fη is the p.d.f. of η, f0;(p1,p2) is the p.d.f. of (p1,p2) under the true null, and
F−1

0;X1
is the inverse function of F0;X1 . By taking derivatives of (A.9), we obtain

f0;(p̃1,p2)(p̃1,p2)

=
∫ ∞
−∞

fη(η)
f0;X1(F

−1
0;X1

(p̃1) − η)

f0;X1(F
−1
0;X1

(p̃1))
(A.10)

× f0;(p1,p2)

(
F0;X1

(
F−1

0;X1
(p̃1) − η

)
,p2

)
dη,

where f0;(p̃1,p2) is the p.d.f. of (p̃1,p2) under the true null and f0;X1 is the true
null p.d.f. of X1. Thus,

f0;(p̃1,p2)(1 − p̃1,1 − p2)

=
∫ ∞
−∞

fη(η)
f0;X1(F

−1
0;X1

(1 − p̃1) − η)

f0;X1(F
−1
0;X1

(1 − p̃1))

× f0;(p1,p2)

(
F0;X1

(
F−1

0;X1
(1 − p̃1) − η

)
,1 − p2

)
dη

=
∫ ∞
−∞

fη(η)
f0;X1(−F−1

0;X1
(p̃1) − η)

f0;X1(−F−1
0;X1

(p̃1))
(A.11)

× f0;(p1,p2)

(
F0;X1

(−F−1
0;X1

(p̃1) − η
)
,1 − p2

)
dη

=
∫ ∞
−∞

fη(η)
f0;X1(F

−1
0;X1

(p̃1) + η)

f0;X1(F
−1
0;X1

(p̃1))
(A.12)

× f0;(p1,p2)

(
1 − F0;X1

(
F−1

0;X1
(p̃1) + η

)
,1 − p2

)
dη

=
∫ ∞
−∞

fη(η)
f0;X1(F

−1
0;X1

(p̃1) + η)

f0;X1(F
−1
0;X1

(p̃1))
(A.13)

× f0;(p1,p2)

(
F0;X1

(
F−1

0;X1
(p̃1) + η

)
,p2

)
dη

=
∫ ∞
−∞

fη(−η)
f0;X1(F

−1
0;X1

(p̃1) − η)

f0;X1(F
−1
0;X1

(p̃1))

× f0;(p1,p2)

(
F0;X1

(
F−1

0;X1
(p̃1) − η

)
,p2

)
dη

=
∫ ∞
−∞

fη(η)
f0;X1(F

−1
0;X1

(p̃1) − η)

f0;X1(F
−1
0;X1

(p̃1))
(A.14)

× f0;(p1,p2)

(
F0;X1

(
F−1

0;X1
(p̃1) − η

)
,p2

)
dη,
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where (A.11) and (A.12) are due to the fact that f0;X1 is symmetric with re-
spect to 0, (A.13) is satisfied by using the symmetry property assumption on
f0;(p1,p2)(p1,p2), and (A.14) holds under the assumption that the p.d.f. of η is
symmetric. (A.10) together with (A.14) yields that

f0;(p̃1,p2)(p̃1,p2) = f0;(p̃1,p2)(1 − p̃1,1 − p2),

for any p̃1 and p2 in [0,1] × [0,1]. The case for right-sided hypotheses can be
derived in a similar way. These complete the proof. �

PROOF OF THEOREM 1. Before proving Theorem 1, we first provide
Lemma 3.

LEMMA 3. Under conditions (C1) to (C8),

sup
θ

∣∣t̂∗II
α′ (θ) − t∗α′(θ)

∣∣ a.s.→ 0.

PROOF. Fix δ1 > 0, and let t̄ (θ) be any curve such that t∗α′(θ)+ δ1 ≤ t̄ (θ) ≤ 1.
Then

F̂ II
0 (t̄(θ), θ)

{R(t̄(θ), θ) ∨ 1}/m

≥ F0(t̄(θ), θ) − |F̂ II
0 (t̄(θ), θ) − F0(t̄(θ), θ)|

F(t̄(θ), θ) + |{R(t̄(θ), θ) ∨ 1}/m − F(t̄(θ), θ)|
≥ infθ F0(t̄(θ), θ)/F (t̄(θ), θ) − ε1

1 + ε2
,

where ε1 = infθ inft≥δ1 |F̂ II
0 (t, θ) − F0(t, θ)|/F (t, θ), and

ε2 = sup
θ

sup
t≥δ1

∣∣{R(t, θ) ∨ 1
}
/m − F(t, θ)

∣∣/F (t, θ).

By Lemmas 1, 2 and condition (C6), ε1
a.s.→ 0 and ε2

a.s.→ 0. Note that F0(t̄(θ), θ)/

F (t̄(θ), θ) > α′; otherwise it contradicts t∗α′(θ) being supremum. By condi-
tion (C7), infθ F0(t̄(θ), θ)/F (t̄(θ), θ) > α′. Hence, for a sufficiently large M1(δ1),
when m > M1(δ1), if follows that

mF̂ II
0

(
t̄ (θ), θ

)
/
{
R

(
t̄ (θ), θ

) ∨ 1
}
> α′

with probability 1, which implies that t̂∗II
α′ (θ) ≤ t∗α′(θ) + δ1 almost surely.

On the other hand, by condition (C8), since F0(t, θ)/F (t, θ) has a nonzero
derivative k(θ) at t∗α′(θ), it must be positive; otherwise t∗α′(θ) cannot be the true
supremum for all t such that F0(t, θ)/F (t, θ) ≤ α′. For any ε > 0, there exists
ξ > δ1 such that, for |t̃ (θ) − t∗α′(θ)| ≤ ξ ,∣∣∣∣F0(t̃(θ), θ)/F (t̃(θ), θ) − F0(t

∗
α′(θ), θ)/F (t∗α′(θ), θ)

t̃(θ) − t∗α′(θ)
− k(θ)

∣∣∣∣ < ε.
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For a truncated area with t∗α′(θ) − ξ ≤ t̃ (θ) ≤ t∗α′(θ) − δ1, supθ F0(t̃(θ), θ)/

F (t̃(θ), θ) < α′. When t̃ (θ) ∈ [t∗α′(θ) − ξ, t∗α′(θ) − δ1], some derivation yields that

F̂ II
0 (t̃(θ), θ)

{R(t̃(θ), θ) ∨ 1}/m

≤ F0(t̃(θ), θ)/F (t̃(θ), θ) + |F0(t̃(θ), θ) − F̂ II
0 (t̃(θ), θ)|/F (t̃(θ), θ)

1 − |F(t̃(θ), θ) − {R(t̃(θ), θ) ∨ 1}/m|/F (t̃(θ), θ)

≤ supθ F0(t̃(θ), θ)/F (t̃(θ), θ) + ε3

1 − ε4
,

where ε3 = supθ supt≥δ+ |F0(t, θ)−F̂ II
0 (t, θ)|/F (t, θ), ε4 = infθ inft≥δ+ |F(t, θ)−

{R(t, θ)∨1}/m|/F (t, θ) and δ+ = infθ {t∗α′(θ)− ξ}. By Lemmas 1 and 2, and con-

dition (C6), it follows that ε3
a.s.→ 0 and ε4

a.s.→ 0. Thus, for another sufficiently large
M2(δ1), when m > M2(δ1),

mF̂ II
0

(
t̃ (θ), θ

)
/
{
R

(
t̃ (θ), θ

) ∨ 1
}
< α′

with probability 1, which implies that t̂∗II
α′ (θ) ≥ t∗α′(θ)− δ1 almost surely. Combin-

ing this and previous result, we obtain that supθ |t̂∗II
α′ (θ) − t∗α′(θ)| a.s.−→ 0. �

Now, we prove Theorem 1. First, we show the uniform consistency of
F̂ (t̂∗II

α′ (θ), θ), that is,

sup
θ

∣∣F̂ (
t̂∗II
α′ (θ), θ

) − F
(
t∗α′(θ), θ

)∣∣ a.s.→ 0.(A.15)

The left-hand side of (A.15) can be decomposed as∣∣F̂ (
t̂∗II
α′ (θ), θ

) − F
(
t∗α′(θ), θ

)∣∣
≤ ∣∣F̂ (

t̂∗II
α′ (θ), θ

) − F
(
t̂∗II
α′ (θ), θ

)∣∣ + ∣∣F (
t̂∗II
α′ (θ), θ

) − F
(
t∗α′(θ), θ

)∣∣
≤ sup

θ

sup
t

∣∣F̂ (t, θ) − F(t, θ)
∣∣ + C2

∣∣t̂∗II
α′ (θ) − t∗α′(θ)

∣∣.
Thus, (A.15) is obtained by condition (C7), Lemmas 1 and 3 directly.

For presentational fluency, denote θ̂ II(α′) by θ̂m(α′). For each subsequence
{θ̂mk

(α′) :k = 1, . . .}, there exists a subsequence {θ̂mk,l
(α′) : l = 1, . . .} such that

liml→∞ θ̂mk,l
(α′) = θ+(α′) almost surely. The next step is to show

F
(
t∗α′

(
θ+

(
α′)), θ+

(
α′)) ≥ F

(
t∗α′

(
θ0

(
α′)), θ0

(
α′)).(A.16)

Thus, θ+(α′) = θ0(α
′) by condition (C9). This completes the proof.

If (A.16) is violated, we have F(t∗α′(θ+(α′)), θ+(α′)) < F(t∗α′(θ0(α
′)), θ0(α

′)).
To get contradiction, we partition F̂ (t̂∗II

α′ (θ̂mk,l
(α′)), θ̂mk,l

(α′)) − F̂ (t̂∗II
α′ (θ0(α

′)),
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θ0(α
′)) as A1 + A2 + A3 + A4, where

A1 = F̂
(
t̂∗II
α′

(
θ̂mk,l

(
α′)), θ̂mk,l

(
α′)) − F

(
t∗α′

(
θ̂mk,l

(
α′)), θ̂mk,l

(
α′)),

A2 = F
(
t∗α′

(
θ̂mk,l

(
α′)), θ̂mk,l

(
α′)) − F

(
t∗α′

(
θ+

(
α′)), θ+

(
α′)),

A3 = F
(
t∗α′

(
θ+

(
α′)), θ+

(
α′)) − F

(
t∗α′

(
θ0

(
α′)), θ0

(
α′)),

A4 = F
(
t∗α′

(
θ0

(
α′)), θ0

(
α′)) − F̂

(
t̂∗II
α′

(
θ0

(
α′)), θ0

(
α′)).

The term A1 can be bounded by supθ |F̂ (t̂∗II
α′ (θ), θ) − F(t∗α′(θ), θ)|, which is o(1)

by (A.15). Similarly, A4 = o(1). By continuous mapping theorem, A2 is o(1).
Thus, F̂ (t̂∗II

α′ (θ̂mk,l
(α′)), θ̂mk,l

(α′)) − F̂ (t̂∗II
α′ (θ0(α

′)), θ0(α
′)) < 0 almost surely,

which contradicts the fact that F̂ (t̂∗II
α′ (θ̂mk,l

(α′)), θ̂mk,l
(α′)) ≥ F̂ (t̂∗II

α′ (θ0(α
′)),

θ0(α
′)) obtained from (4.7). �

PROOF OF THEOREM 2. To justify Theorem 2, we first provide Lem-
mas 4 and 5 below.

LEMMA 4. Let π̂ II
0#(λ, θ) =

∑
i I{pi(θ)>λ,H0(i)}
m{1−F̂ II

0 (λ,θ)} = m0−V (λ,θ)

m{1−F̂ II
0 (λ,θ)} , where 0 < λ ≤

1/2. Then under conditions (C1) to (C5),

lim
m→∞ sup

θ

sup
0<λ≤1/2

∣∣π̂ II
0#(λ, θ) − π0

∣∣ a.s.→ 0.

PROOF. By decomposing,

∣∣π̂ II
0#(λ, θ) − π0

∣∣ ≤
∣∣∣∣m0

m
− π0

∣∣∣∣∣∣∣∣1 − V (λ, θ)/m0

1 − F̂ II
0 (λ, θ)

∣∣∣∣ + π0

∣∣∣∣V (λ, θ)/m0 − F̂ II
0 (λ, θ)

1 − F̂ II
0 (λ, θ)

∣∣∣∣
= �1(λ, θ) + �2(λ, θ).

Uses of

sup
0<λ≤1/2

sup
θ

∣∣1 − V (λ, θ)/m0
∣∣ ≤ 2 and inf

0<λ≤1/2
inf
θ

∣∣1 − F̂ II
0 (λ, θ)

∣∣ ≥ 1/2

yield that

lim
m→∞ sup

θ

sup
0<λ≤1/2

�1(λ, θ) ≤ lim
m→∞ 4

∣∣∣∣m0

m
− 1

∣∣∣∣ = 0 almost surely.

For the term �2(λ, θ), it suffices to show that

lim
m→∞ sup

0<λ≤1/2
sup
θ

∣∣V (λ, θ)/m0 − F̂ II
0 (λ, θ)

∣∣ a.s.→ 0,

which is completed by using Lemmas 1 and 2. �
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LEMMA 5. Suppose conditions (C1) to (C6) hold. Then, for each δ > 0,

lim
m→∞ inf

t≥δ
inf
θ

{
F̂DRII

λ (t, θ) − FDR(t, θ)
} ≥ 0,(A.17)

lim
m→∞ inf

t≥δ
inf
θ

{
F̂DRII

λ (t, θ) − V (t, θ)

R(t, θ) ∨ 1

}
≥ 0(A.18)

with probability 1, where F̂DRII
λ (t, θ) = π̂ II

0 (λ,θ)F̂ II
0 (t,θ)

{R(t,θ)∨1}/m
, for fixed λ. Furthermore,

the estimator F̂DRII
λ∗(t, θ) with λ∗ arbitrarily selected from the sequence of values

{λj : j = 1, . . . , n} of a finite size is simultaneously conservatively consistent for
FDR(t, θ) or V (t,θ)

R(t,θ)∨1 for all t ≥ δ and θ .

PROOF. By Lemma 1, we have

lim
m→∞ sup

t
sup
θ

∣∣∣∣V (t, θ)

m
− π0F0(t, θ)

∣∣∣∣ a.s.→ 0,(A.19)

lim
m→∞ sup

t
sup
θ

∣∣∣∣R(t, θ) ∨ 1

m
− {

π0F0(t, θ) + π1F1(t, θ)
}∣∣∣∣ a.s.→ 0.(A.20)

To show (A.18), we observe that

F̂DRλ(t, θ) − V (t, θ)

R(t, θ) ∨ 1

= π̂ II
0 (λ, θ)F̂ II

0 (t, θ) − π0F0(t, θ)

{R(t, θ) ∨ 1}/m
− V (t, θ)/m − π0F0(t, θ)

{R(t, θ) ∨ 1}/m

= I1(t, θ) − I2(t, θ).

For the term I2(t, θ), applying (A.19), (A.20) and condition (C6) yields that

lim
m→∞ sup

t≥δ

sup
θ

∣∣I2(t, θ)
∣∣

≤ lim
m→∞ sup

θ

m

R(δ, θ) ∨ 1
× lim

m→∞ sup
t≥δ

sup
θ

∣∣∣∣V (t, θ)

m
− π0F0(t, θ)

∣∣∣∣(A.21)

a.s.→ 0.

For the term I1(t, θ), using the fact that π̂ II
0 (λ, θ) ≥ π̂ II

0#(λ, θ), we have

lim
m→∞ inf

t≥δ
inf
θ

I1(t, θ) ≥ lim
m→∞ inf

t≥δ
inf
θ

{
π̂ II

0#(λ, θ)F̂ II
0 (t, θ) − π0F0(t, θ)

}
.(A.22)

To show that the right-hand side of (A.22) converges to 0 almost surely, it suffices
to verify

lim
m→∞ sup

t≥δ

sup
θ

∣∣π̂ II
0#(λ, θ)F̂ II

0 (t, θ) − π0F0(t, θ)
∣∣ a.s.→ 0,(A.23)
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which can be achieved by Lemmas 2 and 4. Combining (A.21), (A.22) and (A.23)
completes the proof of (A.18).

To show (A.17), it suffices to show that

lim
m→∞ sup

t≥δ

sup
θ

∣∣∣∣ V (t, θ)

R(t, θ) ∨ 1
− FDR(t, θ)

∣∣∣∣ a.s.→ 0.(A.24)

Since infθ F (δ, θ) > 0 and {R(t, θ), F(t, θ)}θ are nondecreasing functions for t , it
is straightforward to show that

lim
m→∞ sup

t≥δ

sup
θ

∣∣∣∣ m

R(t, θ) ∨ 1
− 1

F(t, θ)

∣∣∣∣ a.s.→ 0.

Using this, inequality (A.21) and the triangle inequality, we obtain

lim
m→∞ sup

t≥δ

sup
θ

∣∣∣∣ V (t, θ)

R(t, θ) ∨ 1
− π0F0(t, θ)

F (t, θ)

∣∣∣∣
≤ lim

m→∞ sup
t≥δ

sup
θ

∣∣∣∣ V (t, θ)

R(t, θ) ∨ 1
− mπ0F0(t, θ)

R(t, θ) ∨ 1

∣∣∣∣
(A.25)

+ lim
m→∞ sup

t≥δ

sup
θ

∣∣∣∣mπ0F0(t, θ)

R(t, θ) ∨ 1
− π0F0(t, θ)

F (t, θ)

∣∣∣∣
a.s.→ 0.

By (A.25), (A.24) is implied if we can show that

lim
m→∞ sup

t≥δ

sup
θ

∣∣∣∣FDR(t, θ) − π0F0(t, θ)

F (t, θ)

∣∣∣∣ a.s.→ 0.(A.26)

Combining (A.25) and the fact that |V (t, θ)/{R(t, θ) ∨ 1}−π0F0(t, θ)/F (t, θ)| ≤
2, we have

lim
m→∞ sup

t≥δ

sup
θ

∣∣∣∣FDR(t, θ) − π0F0(t, θ)

F (t, θ)

∣∣∣∣
≤ lim

m→∞E

{
sup
t≥δ

sup
θ

∣∣∣∣ V (t, θ)

R(t, θ) ∨ 1
− π0F0(t, θ)

F (t, θ)

∣∣∣∣}

≤ E

{
lim

m→∞ sup
t≥δ

sup
θ

∣∣∣∣ V (t, θ)

R(t, θ) ∨ 1
− π0F0(t, θ)

F (t, θ)

∣∣∣∣}
= 0.

This completes the proof of (A.26).
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Now we turn to show the second part of the lemma. Let F̂DRII
∗ (t, θ) =

π̂ II
0∗(θ)F̂ II

0 (t, θ)/({R(t, θ) ∨ 1}/m), where π̂ II
0∗(θ) = minj π̂ II

0 (λj , θ). By Lemma 4
and a slight modification of the proof in first part, the simultaneously conservative
control of F̂DRII

∗ (t, θ) is also satisfied, that is,

lim
m→∞ inf

t≥δ
inf
θ

{
F̂DRII

∗ (t, θ) − FDR(t, θ)
} ≥ 0,(A.27)

lim
m→∞ inf

t≥δ
inf
θ

{
F̂DRII

∗ (t, θ) − V (t, θ)

R(t, θ) ∨ 1

}
≥ 0.(A.28)

The conclusion for F̂DRII
λ∗(t, θ) is implied by (A.27) and (A.28). �

Now, we show Theorem 2. The proof of this theorem is implied by the following
inequalities:

lim
m→∞ inf

t≥δ

{
F̂DRII

∗
(
t, θ̂ II(α′)) − FDR

(
t, θ0

(
α′))} ≥ 0,(A.29)

lim
m→∞ inf

t≥δ

{
F̂DRII

∗
(
t, θ̂ II(α′)) − V (t, θ0(α

′))
R(t, θ0(α′)) ∨ 1

}
≥ 0(A.30)

with probability 1.
To verify (A.29), it suffices to show that

lim
m→∞ inf

t≥δ

{
F̂DRII

∗
(
t, θ̂ II(α′)) − FDR

(
t, θ̂ II(α′))} ≥ 0,(A.31)

lim
m→∞ sup

t≥δ

∣∣FDR
(
t, θ̂ II(α′)) − FDR

(
t, θ0

(
α′))∣∣ a.s.→ 0.(A.32)

Note that (A.31) is readily implied by (A.27). By using (A.26), (A.32) is implied
by

lim
m→∞ sup

t≥δ

∣∣∣∣π0F0(t, θ̂
II(α′))

F (t, θ̂ II(α′))
− π0F0(t, θ0(α

′))
F (t, θ0(α′))

∣∣∣∣ a.s.→ 0.(A.33)

The proof of (A.33) is completed by using condition (C10) and Theorem 1.
For (A.30), directly applying (A.24) and (A.29) completes the proof. �

PROOF OF THEOREM 3. First, we will show the uniform consistency of
F̂DRII

λ (t, θ) for fixed λ, that is,

lim
m→∞ sup

t≥δ

sup
θ

∣∣F̂DRII
λ (t, θ) − F̂DR∞

λ (t, θ)
∣∣ a.s.→ 0 for any δ > 0.

This can be completed by a slight modification of Lemma 5. Following the similar
arguments of (A.29) and (A.30), we obtain

lim
m→∞ sup

t≥δ

∣∣F̂DRλ

(
t, θ̂ II(α′)) − F̂DR∞

λ

(
t, θ0

(
α′))∣∣ a.s.→ 0.(A.34)
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Abbreviate tα(F̂DRII
λ (:, θ̂ II(α′))) by tλα . According to the condition, for each λj ,

there is tj such that α − F̂DR∞
λj

(tj , θ0(α
′)) = εj > 0. By (A.34), we can take m

sufficiently large that |F̂DR∞
λj

(tj , θ0(α
′)) − F̂DRII

λj
(tj , θ̂

II(α′))| < εj , which im-

plies that F̂DRII
λj

(tj , θ̂
II(α′)) < α and t

λj
α ≥ tj . Therefore, lim infm→∞ t

λj
α ≥ tj

with probability 1. For δj = tj /2,

lim inf
m→∞

{
F̂DRII

λj

(
t
λj
α , θ̂ II(α′)) − V (t

λj
α , θ̂ II(α′))

R(t
λj
α , θ̂ II(α′)) ∨ 1

}

≥ lim
m→∞ inf

t≥δi

{
F̂DRII

λj

(
t, θ̂ II(α′)) − V (t, θ̂ II(α′))

R(t, θ̂ II(α′)) ∨ 1

}

≥ lim
m→∞ inf

t≥δi

inf
θ

{
F̂DRII

λj
(t, θ) − V (t, θ)

R(t, θ) ∨ 1

}
≥ 0,

where the last inequality is due to (A.18). By the definition of t
λj
α , F̂DRII

λj
(t

λj
α ,

θ̂ II(α′)) ≤ α, and it follows that

lim sup
m→∞

{
V (t

λj
α , θ̂ II(α′))

R(t
λj
α , θ̂ II(α′)) ∨ 1

}
≤ α

with probability 1. Let λ∗ be determined by the algorithm in Section 4.3. Then

lim sup
m→∞

{
V (tλ

∗
α , θ̂ II(α′))

R(tλ
∗

α , θ̂ II(α′)) ∨ 1

}

≤ lim sup
m→∞

{
max

1≤j≤n

V (t
λj
α , θ̂ II(α′))

R(t
λj
α , θ̂ II(α′)) ∨ 1

}
≤ α

with probability 1. Following Fatou’s lemma,

lim sup
m→∞

E

{
V (tλ

∗
α , θ̂ II(α′))

R(tλ
∗

α , θ̂ II(α′)) ∨ 1

}

≤ E

[
lim sup
m→∞

{
V (tλ

∗
α , θ̂ II(α′))

R(tλ
∗

α , θ̂ II(α′)) ∨ 1

}]
≤ α.

�

APPENDIX B: DENSITY OF THE BIVARIATE p-VALUE WHEN THE
BIVARIATE TEST STATISTIC UNDER THE TRUE NULL IS A BIVARIATE

NORMAL OR t DISTRIBUTION

Assume that we are interested in testing the left-sided hypotheses,

H0 :μ = μ0 versus H1 :μ < μ0,(B.1)
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where μ is the parameter involved in some population and μ0 is given. The right-
sided hypotheses can be discussed similarly. Suppose that X = (X1,X2) are the
preliminary and primary test statistics with the true null joint CDF F0;(X1,X2). De-
note by F0;X1 and F0;X2 the marginal CDFs of X1 and X2 under the true null,
respectively. The joint CDF of p = (p1,p2) under the true null hypothesis of (B.1)
has the following form:

F0(t) = P(p ≤ t|H0)

= P
(
F0;X1(X1) ≤ t1,F0;X2(X2) ≤ t2|H0

)
= F0;(X1,X2)

(
F−1

0;X1
(t1),F

−1
0;X2

(t2)
)
,

with F−1
0;X1

and F−1
0;X2

being the inverse functions of F0;X1 and F0;X2 , respectively.
If X = (X1,X2) under the true null follows a bivariate normal distribution with

mean zero and covariance matrix �0 given by (3.8) in Section 3.3, then direct
calculations yield that

F0(p) =
∫ �−1(p1)

−∞

∫ �−1(p2)

−∞
1

2π
√

1 − ρ2
0

exp
{
−x2 − 2ρ0xy + y2

2(1 − ρ2
0)

}
dx dy,

f0(p) = 1√
1 − ρ2

0

exp
(−(

ρ2
0
{
�−1(p1)

}2

(B.2)
− 2ρ0�

−1(p1)�
−1(p2) + ρ2

0
{
�−1(p2)

}2)
/
(
2
(
1 − ρ2

0
)))

,

where � is the standard normal CDF.
If X under the true null has a bivariate t distribution with v degrees of freedom

and correlation coefficient ρ0, then derivations similar to (B.2) imply that

F0(p) =
∫ T −1

v (p1)

−∞

∫ T −1
v (p2)

−∞
1

2π
√

1 − ρ2
0

{
1 + x2 − 2ρ0xy + y2

v(1 − ρ2
0)

}−(v+2)/2

dx dy,

f0(p) = {�(v/2)}2v

2{�((v + 1)/2)}2
√

1 − ρ2
0

(B.3)

×
([

1 + {T −1
v (p1)}2 − 2ρ0T

−1
v (p1)T

−1
v (p2) + {T −1

v (p2)}2

v(1 − ρ2
0)

]−(v+2)/2)
/([

1 + {T −1
v (p1)}2

v

]−(v+1)/2[
1 + {T −1

v (p2)}2

v

]−(v+1)/2)
,

where Tv(x) is the CDF of t distribution with v degrees of freedom.
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Derivation of �(θ) in Section 4.6.

�(θ) = ∂

∂θ

{
F0

(
tα(θ), θ

)}∣∣∣∣
θ=π/2

× (θ − π/2)

F0(tα(π/2),π/2)

=
[{

∂F0(t, θ)

∂t

∂tα(θ)

∂θ
+ ∂F0(t, θ)

∂θ

}∣∣∣∣
t=tα(θ)

]∣∣∣∣
θ=π/2

(B.4)

× (θ − π/2)

F0(tα(π/2),π/2)
.

Derivation similar to (A.6) yields that

∂tα(θ)

∂θ
=

{
β ′((∂F0(t, θ))/(∂θ)) − ((∂F1(t, θ))/(∂θ))

((∂F1(t, θ))/(∂t)) − β ′((∂F0(t, θ))/(∂t))

}∣∣∣∣
t=tα(θ)

.(B.5)

Plugging (B.5) into (B.4), �(θ) can be expressed explicitly as

�(θ) =
([{

∂F0(t, θ)

∂θ

∂F1(t, θ)

∂t
− ∂F0(t, θ)

∂t

∂F1(t, θ)

∂θ

}∣∣∣∣
t=tα(θ)

]∣∣∣∣
θ=π/2

)
/([{

∂F1(t, θ)

∂t
− β ′ ∂F0(t, θ)

∂t

}∣∣∣∣
t=tα(θ)

]∣∣∣∣
θ=π/2

)
(B.6)

× (θ − π/2)

F0(tα(π/2),π/2)
.

Now consider[{
∂F1(t, θ)

∂t

}∣∣∣∣
t=tα(θ)

]∣∣∣∣
θ=π/2

=
[{

∂

∂t

∫ 1

0

∫ �((�−1(t)−�−1(p1) cos(θ))/sin(θ))

0
f1;(p1,p2)(p1,p2)

× dp2 dp1

}∣∣∣∣
t=tα(θ)

]∣∣∣∣
θ=π/2

(B.7)

=
[{∫ 1

0

φ((�−1(t) − �−1(p1) cos(θ))/sin(θ))

φ(�−1(t)) sin(θ)
f1;(p1,p2)

×
(
p1,�

(
�−1(t) − �−1(p1) cos(θ)

sin(θ)

))
dp1

}∣∣∣∣
t=tα(θ)

]∣∣∣∣
θ=π/2

=
∫ 1

0
f1;(p1,p2)

(
p1, tα(π/2)

)
dp1,
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where f1;(p1,p2) is the p.d.f. of (p1,p2) under the nonnull. Analogously,{
∂F1(t, θ)

∂θ

∣∣∣∣
t=tα(θ)

}∣∣∣∣
θ=π/2

(B.8)

= φ
[
�−1{

tα(π/2)
}] ∫ 1

0
�−1(p1)f1;(p1,p2)

(
p1, tα(π/2)

)
dp1,{

∂F0(t, θ)

∂t

∣∣∣∣
t=tα(θ)

}∣∣∣∣
θ=π/2

(B.9)

=
∫ 1

0
f0;(p1,p2)

(
p1, tα(π/2)

)
dp1,{

∂F0(t, θ)

∂θ

∣∣∣∣
t=tα(θ)

}∣∣∣∣
θ=π/2

(B.10)

= φ
[
�−1{

tα(π/2)
}] ∫ 1

0
�−1(p1)f0;(p1,p2)

(
p1, tα(π/2)

)
dp1.

Plugging (B.7), (B.8), (B.9) and (B.10) into (B.6), we have

�(θ) =
(
φ

[
�−1{

tα(π/2)
}]

×
∫ 1

0
f0;(p1,p2)

(
p1, tα(π/2)

)
dp1

∫ 1

0
f1;(p1,p2)

(
p1, tα(π/2)

)
dp1

)
/(∫ 1

0
f1;(p1,p2)

(
p1, tα(π/2)

)
dp1 − β ′

∫ 1

0
f0;(p1,p2)

(
p1, tα(π/2)

)
dp1

)

× (θ − π/2)

F0(tα(π/2),π/2)

× [
EH0

{
�−1(p1)|p2 = tα(π/2)

} − EH1

{
�−1(p1)|p2 = tα(π/2)

}]
= φ[�−1{tα(π/2)}]f1;p2(tα(π/2))f0;p2(tα(π/2))

f1;p2(tα(π/2)) − β ′f0;p2(tα(π/2))
× (θ − π/2)

F0(tα(π/2),π/2)

×[
EH0

{
�−1(p1)|p2 = tα(π/2)

} − EH1

{
�−1(p1)|p2 = tα(π/2)

}]
,

where f0;p2 and f1;p2 are the p.d.f.s of p2 under true null and nonnull, respec-
tively.
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