Penalized Bregman divergence for large-dimensional regression and classification

By CHUNMING ZHANG, YUAN JIANG and YI CHAI
Department of Statistics, University of Wisconsin-Madison, Wisconsin 53706, U.S.A. cmzhang@stat.wisc.edu jiangy@stat.wisc.edu chaiyi@stat.wisc.edu

Summary

Regularization methods are characterized by loss functions measuring data fits and penalty terms constraining model parameters. The commonly used quadratic loss is not suitable for classification with binary responses, whereas the loglikelihood function is not readily applicable to models where the exact distribution of observations is unknown or not fully specified. We introduce the penalized Bregman divergence by replacing the negative loglikelihood in the conventional penalized likelihood with Bregman divergence, which encompasses many commonly used loss functions in the regression analysis, classification procedures and machine learning literature. We investigate new statistical properties of the resulting class of estimators with the number p_{n} of parameters either diverging with the sample size n or even nearly comparable with n, and develop statistical inference tools. It is shown that the resulting penalized estimator, combined with appropriate penalties, achieves the same oracle property as the penalized likelihood estimator, but asymptotically does not rely on the complete specification of the underlying distribution. Furthermore, the choice of loss function in the penalized classifiers has an asymptotically relatively negligible impact on classification performance. We illustrate the proposed method for quasilikelihood regression and binary classification with simulation evaluation and real-data application.

Some key words: Consistency; Divergence minimization; Exponential family; Loss function; Optimal Bayes rule; Oracle property; Quasilikelihood.

1. Introduction

Regularization is used to obtain well-behaved solutions to overparameterized estimation problems, and is particularly appealing in high dimensions. The topic is reviewed by Bickel \& Li (2006). Regularization estimates a vector parameter of interest $\beta \in \mathbb{R}^{p_{n}}$ by minimizing the criterion function,

$$
\ell_{n}(\beta)=L_{n}(\beta)+P_{\lambda_{n}}(\beta) \quad\left(\lambda_{n}>0\right),
$$

consisting of a data fit functional L_{n}, which measures how well β fits the observed set of data; a penalty functional $P_{\lambda_{n}}$, which assesses the physical plausibility of β; and a regularization parameter λ_{n}, which regulates the penalty. Depending on the nature of the output variable, the term L_{n} quantifies the error of an estimator by different error measures. For example, the quadratic loss function has nice analytical properties and is usually used in regression analysis. However, it is not always adequate in classification problems, where the misclassification loss, deviance loss, hinge loss for the support vector machine (Vapnik, 1996) and exponential loss for boosting (Hastie et al., 2001) are more realistic and commonly used in classification procedures.

Currently, most research on regularization methods is devoted to variants of penalty methods in conjunction with linear models and likelihood-based models in regression analysis. For linear model estimation with a fixed number p of parameters, Tibshirani (1996) introduced the L_{1}-penalty for the proposed lasso method, where the quadratic loss is in use. Theoretical properties related to the lasso have been intensively studied; see Knight \& Fu (2000), Meinshausen \& Buhlmann (2006) and Zhao \& Yu (2006). Zou (2006) mentioned that the lasso is in general not variable selection consistent, but the adaptive lasso via combining appropriately weighted L_{1}-penalties is consistent. Huang et al. (2008) extended the results in Zou (2006) to high-dimensional linear models. Using the smoothly clipped absolute deviation penalty, Fan \& Li (2001) showed that the penalized likelihood estimator achieved the oracle property: the resulting estimator is asymptotically as efficient as the oracle estimator. In their treatment, the number p_{n} of model parameters is fixed at p, and the loss function equals the negative loglikelihood. Fan \& Peng (2004) extended the result to p_{n} diverging with n at a certain rate.

On the loss side, the literature on penalization methods includes much less discussion of either the role of the loss function in regularization for models other than linear or likelihood-based models, or the impact of different loss functions on classification performance. The least angle regression algorithm (Efron et al., 2004) for L_{1}-penalization was developed for linear models using the quadratic loss. Rosset \& Zhu (2007) studied the piecewise linear regularized solution paths for differentiable and piecewise quadratic loss functions with L_{1} penalty. It remains desirable to explore whether penalization methods using other types of loss functions can potentially benefit from the efficient least-angle regression algorithm. Moreover, theoretical results on the penalized likelihood are not readily translated into results for approaches, such as quasilikelihood (Wedderburn, 1974; McCullagh, 1983; Strimmer, 2003), where the distribution of the observations is unknown or not fully specified. Accordingly, a discussion of statistical inference for penalized estimation using a wider range of loss functions is needed.

In this study, we broaden the scope of penalization by incorporating loss functions belonging to the Bregman divergence class which unifies many commonly used loss functions. In particular, the quasilikelihood function and all loss functions mentioned previously in classification fall into this class. We introduce the penalized Bregman divergence by replacing the quadratic loss or the negative loglikelihood in penalized least-squares or penalized likelihood with Bregman divergence, and call the resulting estimator a penalized Bregman divergence estimator. Nonetheless, the Bregman divergence in general does not fulfill assumptions specifically imposed on the likelihood function associated with penalized likelihood.

We investigate new statistical properties of large-dimensional penalized Bregman divergence estimators, with dimensions dealt with separately in two cases:

Case I : p_{n} is diverging with n;
Case II : p_{n} is nearly comparable with n.
Zhang \& Zhang (2010) give an application of the penalization method developed in this paper to estimating the hemodynamic response function for brain fMRI data where p_{n} is as large as n. The current paper shows that the penalized Bregman divergence estimator, combined with appropriate penalties, achieves the same oracle property as the penalized likelihood estimator, but the asymptotic distribution does not rely on the complete specification of the underlying distribution. From the classification viewpoint, our study elucidates the applicability and consistency of various classifiers induced by penalized Bregman divergence estimators. Technical details of this paper are in the online Supplementary Material.

Fig. 1. Illustration of $Q(v, \mu)$ as defined in (3). The concave curve is q; the two dashed lines indicate locations of v and μ; the solid straight line is $q(\mu)+(\nu-\mu) q^{\prime}(\mu)$; the length of the vertical line with arrows at each end is $Q(\nu, \mu)$.

2. The penalized Bregman divergence estimator

$2 \cdot 1$. Bregman divergence

We give a brief overview of Bregman divergence. For a given concave function q with derivative q^{\prime}, Bregman (1967) introduced a device for constructing a bivariate function,

$$
\begin{equation*}
Q(v, \mu)=-q(\nu)+q(\mu)+(\nu-\mu) q^{\prime}(\mu) . \tag{3}
\end{equation*}
$$

Figure 1 displays Q and the corresponding q. It is readily seen that the concavity of q ensures the nonnegativity of Q. Moreover, for a strictly concave $q, Q(v, \mu)=0$ is equivalent to $v=\mu$. However, since $Q(\nu, \mu)$ is not generally symmetric in ν and μ, Q is not a metric or distance in the strict sense. Hence, we call Q the Bregman divergence and call q the generating function of Q. See Efron (1986), Lafferty et al. (1997), Lafferty (1999), Kivinen \& Warmuth (1999), Grünwald \& Dawid (2004), Altun \& Smola (2006) and references therein.

The Bregman divergence is suitable for a broad array of error measures Q. For example, $q(\mu)=a \mu-\mu^{2}$ with some constant a yields the quadratic loss $Q(Y, \mu)=(Y-\mu)^{2}$. For a binary response variable $Y, q(\mu)=\min \{\mu,(1-\mu)\}$ gives the misclassification loss $Q(Y, \mu)=$ $I\{Y \neq I(\mu>1 / 2)\}$, where $I(\cdot)$ denotes the indicator function; $q(\mu)=-\{\mu \log (\mu)+(1-$ $\mu) \log (1-\mu)\}$ gives the Bernoulli deviance loss $Q(Y, \mu)=-\{Y \log (\mu)+(1-Y) \log (1-\mu)\}$; $q(\mu)=2 \min \{\mu,(1-\mu)\}$ results in the hinge loss; and $q(\mu)=2\{\mu(1-\mu)\}^{1 / 2}$ yields the exponential loss $Q(Y, \mu)=\exp [-(Y-0 \cdot 5) \log \{\mu /(1-\mu)\}]$.

Conversely, for a given Q, Zhang et al. (2009) provided necessary and sufficient conditions for Q being a Bregman divergence, and in that case derived an explicit formula for q. Applying this inverse approach from Q to q, they illustrated that the quasilikelihood function, the Kullback-Leibler divergence or the deviance loss for the exponential family of probability functions, and many margin-based loss functions (Shen et al., 2003) are Bregman divergences. To our knowledge, there is little theoretical work in the literature on thoroughly examining the penalized Bregman divergence, via methods of regularization, for large-dimensional model building, variable selection and classification problems.

2.2. The model and penalized Bregman divergence estimator

Let (X, Y) denote a random realization from some underlying population, where $X=$ $\left(X_{1}, \ldots, X_{p_{n}}\right)^{\mathrm{T}}$ is the input vector and Y is the output variable. The dimension p_{n} follows
the assumption in (1) or (2). We assume the parametric model,

$$
\begin{equation*}
m(x)=E(Y \mid X=x)=F^{-1}\left(b_{0 ; 0}+x^{\mathrm{T}} \beta_{0}\right) \tag{4}
\end{equation*}
$$

where F is a known link function, $b_{0 ; 0} \in \mathbb{R}^{1}$ and $\beta_{0}=\left(\beta_{1 ; 0}, \ldots, \beta_{p_{n} ; 0}\right)^{\mathrm{T}} \in \mathbb{R}^{p_{n}}$ are the unknown true parameters. Throughout the paper, it is assumed that some entries in β_{0} are exactly zero. Write $\beta_{0}=\left\{\beta_{0}^{(\mathrm{I}) \mathrm{T}}, \beta_{0}^{(\mathrm{II})}\right\}^{\mathrm{T}}$, where $\beta_{0}^{(\mathrm{I})}$ collects all nonzero coefficients, and $\beta_{0}^{(\mathrm{II})}=0$.

Our goal is to estimate the true parameters via penalization. Let $\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$ be a sample of independent random pairs from (X, Y), where $X_{i}=\left(X_{i 1}, \ldots, X_{i p_{n}}\right)^{\mathrm{T}}$. The penalized Bregman divergence estimator $\left(\hat{b}_{0}, \hat{\beta}\right)$ is defined as the minimizer of the criterion function,

$$
\begin{equation*}
\ell_{n}\left(b_{0}, \beta\right)=\frac{1}{n} \sum_{i=1}^{n} Q\left\{Y_{i}, F^{-1}\left(b_{0}+X_{i}^{\mathrm{T}} \beta\right)\right\}+\sum_{j=1}^{p_{n}} P_{\lambda_{n}}\left(\left|\beta_{j}\right|\right) \tag{5}
\end{equation*}
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{p_{n}}\right)^{\mathrm{T}}$, the loss function $Q(\cdot, \cdot)$ is a Bregman divergence, and $P_{\lambda_{n}}(\cdot)$ represents a nonnegative penalty function indexed by a tuning constant $\lambda_{n}>0$. Set $\widetilde{\beta}=\left(b_{0}, \beta^{\mathrm{T}}\right)^{\mathrm{T}}$, and correspondingly $\widetilde{X}_{i}=\left(1, X_{i}^{\mathrm{T}}\right)^{\mathrm{T}}$. Then (5) can be written as

$$
\begin{equation*}
\ell_{n}(\widetilde{\beta})=\frac{1}{n} \sum_{i=1}^{n} Q\left\{Y_{i}, F^{-1}\left(\widetilde{X}_{i}^{\mathrm{T}} \widetilde{\beta}\right)\right\}+\sum_{j=1}^{p_{n}} P_{\lambda_{n}}\left(\left|\beta_{j}\right|\right) \tag{6}
\end{equation*}
$$

The penalized Bregman divergence estimator is $\widetilde{\beta}_{\mathrm{E}}=\left(\hat{b}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p_{n}}\right)^{\mathrm{T}}=\arg \min _{\widetilde{\beta}} \ell_{n}(\widetilde{\beta})$.
Regarding the uniqueness of $\widetilde{\beta}_{\mathrm{E}}$, assume that the quantities

$$
\begin{equation*}
q_{j}(y ; \theta)=\left(\partial^{j} / \partial \theta^{j}\right) Q\left\{y, F^{-1}(\theta)\right\} \quad(j=0,1, \ldots), \tag{7}
\end{equation*}
$$

exist finitely up to any order required. Provided that for all $\theta \in \mathbb{R}$ and all y in the range of Y,

$$
\begin{equation*}
q_{2}(y ; \theta)>0, \tag{8}
\end{equation*}
$$

it follows that $L_{n}(\widetilde{\beta})=n^{-1} \sum_{i=1}^{n} Q\left\{Y_{i}, F^{-1}\left(\widetilde{X}_{i}^{\mathrm{T}} \widetilde{\beta}\right)\right\}$ in (6) is convex in $\widetilde{\beta}$. In that case, if convex penalties are used in (6), then $\ell_{n}(\widetilde{\beta})$ is necessarily convex in $\widetilde{\beta}$, and hence the local minimizer $\widetilde{\beta}_{\mathrm{E}}$ is the unique global penalized Bregman divergence estimator. For nonconvex penalties, however, the local minimizer may not be globally unique.

3. Penalized Bregman divergence with nonconvex penalties: $p_{n} \ll n$

3•1. Consistency

We start by introducing some notation. Let s_{n} denote the number of nonzero coordinates of β_{0}, and set $\widetilde{\beta}_{0}=\left(b_{0 ; 0}, \beta_{0}^{\mathrm{T}}\right)^{\mathrm{T}}$. Define

$$
a_{n}=\max _{j=1, \ldots, s_{n}}\left|P_{\lambda_{n}}^{\prime}\left(\left|\beta_{j ; 0}\right|\right)\right|, \quad b_{n}=\max _{j=1, \ldots, s_{n}}\left|P_{\lambda_{n}}^{\prime \prime}\left(\left|\beta_{j ; 0}\right|\right)\right|,
$$

where $P_{\lambda}^{(j)}(|\beta|)$ is shorthand for $\left.\left(d^{j} / d x^{j}\right) P_{\lambda}(x)\right|_{x=|\beta|}, j=1,2$. Unless otherwise stated, $\|\cdot\|$ denotes the L_{2}-norm. Theorem 1 guarantees the existence of a consistent local minimizer for (6), and states that the local penalized Bregman divergence estimator $\widetilde{\beta}_{\mathrm{E}}$ is $\left(n / p_{n}\right)^{1 / 2}$-consistent.

Theorem 1 (Existence and consistency). Assume Condition A in the Appendix, $a_{n}=$ $O\left(1 / n^{1 / 2}\right)$ and $b_{n}=o(1)$. If $p_{n}^{4} / n \rightarrow 0,\left(p_{n} / n\right)^{1 / 2} / \lambda_{n} \rightarrow 0$ and $\min _{j=1, \ldots, s_{n}}\left|\beta_{j ; 0}\right| / \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then there exists a local minimizer $\widetilde{\beta}_{\mathrm{E}}$ of (6) such that $\left\|\widetilde{\beta}_{\mathrm{E}}-\widetilde{\beta}_{0}\right\|=O_{P}\left\{\left(p_{n} / n\right)^{1 / 2}\right\}$.

3.2. Oracle property

Following Theorem 1, the oracle property of the local minimizer is given in Theorem 2 below. Before stating it, we need some notation. Write $X=\left(X^{(\mathrm{I})}, X^{(\mathrm{II}) \mathrm{T}}\right)^{\mathrm{T}}, \widetilde{X}^{(\mathrm{I})}=\left(1, X^{(\mathrm{I}) \mathrm{T}}\right)^{\mathrm{T}}$, and $\widetilde{\beta}^{(\mathrm{I})}=\left(b_{0}, \beta^{(\mathrm{ITT}}\right)^{\mathrm{T}}$. For the penalty term, let

$$
\begin{aligned}
d_{n} & =\left\{0, P_{\lambda_{n}}^{\prime}\left(\left|\beta_{1 ; 0}\right|\right) \operatorname{sign}\left(\beta_{1 ; 0}\right), \ldots, P_{\lambda_{n}}^{\prime}\left(\left|\beta_{s_{n} ; 0}\right|\right) \operatorname{sign}\left(\beta_{s_{n} ; 0}\right)\right\}^{\mathrm{T}}, \\
\Sigma_{n} & =\operatorname{diag}\left\{0, P_{\lambda_{n}}^{\prime \prime}\left(\left|\beta_{1 ; 0}\right|\right), \ldots, P_{\lambda_{n}}^{\prime \prime}\left(\left|\beta_{s_{n} ; 0}\right|\right)\right\} .
\end{aligned}
$$

For the q function, define $F_{n}=q^{(2)}\{m(X)\} /\left[F^{(1)}\{m(X)\}\right]^{2} \widetilde{X}^{(1)} \widetilde{X}^{(\mathrm{I}) \mathrm{T}}$ and

$$
\Omega_{n}=E\left[\operatorname{var}(Y \mid X) q^{(2)}\{m(X)\} F_{n}\right], \quad H_{n}=-E\left(F_{n}\right) .
$$

Theorem 2 (Oracle property). Assume Condition B in the Appendix.
(i) If $p_{n}^{2} / n=O(1), \quad\left(p_{n} / n^{1 / 2}\right) / \lambda_{n} \rightarrow 0$ and $\liminf _{n \rightarrow \infty} \liminf _{\theta \rightarrow 0+} P_{\lambda_{n}}^{\prime}(\theta) / \lambda_{n}>0$ as $n \rightarrow \infty$, then any $\left(n / p_{n}\right)^{1 / 2}$-consistent local minimizer $\widetilde{\beta}_{\mathrm{E}}=\left(\widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I}) \mathrm{T}}, \hat{\beta}^{(\mathrm{II}) \mathrm{T}}\right)^{\mathrm{T}}$ satisfies $\operatorname{pr}\left(\hat{\beta}^{(\mathrm{II})}=0\right) \rightarrow 1$.
(ii) Moreover, if $a_{n}=O\left(1 / n^{1 / 2}\right), p_{n}^{5} / n \rightarrow 0$ and $\min _{j=1, \ldots, s_{n}}\left|\beta_{j ; 0}\right| / \lambda_{n} \rightarrow \infty$, then for any fixed integer k and any $k \times\left(s_{n}+1\right)$ matrix A_{n} such that $A_{n} A_{n}^{\mathrm{T}} \rightarrow G$ with G being a $k \times$ k nonnegative-definite symmetric matrix, $n^{1 / 2} A_{n} \Omega_{n}^{-1 / 2}\left\{\left(H_{n}+\Sigma_{n}\right)\left(\widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I})}-\widetilde{\beta}_{0}^{(\mathrm{I})}\right)+d_{n}\right\} \rightarrow$ $N(0, G)$ in distribution.

Theorem 2 has some useful consequences: First, the p_{n}-dimensional penalized Bregman divergence estimator, combined with appropriate penalties, achieves the same oracle property as the penalized likelihood estimator of Fan \& Peng (2004): the estimators of the zero parameters take exactly zero values with probability tending to 1 , and the estimators of the nonzero parameters are asymptotically normal with the same means and variances as if the zero coefficients were known in advance. Second, the asymptotic distribution of the penalized Bregman divergence estimator relies on the underlying distribution of $Y \mid X$ through $E(Y \mid X)$ and $\operatorname{var}(Y \mid X)$, but does not require a complete specification of the underlying distribution. Third, the asymptotic distribution depends on the choice of the Q-loss only through the second derivative of its generating q function. This enables us to evaluate the impact of loss functions on the penalized Bregman divergence estimators and to derive an optimal loss function in certain situations.

According to Theorem 2, the asymptotic covariance matrix of $\widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I})}$ is $V_{n}=\left(H_{n}+\Sigma_{n}\right)^{-1}$ $\Omega_{n}\left(H_{n}+\Sigma_{n}\right)^{-1}$. In practice, V_{n} is unknown and needs to be estimated. Typically, the sandwich formula can be exploited to form an estimator of V_{n} by

$$
\begin{equation*}
\hat{V}_{n}=\left(\hat{H}_{n}+\hat{\Sigma}_{n}\right)^{-1} \hat{\Omega}_{n}\left(\hat{H}_{n}+\hat{\Sigma}_{n}\right)^{-1} \tag{9}
\end{equation*}
$$

where $\hat{\Omega}_{n}=n^{-1} \sum_{i=1}^{n} q_{1}^{2}\left(Y_{i} ; \widetilde{X}_{i}^{(\mathrm{I}) \mathrm{T}} \widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I})}\right) \widetilde{X}_{i}^{(\mathrm{I})} \widetilde{X}_{i}^{(\mathrm{I}) \mathrm{T}}, \hat{H}_{n}=n^{-1} \sum_{i=1}^{n} q_{2}\left(Y_{i} ; \widetilde{X}_{i}^{(\mathrm{I}) \mathrm{T}} \widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I})}\right) \widetilde{X}_{i}^{(\mathrm{I})} \widetilde{X}_{i}^{(\mathrm{I}) \mathrm{T}}$ and $\hat{\Sigma}_{n}=\operatorname{diag}\left\{0, P_{\lambda_{n}}^{\prime \prime}\left(\left|\hat{\beta}_{1}\right|\right), \ldots, P_{\lambda_{n}}^{\prime \prime}\left(\left|\hat{\beta}_{s_{n}}\right|\right)\right\}$.

Proposition 1 below demonstrates that for any $\left(n / p_{n}\right)^{1 / 2}$-consistent estimator $\widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I})}$ of $\widetilde{\beta}_{0}^{(\mathrm{I})}, \hat{V}_{n}$ is a consistent estimator for the covariance matrix V_{n}, in the sense that $A_{n}\left(\hat{V}_{n}-V_{n}\right) A_{n}^{\mathrm{T}} \rightarrow 0$ in probability for any $k \times\left(s_{n}+1\right)$ matrix A_{n} satisfying $A_{n} A_{n}^{\mathrm{T}} \rightarrow G$, where k is any fixed integer.

Proposition 1 (Covariance matrix estimation). Assume Condition B in the Appendix, and $b_{n}=o(1)$. If $p_{n}^{4} / n \rightarrow 0,\left(p_{n} / n\right)^{1 / 2} / \lambda_{n} \rightarrow 0$ and $\min _{j=1, \ldots, s_{n}}\left|\beta_{j ; 0}\right| / \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then for any $\left\|\widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I})}-\widetilde{\beta}_{0}^{(\mathrm{I})}\right\|=O_{P}\left\{\left(p_{n} / n\right)^{1 / 2}\right\}$, we have that $A_{n}\left(\hat{V}_{n}-V_{n}\right) A_{n}^{\mathrm{T}} \rightarrow 0$ in probability for any $k \times\left(s_{n}+1\right)$ matrix A_{n} satisfying $A_{n} A_{n}^{\mathrm{T}} \rightarrow G$, where G is a $k \times k$ matrix.

Is there an optimal choice of q such that the corresponding V_{n} matrix achieves its lower bound? We have that $V_{n}=H_{n}^{-1} \Omega_{n} H_{n}^{-1}$ in two special cases. One is $\Sigma_{n}=0$ for large n and large $\min _{j=1, \ldots, s_{n}}\left|\beta_{j ; 0}\right|$, which results from the smoothly clipped absolute deviation and hard thresholding penalties; another one is $\Sigma_{n}=0$ for all n, which results from the weighted L_{1}-penalties in Theorem 6 below. In these cases, it can be shown via matrix algebra that the optimal q satisfies the generalized Bartlett identity in (11) below. On the other hand, for an arbitrary $\Sigma_{n} \neq 0$, the complication rises; the optimal q is generally not available in closed-form.

3.3. Hypothesis testing

We consider hypothesis testing about $\widetilde{\beta}_{0}^{(\mathrm{I})}$ formulated as

$$
\begin{equation*}
H_{0}: A_{n} \widetilde{\beta}_{0}^{(\mathrm{I})}=0 \quad \text { versus } \quad H_{1}: A_{n} \widetilde{\beta}_{0}^{(\mathrm{I})} \neq 0, \tag{10}
\end{equation*}
$$

where A_{n} is a given $k \times\left(s_{n}+1\right)$ matrix such that $A_{n} A_{n}^{\mathrm{T}}=G$ with G being a $k \times k$ positivedefinite matrix. This form of linear hypothesis allows one to test simultaneously whether a subset of variables used are statistically significant by taking some specific form of the matrix A_{n}; for example, $A_{n}=\left[I_{k}, 0_{k, s_{n}+1-k}\right]$ yields $A_{n} A_{n}^{\mathrm{T}}=I_{k}$.

We propose a generalized Wald-type test statistic of the form

$$
W_{n}=n\left(A_{n} \widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I})}\right)^{\mathrm{T}}\left(A_{n} \hat{H}_{n}^{-1} \hat{\Omega}_{n} \hat{H}_{n}^{-1} A_{n}^{\mathrm{T}}\right)^{-1}\left(A_{n} \widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I})}\right),
$$

where $\hat{\Omega}_{n}$ and \hat{H}_{n} are as defined in (9). This test is asymptotically distribution-free, as Theorem 3 justifies that, under the null, W_{n} would for large n be distributed as χ_{k}^{2}.

Theorem 3 (Wald-type test under H_{0}). Assume Condition C in the Appendix, and let $a_{n}=$ $o\left\{1 /\left(n s_{n}\right)^{1 / 2}\right\}$ and $b_{n}=o\left(1 / p_{n}^{1 / 2}\right)$. If $p_{n}^{5} / n \rightarrow 0,\left(p_{n} / n\right)^{1 / 2} / \lambda_{n} \rightarrow 0$ and $\min _{j=1, \ldots, s_{n}}\left|\beta_{j ; 0}\right| / \lambda_{n} \rightarrow$ ∞ as $n \rightarrow \infty$, then under H_{0} in (10), $W_{n} \rightarrow \chi_{k}^{2}$ in distribution.

Remark 1. To appreciate the discriminating power of W_{n} in assessing the significance, the asymptotic power can be analyzed. It can be shown that under H_{1} in (10) where $\left\|A_{n} \widetilde{\beta}_{0}\right\|$ is independent of $n, W_{n} \rightarrow+\infty$ in probability at the rate n. Hence W_{n} has power function tending to 1 against fixed alternatives. Besides, W_{n} has a nontrivial local power detecting contiguous alternatives approaching the null at the rate $n^{-1 / 2}$. We omit the lengthy details.

In the context of penalized likelihood estimator $\widetilde{\beta}_{\mathrm{E}}$, Fan \& Peng (2004) showed that the likelihood-ratio-type test statistic

$$
\Lambda_{n}=2 n\left\{\min _{\widetilde{\beta} \in \mathbb{R}^{p_{n}+1}: A_{n} \widetilde{\beta}^{(\mathrm{I})}=0} \ell_{n}(\widetilde{\beta})-\ell_{n}\left(\widetilde{\beta}_{\mathrm{E}}\right)\right\}
$$

follows an asymptotic χ^{2} distribution under the null hypothesis. Theorem 4 below explores the extent to which this result can feasibly be extended to Λ_{n} constructed from the broad class of penalized Bregman divergence estimators.

Theorem 4 (Likelihood-ratio-type test under H_{0}). Assume (8) and Condition D in the Appendix, $a_{n}=o\left\{1 /\left(n s_{n}\right)^{1 / 2}\right\}$ and $b_{n}=o\left(1 / p_{n}^{1 / 2}\right)$. If $p_{n}^{5} / n \rightarrow 0,\left(p_{n} / n\right)^{1 / 2} / \lambda_{n} \rightarrow 0$ and $\min _{j=1, \ldots, s_{n}}\left|\beta_{j ; 0}\right| / \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then under H_{0} in (10), provided that q satisfies the generalized Bartlett identity,

$$
\begin{equation*}
q^{(2)}\{m(\cdot)\}=-\frac{c}{\operatorname{var}(Y \mid X=\cdot)}, \tag{11}
\end{equation*}
$$

for a constant $c>0$, we have that $\Lambda_{n} / c \rightarrow \chi_{k}^{2}$ in distribution.

Curiously, the result in Theorem 4 indicates that in general, condition (11) on q restricts the application domain of the test statistic Λ_{n}. For instance, in the case of binary responses, the Bernoulli deviance loss satisfies (11), but the quadratic loss and exponential loss violate (11). This limitation reflects that the likelihood-ratio-type test statistic Λ_{n} may not be straightforwardly valid for the penalized Bregman divergence estimators.

Remark 2. For a Bregman divergence Q, condition (11) with $c=1$ is equivalent to the equality $E\left[\partial^{2} Q\{Y, m(\cdot)\} / \partial m(\cdot)^{2} \mid X=\cdot\right]=E\left([\partial Q\{Y, m(\cdot)\} / \partial m(\cdot)]^{2} \mid X=\cdot\right)$, which includes the Bartlett identity (Bartlett, 1953) as a special case, when Q is the negative loglikelihood. Thus, we call (11) the generalized Bartlett identity. It is also seen that the quadratic loss satisfies (11) for homoscedastic regression models even without knowing the error distribution.

4. Penalized Bregman divergence with convex penalties: $p_{n} \approx n$

4•1. Consistency, oracle property and hypothesis testing

For the nonconvex penalties discussed in $\S 3$, the condition $p_{n}^{4} / n \rightarrow 0$ or $p_{n}^{5} / n \rightarrow 0$ can be relaxed to $p_{n}^{3} / n \rightarrow 0$ in the particular situation where the Bregman divergence is a quadratic loss and the link is an identity link. It remains unclear whether p_{n} can be relaxed in other cases.

This section aims to improve the rate of consistency of the penalized Bregman divergence estimators and to relax conditions on p_{n} using certain convex penalties, the weighted L_{1}-penalties, under which the penalized Bregman divergence estimator $\widetilde{\beta}_{\mathrm{E}}=\left(\hat{b}_{0}, \hat{\beta}^{\mathrm{T}}\right)^{\mathrm{T}}$ is defined to minimize the criterion function,

$$
\begin{equation*}
\ell_{n}(\widetilde{\beta})=\frac{1}{n} \sum_{i=1}^{n} Q\left\{Y_{i}, F^{-1}\left(\widetilde{X}_{i}^{\mathrm{T}} \widetilde{\beta}\right)\right\}+\lambda_{n} \sum_{j=1}^{p_{n}} w_{j}\left|\beta_{j}\right|, \tag{12}
\end{equation*}
$$

with $w_{1}, \ldots, w_{p_{n}}$ representing nonnegative weights. Define

$$
w_{\max }^{(\mathrm{I})}=\max _{j=1, \ldots, s_{n}} w_{j}, \quad w_{\min }^{(\mathrm{II})}=\min _{s_{n}+1 \leqslant j \leqslant p_{n}} w_{j} .
$$

Lemma 1 obtains the existence of a $\left(n / p_{n}\right)^{1 / 2}$-consistent local minimizer of (12). This rate is identical to that in Theorem 1 but, unlike Theorem 1, Lemma 1 includes the L_{1}-penalty. Other results parallel to those in $\S 3$ can similarly be obtained.

Lemma 1 (Existence and consistency). Assume Conditions A1-A7 in the Appendix and $w_{\max }^{(\mathrm{I})}=$ $O_{P}\left\{1 /\left(\lambda_{n} n^{1 / 2}\right)\right\}$. If $p_{n}^{4} / n \rightarrow 0$ as $n \rightarrow \infty$, then there exists a local minimizer $\widetilde{\beta}_{\mathrm{E}}$ of (12) such that $\left\|\widetilde{\beta}_{\mathrm{E}}-\widetilde{\beta}_{0}\right\|=O_{P}\left\{\left(p_{n} / n\right)^{1 / 2}\right\}$.

Lemma 1 imposes a condition on the weights of nonzero coefficients alone, but ignores the weights on zero coefficients. Theorem 5 below reflects that incorporating appropriate weights to the zero coefficients can improve the rate of consistency from $\left(p_{n} / n\right)^{1 / 2}$ to $\left(s_{n} / n\right)^{1 / 2}$.

Theorem 5 (Existence and consistency). Assume Conditions A1-A7 in the Appendix, $w_{\max }^{(\mathrm{I})}=$ $O_{P}\left\{1 /\left(\lambda_{n} n^{1 / 2}\right)\right\}$ and there exists a constant $M \in(0, \infty)$ such that $\lim _{n \rightarrow \infty} \operatorname{pr}\left(w_{\min }^{(I I)} \lambda_{n}>M\right)=1$. If $s_{n}^{4} / n \rightarrow 0$ and $s_{n}\left(p_{n}-s_{n}\right)=o(n)$, then there exists a local minimizer $\widetilde{\beta}_{\mathrm{E}}$ of (12) such that $\left\|\widetilde{\beta}_{\mathrm{E}}-\widetilde{\beta}_{0}\right\|=O_{P}\left\{\left(s_{n} / n\right)^{1 / 2}\right\}$.

More importantly, conditions on the dimension p_{n} are much relaxed. For example, Theorem 5 allows $p_{n}=o\left(n^{(3+\delta) /(4+\delta)}\right)$ for any $\delta>0$, provided $s_{n}=O\left(n^{1 /(4+\delta)}\right)$, whereas Theorem 1 requires $p_{n}=o\left(n^{1 / 4}\right)$ for any $s_{n} \leqslant p_{n}$. This implies that p_{n} can indeed be relaxed to the case (2) of being
nearly comparable with n. On the other hand, the proof of Theorem 5 relies on the flexibility of the weights $\left\{w_{j}\right\}$, as seen in an $I_{2,1}^{(\mathrm{II})}$ term. Thus, directly carrying the proof of Theorem 5 through to either the nonconvex penalties in Theorem 1 or the L_{1}-penalty is not feasible.

Theorem 6 gives an oracle property for the $\left(n / s_{n}\right)^{1 / 2}$-consistent local minimizer.
Theorem 6 (Oracle property). Assume Conditions A1, A2, B3, A4, B5, A6-A7 in the Appendix.
(i) If $s_{n}^{2} / n=O$ (1) and $w_{\min }^{(\mathrm{II})} \lambda_{n} n^{1 / 2} /\left(s_{n} p_{n}\right)^{1 / 2} \rightarrow \infty$ in probability as $n \rightarrow \infty$, then any $\left(n / s_{n}\right)^{1 / 2}$-consistent local minimizer $\widetilde{\beta}_{\mathrm{E}}=\left(\widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I}) \mathrm{T}}, \hat{\beta}^{(\mathrm{II}) \mathrm{T}}\right)^{\mathrm{T}}$ satisfies $\operatorname{pr}\left(\hat{\beta}^{(\mathrm{II})}=0\right) \rightarrow 1$.
(ii) Moreover, if $w_{\max }^{(\mathrm{I})}=O_{P}\left\{1 /\left(\lambda_{n} n^{1 / 2}\right)\right\}, s_{n}^{5} / n \rightarrow 0$ and $\min _{j=1, \ldots, s_{n}}\left|\beta_{j ; 0}\right| /\left(s_{n} / n\right)^{1 / 2} \rightarrow \infty$, then for any fixed integer k and any $k \times\left(s_{n}+1\right)$ matrix A_{n} such that $A_{n} A_{n}^{\mathrm{T}} \rightarrow G$ with G being a $k \times k$ nonnegative-definite symmetric matrix, $n^{1 / 2} A_{n} \Omega_{n}^{-1 / 2}\left\{H_{n}\left(\widetilde{\beta}_{\mathrm{E}}^{(\mathrm{I})}-\right.\right.$ $\left.\left.\widetilde{\beta}_{0}^{(\mathrm{I})}\right)+\lambda_{n} \mathrm{~W}_{n} \operatorname{sign}\left(\widetilde{\beta}_{0}^{(\mathrm{I})}\right)\right\} \rightarrow N(0, G)$ in distribution, where $\mathrm{W}_{n}=\operatorname{diag}\left(0, w_{1}, \ldots, w_{s_{n}}\right)$ and $\operatorname{sign}\left\{\widetilde{\beta}_{0}^{(\mathrm{I})}\right\}=\left\{\operatorname{sign}\left(b_{0 ; 0}\right), \ldots, \operatorname{sign}\left(\beta_{s_{n} ; 0}\right)\right\}^{\mathrm{T}}$.

For testing hypotheses of the form (10), the generalized Wald-type test statistic W_{n} proposed in $\S 3 \cdot 3$ continues to be applicable. Theorem 7 derives the asymptotic distribution of W_{n}.

Theorem 7 (Wald-type test under H_{0}). Assume Conditions A1, A2, B3, C4, B5, A6-A7 in the Appendix, and that $w_{\max }^{(\mathrm{I})}=o_{P}\left[1 /\left\{\lambda_{n}\left(n s_{n}\right)^{1 / 2}\right\}\right]$. If $s_{n}^{5} / n \rightarrow 0$ and $\min _{j=1, \ldots, s_{n}}\left|\beta_{j ; 0}\right| /\left(s_{n} / n\right)^{1 / 2} \rightarrow$ ∞ as $n \rightarrow \infty$, then under H_{0} in (10), $W_{n} \rightarrow \chi_{k}^{2}$ in distribution.

4.2. Weight selection

We propose a penalized componentwise regression method for selecting weights by

$$
\begin{equation*}
\hat{w}_{j}=\left|\hat{\beta}_{j}^{\mathrm{PCR}}\right|^{-1} \quad\left(j=1, \ldots, p_{n}\right) \tag{13}
\end{equation*}
$$

based on some initial estimator, $\hat{\beta}^{\mathrm{PCR}}=\left(\hat{\beta}_{1}^{\mathrm{PCR}}, \ldots, \hat{\beta}_{p_{n}}^{\text {PCR }}\right)^{\mathrm{T}}$, minimizing

$$
\begin{equation*}
\ell_{n}^{\mathrm{PCR}}(\beta)=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p_{n}} Q\left\{Y_{i}, F^{-1}\left(X_{i j} \beta_{j}\right)\right\}+\kappa_{n} \sum_{j=1}^{p_{n}}\left|\beta_{j}\right|, \tag{14}
\end{equation*}
$$

with some sequence $\kappa_{n}>0$. Theorem 8 indicates that under assumptions on the correlation between the predictor variables and the response variable, the weights selected by the penalized componentwise regression satisfy the conditions in Theorem 5.

Theorem 8 (Penalized componentwise regression for weights: $p_{n} \approx n$). Assume Conditions A1, A2, B3, A4, A6, A7 and E. Assume that in Condition E, $\mathcal{A}_{n}=\lambda_{n} n^{1 / 2}, \mathcal{A}_{n} / \kappa_{n} \rightarrow \infty$ and $\mathcal{B}_{n} / \kappa_{n}=O(1)$ for κ_{n} in (14). Suppose $\lambda_{n} n^{1 / 2}=O(1), \lambda_{n}=o\left(\kappa_{n}\right)$ and $\log \left(p_{n}\right)=o\left(n \kappa_{n}^{2}\right)$. Assume that $E(X)=0$ in model (4). Then there exist local minimizers $\hat{\beta}_{j}^{\text {PCR }}\left(j=1, \ldots, p_{n}\right)$, of (14) such that the weights $\hat{w}_{j}\left(j=1, \ldots, p_{n}\right)$, defined in (13) satisfy that $\hat{w}_{\max }^{(\mathrm{I})}=O_{P}\left\{1 /\left(\lambda_{n} \sqrt{ } n\right)\right\}$ and $\hat{w}_{\min }^{(\mathrm{II})} \lambda_{n} \rightarrow \infty$ in probability in Theorem 5 , where $\hat{w}_{\max }^{(\mathrm{I})}=\max _{j=1, \ldots, s_{n}} \hat{w}_{j}$ and $\hat{w}_{\min }^{(\mathrm{II})}=$ $\min _{s_{n}+1 \leqslant j \leqslant p_{n}} \hat{w}_{j}$.

5. Consistency of the penalized Bregman divergence classifier

This section deals with the binary response variable Y, which takes values 0 and 1 . In this case, the mean regression function $m(x)$ in (4) becomes the class label probability, $\operatorname{pr}(Y=1 \mid X=x)$.

From the penalized Bregman divergence estimator $\left(\hat{b}_{0}, \hat{\beta}^{\mathrm{T}}\right)^{\mathrm{T}}$ proposed in either $\S 3$ or $\S 4$, we can construct the penalized Bregman divergence classifier, $\hat{\phi}(x)=I\{\hat{m}(x)>1 / 2\}$, for a future input variable x, where $\hat{m}(x)=F^{-1}\left(\hat{b}_{0}+x^{\mathrm{T}} \hat{\beta}\right)$.

In the classification literature, the misclassification loss of a classification rule ϕ at a sample point (x, y) is $l\{y, \phi(x)\}=I\{y \neq \phi(x)\}$. The risk of ϕ is the expected misclassification loss, $R(\phi)=E[l\{Y, \phi(X)\}]=\operatorname{pr}\{\phi(X) \neq Y\}$. The optimal Bayes rule, which minimizes the risk with respect to ϕ, is $\phi_{\mathrm{B}}(x)=I\{m(x)>1 / 2\}$. For a test sample $\left(X^{o}, Y^{o}\right)$, which is an independent and identically distributed copy of samples in the training set $\mathcal{T}_{n}=\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}$, the optimal Bayes risk is then $R\left(\phi_{\mathrm{B}}\right)=\operatorname{pr}\left\{\phi_{\mathrm{B}}\left(X^{o}\right) \neq Y^{o}\right\}$. Meanwhile, the conditional risk of the penalized Bregman divergence classification rule $\hat{\phi}$ is $R(\hat{\phi})=\operatorname{pr}\left\{\hat{\phi}\left(X^{o}\right) \neq Y^{o} \mid \mathcal{T}_{n}\right\}$. For $\hat{\phi}$ induced by the penalized Bregman divergence regression estimation using a range of loss functions combined with either the smoothly clipped absolute deviation, L_{1} or weighted L_{1}-penalties, Theorem 9 verifies the classification consistency attained by $\hat{\phi}$.

Theorem 9 (Consistency of the penalized Bregman divergence classifier). Assume Conditions A1 and A4 in the Appendix. Suppose that $\left\|\widetilde{\beta}_{\mathrm{E}}-\widetilde{\beta}_{0}\right\|=O_{P}\left(r_{n}\right)$. If $r_{n} p_{n}^{1 / 2}=o(1)$, then the classification rule $\hat{\phi}$ constructed from $\widetilde{\beta}_{\mathrm{E}}$ is consistent in the sense that $E\{R(\hat{\phi})\}-R\left(\phi_{\mathrm{B}}\right) \rightarrow 0$ as $n \rightarrow \infty$.

6. Simulation study

6.1. Set-up

For illustrative purposes, four procedures for penalized estimators are compared: (I) the smoothly clipped absolute deviation penalty, with an accompanying parameter $a=3 \cdot 7$, combined with the local linear approximation; (II) the L_{1} penalty; (III) the weighted L_{1}-penalties with weights selected by (13); and (IV) the oracle estimator using the set of significant variables. Throughout the numerical work in the paper, methods (I)-(III) utilize the least angle regression algorithm, F is the \log link for count data and the logit link for binary response variables.

6.2. Penalized quasilikelihood for overdispersed count data

A quasilikelihood function Q relaxes the distributional assumption on a random variable Y via the specification $\partial Q(Y, \mu) / \partial \mu=(Y-\mu) / V(\mu)$, where $\operatorname{var}(Y \mid X=x)=V\{m(x)\}$ for a known continuous function $V(\cdot)>0$. Zhang et al. (2009) verified that the quasilikelihood function belongs to the Bregman divergence and derived the generating q function,

$$
\begin{equation*}
q(\mu)=\int_{-\infty}^{\mu} \frac{s-\mu}{V(s)} d s \tag{15}
\end{equation*}
$$

We generate overdispersed Poisson counts Y_{i} satisfying $\operatorname{var}\left(Y_{i} \mid X_{i}=x_{i}\right)=2 m\left(x_{i}\right)$. In the predictor $X_{i}=\left(X_{i 1}, \ldots, X_{i p_{n}}\right)^{\mathrm{T}}, p_{n}=n / 8, n / 2$ and $n-10$, and $X_{i 1}=i / n-0 \cdot 5$. For $j=$ $2, \ldots, p_{n}, X_{i j}=\Phi\left(Z_{i j}\right)-0 \cdot 5$, where Φ is the standard normal distribution function, and $\left(Z_{i 2}, \ldots, Z_{i p_{n}}\right)^{\mathrm{T}} \sim N\left\{0, \rho 1_{p_{n}-1} 1_{p_{n}-1}^{\mathrm{T}}+(1-\rho) \mathrm{I}_{p_{n}-1}\right\}$, with 1_{d} a $d \times 1$ vector of ones and I_{d} a $d \times d$ identity matrix. Thus $\left(X_{i 2}, \ldots, X_{i p_{n}}\right)$ are correlated $\operatorname{Un}(0,1)$ if $\rho \neq 0$. The link function is $\log \{m(x)\}=b_{0 ; 0}+x^{\mathrm{T}} \beta_{0}$, where $b_{0 ; 0}=5$ and $\beta_{0}=(2,2,0,0, \ldots, 0)^{\mathrm{T}}$.

First, to examine the effect of penalized regression estimates on model fitting, we generate 200 training sets of size n. For each training set, the model error is calculated by $\sum_{l=1}^{L}\left\{\hat{m}\left(x_{l}\right)-m\left(x_{l}\right)\right\}^{2} / L$, at a randomly generated sequence $\left\{x_{l}\right\}_{l=1}^{L=5000}$, and the relative model error is the ratio of model error using penalized estimators and that using nonpenalized estimators. The tuning constants λ_{n} for the training set in each simulation for methods (I)-(II) are

Table 1. Simulation results from penalized quasilikelihood estimates, with dependent predic-

		tors. $n=$	$=0.2$		
			Regression	Variable	
Loss	p_{n}	Method	MRME	CZ (sd)	IZ (SD)
Quasilikelihood	$n / 8$	SCAD	0.2428	17.74 (5.46)	0 (0)
		L_{1}	0.3503	14.21 (4.91)	0 (0)
		Weighted L_{1}	$0 \cdot 1077$	21.32 (2.48)	0 (0)
		Oracle	0.0861	23	-
Quasilikelihood	$n / 2$	SCAD	0.0409	91.73 (12.56)	0 (0)
		L_{1}	0.0712	88.00 (14.94)	0 (0)
		Weighted L_{1}	0.0161	94.84 (5.89)	0 (0)
		Oracle	0.0105	98	-
Quasilikelihood	$n-10$	SCAD	0.0010	184.37 (8.52)	0 (0)
		L_{1}	0.0019	$181 \cdot 13$ (13.87)	0 (0)
		Weighted L_{1}	0.0004	185.25 (4.97)	0 (0)
		Oracle	0.0002	188	-

SCAD, smoothly clipped absolute deviation; MRME, mean of relative model errors obtained from the training sets; CZ, average number of coefficients that are correctly estimated to be zero when the true coefficients are zero; IZ, average number of coefficients that are incorrectly estimated to be zero when the true coefficients are nonzero; SD, standard deviation.
selected separately by minimizing the quasilikelihood on a test set of size equal to that of the training set; λ_{n} and κ_{n} for method (III) are searched on a surface of grid points. The mean relative model error can be obtained from those 200 training sets. Table 1 summarizes the penalized quasilikelihood estimates of parameters by means of (15). It is clearly seen that if the true model coefficients are sparse, the penalized estimators reduce the function estimation error compared with the nonpenalized estimators.

Second, to study the utility of penalized estimators in revealing the effects in variable selection under quasilikelihood, Table 1 gives the average number of coefficients that are correctly estimated to be zero when the true coefficients are zero, and the average number of coefficients that are incorrectly estimated to be zero when the true coefficients are nonzero. The standard deviations of the corresponding estimations across 200 training sets are given in brackets. Overall, the penalized estimators help yield a sparse solution and build a sparse model. These results lend support to the theoretical results in $\S 3$ and $\S 4$.

In summary, the smoothly clipped absolute deviation and weighted L_{1} penalties outperform the L_{1} penalty in terms of regression estimation and variable selection. As expected, the oracle estimator, which is practically infeasible, performs better than the three penalized estimators.

6.3. Penalized Bregman divergence for binary classification

We generate data with two-classes from the model,

$$
X=\left(X_{1}, \ldots, X_{p_{n}}\right)^{\mathrm{T}} \sim N(0, \Sigma), \quad Y \mid X=x \sim \operatorname{Ber}\{m(x)\},
$$

where $p_{n}=n / 8, n / 2, n-10, \Sigma=\rho 1_{p_{n}} 1_{p_{n}}^{\mathrm{T}}+(1-\rho) \mathrm{I}_{p_{n}}$ and $\operatorname{logit}\{m(x)\}=b_{0 ; 0}+x^{\mathrm{T}} \beta_{0}$ with $b_{0 ; 0}=3$ and $\beta_{0}=(1 \cdot 5,2,-2,-2 \cdot 5,0,0, \ldots, 0)^{\mathrm{T}}$. Table 2 summarizes the penalized estimates of parameters. The results reinforce the conclusion drawn in $\S 6 \cdot 2$.

Moreover, to investigate the performance of penalized classifiers, we evaluate the average misclassification rate for 10 independent test sets of size 10000 . Table 2 reports the mean of the average misclassification rates calculated from 100 training sets. Evidently, all penalized classifiers perform as well as the optimal Bayes classifier. This agrees with results of Theorem 9 on the

Table 2. Simulation results from penalized Bregman divergence estimates for binary classification, with dependent predictors. $n=200, \rho=0 \cdot 2$

Loss	p_{n}	Method	Regression	Variable selection		Classification MAMR
			MRME	CZ (sd)	IZ (SD)	
Deviance	$n / 8$	SCAD	0.2504	18.86 (4.37)	0.01 (0.10)	$0 \cdot 1153$
		L_{1}	0.3774	11.31 (5.48)	0.00 (0.00)	$0 \cdot 1218$
		Weighted L_{1}	0.2409	$18 \cdot 11$ (2.26)	0.01 (0.10)	0.1160
		Oracle	$0 \cdot 1164$	21	0	0.1042
Exponential	$n / 8$	SCAD	0.2566	18.92 (4.13)	0.00 (0.00)	$0 \cdot 1162$
		L_{1}	0.3356	12.28 (5.54)	0.00 (0.00)	$0 \cdot 1232$
		Weighted L_{1}	0.2176	19.07 (1.66)	0.01 (0.10)	$0 \cdot 1175$
		Oracle	$0 \cdot 1276$	21	0	0.1042
Deviance	$n / 2$	SCAD	0.0612	94.74 (2.32)	0.03 (0.17)	0.1166
		L_{1}	0.1148	76.39 (12.97)	0.00 (0.00)	0.1313
		Weighted L_{1}	0.0782	89.00 (6.38)	0.04 (0.19)	0.1235
		Oracle	0.0240	96	0	0.1043
Exponential	$n / 2$	SCAD	0.0915	94.37 (2.91)	0.05 (0.21)	$0 \cdot 1209$
		L_{1}	0.1141	76.05 (11.99)	0.00 (0.00)	0.1315
		Weighted L_{1}	0.0723	90.60 (4.70)	0.04 (0.19)	0.1222
		Oracle	0.0310	96	0	0.1043
Deviance	$n-10$	SCAD	0.0230	185.09 (1.53)	0.02 (0.14)	0.1136
		L_{1}	0.0847	158.19 (17.26)	0.00 (0.00)	$0 \cdot 1401$
		Weighted L_{1}	0.0539	176.51 (8.17)	0.03 (0.17)	$0 \cdot 1273$
		Oracle	0.0121	186	0	0.1044
Exponential	$n-10$	SCAD	0.0360	184.62 (2.20)	0.01 (0.10)	$0 \cdot 1170$
		L_{1}	0.0746	161.15 (14.73)	0.00 (0.00)	$0 \cdot 1386$
		Weighted L_{1}	0.0489	178.70 (5.91)	0.04 (0.19)	0.1271
		Oracle	0.0150	186	0	0.1044

MAMR, mean of the average misclassification rates calculated from training sets.
asymptotic classification consistency. Furthermore, the choice of loss functions in the penalized classifiers has an asymptotically relatively negligible impact on classification performance.

7. Real data

The Arrhythmia dataset (Güvenir et al., 1997) consists of 452 patient records in the diagnosis of cardiac arrhythmia. Each record contains 279 clinical measurements, from electrocardiography signals and other information such as sex, age and weight, along with the decision of an expert cardiologist. In the data, class 01 refers to normal electrocardiography, class 02 -class 15 each refers to a particular type of arrhythmia, and class 16 refers to the unclassified remainder.

We intend to predict whether a patient can be categorized as having normal electrocardiography or not. After deleting missing values and class 16 , the remaining 430 patients with 257 attributes are used in the classification. To evaluate the performance of the penalized estimates of model parameters in $\operatorname{logit}\left\{\operatorname{pr}\left(Y=1 \mid X_{1}, \ldots, X_{257}\right)\right\}=b_{0}+\sum_{j=1}^{257} \beta_{j} X_{j}$, we randomly split the data into a training set and a test set in the ratio $2: 1$. For each training set, the tuning constant is selected by minimizing a 3 -fold crossvalidated estimate of the misclassification rate; λ_{n} and κ_{n} for the penalized componentwise regression are found on a grid of points. We calculate the mean of the misclassification rates and the average number of selected variables over 100 random splittings. It is seen from Table 3 that the penalized classifier using the deviance loss and that using

Table 3. Arrhythmia data: mean misclassification rate and the average number of selected variables

Loss	Method	MMR	\# Selected variables
Deviance	Nonpenalized	0.4265	257.00
	SCAD	0.2550	16.13
	L_{1}	0.2358	45.46
Exponential	Weighted L_{1}	0.2340	26.44
	Nonpenalized	0.4323	257.00
	SCAD	0.2666	15.83
	L_{1}	0.2397	43.79
	Weighted L_{1}	0.2366	18.77

MMR, mean of the misclassification rates.
the exponential loss have similar values of misclassification rates. In contrast, the nonpenalized classifiers select all attributes, yielding much higher misclassification rates.

Acknowledgement

The authors thank the editor, associate editor and two referees for insightful comments and suggestions. The research was supported by grants from the National Science Foundation and National Institutes of Health, U.S.A.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Biometrika online.

Appendix

For a matrix M, its eigenvalues, minimum eigenvalue, maximum eigenvalue and trace are labelled by $\lambda_{j}(M), \lambda_{\min }(M), \lambda_{\max }(M)$ and $\operatorname{tr}(M)$, respectively. Let $\|M\|=\sup _{\|x\|=1}\|M x\|=\left\{\lambda_{\max }\left(M^{\mathrm{T}} M\right)\right\}^{1 / 2}$ be the matrix L_{2} norm; let $\|M\|_{F}=\left\{\operatorname{tr}\left(M^{\mathrm{T}} M\right)\right\}^{1 / 2}$ be the Frobenius norm. See Golub \& Van Loan (1996) for details. Throughout the proof, C is used as a generic finite constant.

We first impose some regularity conditions, which are not the weakest possible.
Condition A consists of the following.
A1. Assume $\sup _{n \geqslant 1}\left\|\widetilde{\beta}_{0}^{(1)}\right\|_{1}<\infty$ and $\|X\|_{\infty}$ is bounded;
A2. the matrix $E\left(\widetilde{X} \widetilde{X}^{\mathrm{T}}\right)$ exists and is nonsingular;
A3. assume $E\left(Y^{2}\right)<\infty$;
A4. there is a large enough open subset of $\mathbb{R}^{p_{n}+1}$, which contains the true parameter point $\widetilde{\beta}_{0}$, such that $F^{-1}\left(\widetilde{X}^{\mathrm{T}} \widetilde{\beta}\right)$ is bounded for all $\widetilde{\beta}$ in the subset;
A5. the eigenvalues of the matrix $-E\left(q^{(2)}\{m(X)\} /\left[F^{(1)}\{m(X)\}\right]^{2} \widetilde{X} \widetilde{X}^{\mathrm{T}}\right)$ are uniformly bounded away from 0 ;
A6. the function $q^{(4)}(\cdot)$ is continuous, and $q^{(2)}(\cdot)<0$;
A7. the function $F(\cdot)$ is a bijection, $F^{(3)}(\cdot)$ is continuous and $F^{(1)}(\cdot) \neq 0$; and finally
A8. assume $P_{\lambda_{n}}(0)=0$. There are constants C and D such that when $\theta_{1}>C \lambda_{n}$ and $\theta_{2}>C \lambda_{n}$, $\left|P_{\lambda_{n}}^{\prime \prime}\left(\theta_{1}\right)-P_{\lambda_{n}}^{\prime \prime}\left(\theta_{2}\right)\right| \leqslant D\left|\theta_{1}-\theta_{2}\right|$.

Condition B: These are identical to Condition A except that A3 and A5 are replaced by B3 and B5:

B3. there exists a constant $C \in(0, \infty)$ such that $E\left\{|Y-m(X)|^{j}\right\} \leqslant j!C^{j}$ for all $j \geqslant 3$. Also, $\inf _{n \geqslant 1,1 \leqslant j \leqslant p_{n}} E\left\{\operatorname{var}(Y \mid X) X_{j}^{2}\right\}>0$; and
B5. assume $\lambda_{j}\left(\Omega_{n}\right)$ and $\lambda_{j}\left(H_{n}\right)$ are uniformly bounded away from $0 ;\left\|H_{n}^{-1} \Omega_{n}\right\|$ is bounded away from ∞.

Condition C: These are identical to Condition B except that B4 is replaced by:
C4. there is an open subset of $\mathbb{R}^{p_{n}+1}$ which contains the true parameter point $\widetilde{\beta}_{0}$, such that $F^{-1}\left(\widetilde{X}^{\top} \widetilde{\beta}\right)$ is bounded for all $\widetilde{\beta}$ in the subset. Moreover, the subset contains the origin.

Condition D: This is identical to Condition C except that C5 is replaced by:
D5. assume $\lambda_{j}\left(H_{n}\right)$ are uniformly bounded away from $0 ;\left\|H_{n}^{-1 / 2} \Omega_{n}^{1 / 2}\right\|$ is bounded away from ∞.
Condition E is as follows.
E1. Assume $\min _{j=1, \ldots, s_{n}}\left|E\left(X_{j} Y\right)\right| \succeq \mathcal{A}_{n}$ and $\max _{s_{n}+1 \leqslant j \leqslant p_{n}}\left|E\left(X_{j} Y\right)\right|=o\left(\mathcal{B}_{n}\right)$ for some positive sequences \mathcal{A}_{n} and \mathcal{B}_{n}, where $s_{n} \succeq t_{n}$, for two nonnegative sequences s_{n} and t_{n}, denotes that there exists a constant $c>0$ such that $s_{n} \geqslant c t_{n}$ for all $n \geqslant 1$.

Proof of Theorem 1. Let $r_{n}=\left(p_{n} / n\right)^{1 / 2}$ and $\widetilde{u}=\left(u_{0}, u_{1}, \ldots, u_{p_{n}}\right)^{\mathrm{T}} \in \mathbb{R}^{p_{n}+1}$. Similar to Fan \& Peng (2004), it suffices to show that for any given $\epsilon>0$, there is a large constant C_{ϵ} such that, for large n,

$$
\begin{equation*}
\operatorname{pr}\left\{\inf _{\|\widetilde{u}\| \|=C_{\epsilon}} \ell_{n}\left(\widetilde{\beta}_{0}+r_{n} \widetilde{u}\right)>\ell_{n}\left(\widetilde{\beta}_{0}\right)\right\} \geqslant 1-\epsilon . \tag{A1}
\end{equation*}
$$

Define $\widetilde{\beta}_{L}=\widetilde{\beta}_{0}+r_{n} \widetilde{u}$. To show (A1), consider

$$
\begin{align*}
D_{n}(\widetilde{u})= & \frac{1}{n} \sum_{i=1}^{n}\left[Q\left\{Y_{i}, F^{-1}\left(\widetilde{X}_{i}^{\top} \widetilde{\beta}_{L}\right)\right\}-Q\left\{Y_{i}, F^{-1}\left(\widetilde{X}_{i}^{\top} \widetilde{\beta}_{0}\right)\right\}\right] \\
& +\sum_{j=1}^{p_{n}}\left\{P_{\lambda_{n}}\left(\left|\beta_{j ; 0}+r_{n} u_{j}\right|\right)-P_{\lambda_{n}}\left(\left|\beta_{j ; 0}\right|\right)\right\} \equiv I_{1}+I_{2} . \tag{A2}
\end{align*}
$$

First, we consider I_{1}. For $\mu=F^{-1}(\theta)$, obtain $q_{j}(y ; \theta)(j=1,2,3)$, from (7). By Taylor's expansion,

$$
\begin{equation*}
I_{1}=I_{1,1}+I_{1,2}+I_{1,3} \tag{A3}
\end{equation*}
$$

where $I_{1,1}=r_{n} / n \sum_{i=1}^{n} q_{1}\left(Y_{i} ; \widetilde{X}_{i}^{\top} \widetilde{\beta}_{0}\right) \widetilde{X}_{i}^{\top} \widetilde{u}, I_{1,2}=r_{n}^{2} /(2 n) \sum_{i=1}^{n} q_{2}\left(Y_{i} ; \widetilde{X}_{i}^{\top} \widetilde{\beta}_{0}\right)\left(\widetilde{X}_{i}^{\top} \widetilde{u}\right)^{2}$ and $I_{1,3}=r_{n}^{3} /(6 n)$ $\sum_{i=1}^{n} q_{3}\left(Y_{i} ; \widetilde{X}_{i}^{\top} \widetilde{\beta}^{*}\right)(\widetilde{X} \underset{i}{\widetilde{u}})^{3}$ for $\widetilde{\beta}^{*}$ located between $\widetilde{\beta}_{0}$ and $\widetilde{\beta}_{0}+r_{n} \widetilde{u}$. Hence $\left|I_{1,1}\right| \leqslant O_{P}\left\{r_{n}\left(p_{n} / n\right)^{1 / 2}\right\}\|\widetilde{u}\|$ and $I_{1,2}=-\left(r_{n}^{2} / 2\right) \widetilde{u}^{\mathrm{T}} E\left(q^{(2)}\{m(X)\} /\left[F^{(1)}\{m(X)\}\right]^{2} \widetilde{X} \widetilde{X}^{\mathrm{T}}\right) \widetilde{u}+O_{P}\left(r_{n}^{2} p_{n} / n^{1 / 2}\right)\|\widetilde{u}\|^{2}$. Conditions A1 and A4 give $\left|I_{1,3}\right| \leqslant O_{P}\left(r_{n}^{3} p_{n}^{3 / 2}\right)\|\widetilde{u}\|^{3}$.

Next, we consider I_{2}. By Taylor's expansion, $I_{2} \geqslant r_{n} \sum_{j=1}^{s_{n}} P_{\lambda_{n}}^{\prime}\left(\left|\beta_{j ; 0}\right|\right) \operatorname{sign}\left(\beta_{j ; 0}\right) u_{j}+\left(r_{n}^{2} / 2\right) \sum_{j=1}^{s_{n}}$ $P_{\lambda_{n}}^{(2)}\left(\left|\beta_{j}^{*}\right|\right) u_{j}^{2} \equiv I_{2,1}+I_{2,2}$, for β_{j}^{*} between $\beta_{j ; 0}$ and $\beta_{j ; 0}+r_{n} u_{j}$. Thus, $\left|I_{2,1}\right| \leqslant r_{n} a_{n}\left\|u^{(1)}\right\|_{1}$ and $\left|I_{2,2}\right| \leqslant$ $r_{n}^{2} b_{n}\left\|u^{(\mathrm{I})}\right\|^{2}+D r_{n}^{3}\left\|u^{(\mathrm{I}}\right\|^{3}$, where $u^{(\mathrm{I})}=\left(u_{1}, \ldots, u_{s_{n}}\right)^{\mathrm{T}}$. Since $p_{n}^{4} / n \rightarrow 0$, we can choose some large C_{ϵ} such that $I_{1,1}, I_{1,3}, I_{2,1}$ and $I_{2,2}$ are all dominated by $I_{1,2}$, which is positive by Condition A5. This implies (A1).

Proof of Lemma 1. Analogous to the proof of Theorem 1, it suffices to show (A1). Note that (A2) continues to hold with $I_{2}=\lambda_{n} \sum_{j=1}^{p_{n}} w_{j}\left(\left|\beta_{j ; 0}+r_{n} u_{j}\right|-\left|\beta_{j ; 0}\right|\right)$ and I_{1} is unchanged. Clearly, $I_{2} \geqslant-\lambda_{n} r_{n} \sum_{j=1}^{s_{n}} w_{j}\left|u_{j}\right| \equiv I_{2,1}$, in which $\left|I_{2,1}\right| \leqslant \lambda_{n} r_{n} w_{\text {max }}^{(\mathrm{I})}\left\|u^{(\mathrm{I})}\right\|_{1}$. The rest of the proof resembles that of Theorem 1 and is omitted.

Proof of Theorem 5. Write $\widetilde{u}=\left\{\widetilde{u}^{\text {(I) }}, u^{(\mathrm{IITr} \mathrm{T}}\right\}^{\mathrm{T}}$, where $\widetilde{u}^{(\mathrm{I})}=\left(u_{0}, u_{1}, \ldots, u_{s_{n}}\right)^{\mathrm{T}}$ and $u^{(\mathrm{II})}=\left(u_{s_{n}+1}, \ldots\right.$, $\left.u_{p_{n}}\right)^{\mathrm{T}}$. Following the proof of Lemma 1, it suffices to show (A1) for $r_{n}=\left(s_{n} / n\right)^{1 / 2}$.

For $I_{1,1}$ in (A3), $I_{1,1}=I_{1,1}^{(\mathrm{I})}+I_{1,1}^{(\mathrm{II})}$ according to $\widetilde{u}^{(\mathrm{I})}$ and $u^{(\mathrm{II})}$. It follows that $\left|I_{1,1}^{(\mathrm{I})}\right| \leqslant r_{n} O_{P}\left\{\left(s_{n} / n\right)^{1 / 2}\right\}$ $\left\|\widetilde{u}^{(\mathrm{I})}\right\|_{2}$ and $\left|I_{1,1}^{(\mathrm{II})}\right| \leqslant r_{n} O_{P}\left(1 / n^{1 / 2}\right)\left\|u^{(\mathrm{II})}\right\|_{1}$.

For $I_{1,2}$ in (A3), similar to the proof of Theorem 1, $I_{1,2}=I_{1,2,1}+I_{1,2,2}$. Define $d_{i}=q^{(2)}\left\{m\left(X_{i}\right)\right\} /$ $\left[F^{(1)}\left\{m\left(X_{i}\right)\right\}\right]^{2}$. This yields

$$
I_{1,2,1} \geqslant-\frac{r_{n}^{2}}{2 n} \sum_{i=1}^{n} d_{i}\left(X_{i}^{(\mathrm{I} \mathrm{~T}} \widetilde{u}^{(\mathrm{I})}\right)^{2}-\frac{r_{n}^{2}}{n} \sum_{i=1}^{n} d_{i}\left(X_{i}^{(\mathrm{I} \mathrm{~T}} \widetilde{u}^{(\mathrm{I})}\right)\left(X_{i}^{(\mathrm{II}) \mathrm{T}} u^{(\mathrm{II})}\right)=I_{1,2,1}^{(\mathrm{I})}-I_{1,2,1}^{(\mathrm{cross})}
$$

Then there exists a constant $C>0$ such that $I_{1,2,1}^{(\mathrm{I})} \geqslant C r_{n}^{2}\left\{1+o_{P}(1)\right\}\left\|\tilde{u}^{(\mathrm{I})}\right\|_{2}^{2}$ and $\left|I_{1,2,1}^{(\text {cross })}\right| \leqslant$ $O_{P}\left(r_{n}^{2} s_{n}^{1 / 2}\right)\left\|\widetilde{u}^{(\mathrm{I})}\right\|_{2} \cdot\left\|u^{(\mathrm{II})}\right\|_{1}$. For $I_{1,2,2}$, partitioning \widetilde{u} into $\widetilde{u}^{(\mathrm{I})}$ and $u^{(\mathrm{II)}}$ gives

$$
I_{1,2,2} \equiv I_{1,2,2}^{(\mathrm{I})}+I_{1,2,2}^{(\mathrm{cross})}+I_{1,2,2}^{(\mathrm{II})}
$$

where $\quad\left|I_{1,2,2}^{(\mathrm{I})}\right| \leqslant r_{n}^{2} O_{P}\left(s_{n} / n^{1 / 2}\right)\left\|\widetilde{u}^{(\mathrm{I})}\right\|_{2}^{2}, \quad\left|I_{1,2,2}^{(\text {cross })}\right| \leqslant r_{n}^{2} O_{P}\left\{\left(s_{n} / n\right)^{1 / 2}\right\}\left\|\widetilde{u}^{(\mathrm{I})}\right\|_{2}\left\|u^{(\mathrm{II})}\right\|_{1} \quad$ and $\quad\left|I_{1,2,2}^{(\mathrm{II})}\right| \leqslant$ $r_{n}^{2} O_{P}\left(n^{-1 / 2}\right)\left\|u^{(\mathrm{II})}\right\|_{1}^{2}$.

For $I_{1,3}$ in (A3), since $s_{n} p_{n}=o(n),\left\|\widetilde{\beta}^{*}\right\|_{1}$ is bounded and thus $\left|I_{1,3}\right| \leqslant O_{P}\left(r_{n}^{3}\right)\left\|\widetilde{u}^{(\mathrm{I})}\right\|_{1}^{3}+$ $O_{P}\left(r_{n}^{3}\right)\left\|u^{(\mathrm{II})}\right\|_{1}^{3} \equiv I_{1,3}^{(\mathrm{I})}+I_{1,3}^{(\mathrm{II})}$, where $\left|I_{1,3}^{(\mathrm{I})}\right| \leqslant O_{P}\left(r_{n}^{3} s_{n}^{3 / 2}\right)\left\|\widetilde{u}^{(\mathrm{I})}\right\|_{2}^{3}$ and $\left|I_{1,3}^{(\mathrm{II})}\right| \leqslant O_{P}\left(r_{n}^{3}\right)\left\|u^{(\mathrm{II})}\right\|_{1}^{3}$.

For I_{2} in (A2), $I_{2} \geqslant I_{2,1}^{(\mathrm{I})}+I_{2,1}^{(\mathrm{II})}$, where $I_{2,1}^{(\mathrm{I})}=-\lambda_{n} r_{n} \sum_{j=1}^{s_{n}} w_{j}\left|u_{j}\right|$ and $I_{2,1}^{(\mathrm{II})}=\lambda_{n} r_{n} \sum_{j=s_{n}+1}^{p_{n}} w_{j}\left|u_{j}\right|$. Hence $\left|I_{2,1}^{(\mathrm{I})}\right| \leqslant \lambda_{n} r_{n} w_{\max }^{(\mathrm{I})} s_{n}^{1 / 2}\left\|u^{(\mathrm{I})}\right\|_{2}$ and $I_{2,1}^{(\mathrm{II})} \geqslant \lambda_{n} r_{n} w_{\text {min }}^{(\mathrm{II})}\left\|u^{(\mathrm{II})}\right\|_{1}$.

It can be shown that either $I_{1,2,1}^{(\mathrm{I})}$ or $I_{2,1}^{(\mathrm{II})}$ dominates all other terms in groups, $\mathcal{G}_{1}=\left(I_{1,2,2}^{(\mathrm{I})}, I_{1,3}^{(\mathrm{I})}\right), \mathcal{G}_{2}=$ $\left(I_{1,1}^{(\mathrm{II})}, I_{1,2,2}^{(\mathrm{II})}, I_{1,3}^{(\mathrm{II})}, I_{1,2,1}^{(\text {cross })}, I_{1,2,2}^{(\text {cross })}\right)$ and $\mathcal{G}_{3}=\left(I_{1,1}^{(\mathrm{I})}, I_{2,1}^{(\mathrm{I})}\right)$. Namely, $I_{1,2,1}^{(\mathrm{I})}$ dominates \mathcal{G}_{1}, and $I_{2,1}^{(\mathrm{II})}$ dominates \mathcal{G}_{2}. For \mathcal{G}_{3}, if $\left\|u^{(\mathrm{II})}\right\|_{1} \leqslant C_{\epsilon} / 2$, then \mathcal{G}_{3} is dominated by $I_{1,2,1}^{(\mathrm{I})}$, which is positive; if $\left\|u^{(\mathrm{II})}\right\|_{1}>C_{\epsilon} / 2$, then \mathcal{G}_{3} is dominated by $I_{2,1}^{(\text {II })}$, which is positive.

Proof of Theorem 8. Minimizing (14) is equivalent to minimizing $\ell_{n, j}^{\mathrm{PCR}}(\alpha)=n^{-1} \sum_{i=1}^{n} Q\left\{Y_{i}, F^{-1}\right.$ $\left.\left(X_{i j} \alpha\right)\right\}+\kappa_{n}|\alpha|$, for $j=1, \ldots, p_{n}$. The proof may be separated into two parts.

Part 1. To show $\hat{w}_{\max }^{(\mathrm{I})}=O_{P}\left\{1 /\left(\lambda_{n} n^{1 / 2}\right)\right\}$, it suffices to show that for $\mathcal{A}_{n}=\lambda_{n} n^{1 / 2}$, there exist local minimizers $\hat{\beta}_{j}^{\text {PCR }}$ of $\ell_{n, j}^{\text {PCR }}(\alpha)$ such that $\lim _{\delta \rightarrow 0} \inf _{n \geqslant 1} \operatorname{pr}\left(\min _{1 \leqslant j \leqslant s_{n}}\left|\hat{\beta}_{j}^{\text {PCR }}\right|>\mathcal{A}_{n} \delta\right)=1$. It suffices to prove that for $j=1, \ldots, s_{n}$ there exist some b_{j} with $\left|b_{j}\right|=2 \delta$ such that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \inf _{n \geqslant 1} \operatorname{pr}\left[\min _{1 \leqslant j \leqslant s_{n}}\left\{\inf _{|\alpha| \leqslant \delta} \ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} b_{j}\right)\right\}>0\right]=1 \tag{A4}
\end{equation*}
$$

and there exists some large enough $C_{n}>0$ such that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \inf _{n \geqslant 1} \operatorname{pr}\left[\min _{1 \leqslant j \leqslant s_{n}}\left\{\inf _{|\alpha| \geqslant C_{n}} \ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} b_{j}\right)\right\}>0\right]=1 \tag{A5}
\end{equation*}
$$

Note that (A5) holds, since for every $n \geqslant 1$, when $|\alpha| \rightarrow \infty, \min _{1 \leqslant j \leqslant s_{n}}\left\{\ell_{n, j}^{\text {PCR }}\left(\mathcal{A}_{n} \alpha\right)-\ell_{n, j}^{\text {PCR }}\left(\mathcal{A}_{n} b_{j}\right)\right\} \geqslant$ $\kappa_{n} \mathcal{A}_{n}|\alpha|-\max _{j=1, \ldots, s_{n}} \ell_{n, j}^{\text {PCR }}\left(\mathcal{A}_{n} b_{j}\right) \rightarrow \infty$ in probability. To prove (A4), note that $\left|\mathcal{A}_{n} \alpha\right| \leqslant \mathcal{A}_{n} \delta=$ $O(1) \delta \rightarrow 0$ as $\delta \downarrow 0$. By Taylor's expansion,

$$
\begin{aligned}
& \min _{j=1, \ldots, s_{n}}\left\{\inf _{|\alpha| \leqslant \delta} \ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} b_{j}\right)\right\} \geqslant \mathcal{A}_{n} \min _{j=1, \ldots, s_{n}|\alpha| \leqslant \delta} \inf \left\{\left(\alpha-b_{j}\right) \frac{1}{n} \sum_{i=1}^{n} q_{1}\left(Y_{i} ; 0\right) X_{i j}\right\} \\
& \quad+\frac{\mathcal{A}_{n}^{2}}{2} \min _{j=1, \ldots, s_{n}|\alpha| \leqslant \delta} \inf ^{2}\left\{\alpha^{2} \frac{1}{n} \sum_{i=1}^{n} q_{2}\left(Y_{i} ; X_{i j} \mathcal{A}_{n} \alpha_{j}^{*}\right) X_{i j}^{2}-b_{j}^{2} \frac{1}{n} \sum_{i=1}^{n} q_{2}\left(Y_{i} ; X_{i j} \mathcal{A}_{n} b_{j}^{*}\right) X_{i j}^{2}\right\} \\
& \quad+\mathcal{A}_{n} \min _{1 \leqslant j \leqslant s_{n}|\alpha| \leqslant \delta} \inf _{n}\left\{\kappa_{n}\left(|\alpha|-\left|b_{j}\right|\right)\right\} \\
& \equiv I_{1}+I_{2}+I_{3},
\end{aligned}
$$

with α_{j}^{*} between 0 and α and b_{j}^{*} between 0 and b_{j}. Let $\mu_{0}=F^{-1}(0)$ and $C_{0}=q^{\prime \prime}\left(\mu_{0}\right) / F^{\prime}\left(\mu_{0}\right) \neq 0$. Then

$$
\begin{aligned}
I_{1}= & \mathcal{A}_{n} \min _{j=1, \ldots, s_{n}} \inf _{|\alpha| \leqslant \delta}\left\{C_{0}\left(\alpha-b_{j}\right) E\left(Y X_{j}\right)\right\}+\mathcal{A}_{n} \min _{j=1, \ldots, s_{n} \mid} \inf _{|\alpha| \leqslant \delta}\left[C_{0}\left(\alpha-b_{j}\right) \frac{1}{n} \sum_{i=1}^{n}\left\{Y_{i} X_{i j}-E\left(Y X_{j}\right)\right\}\right] \\
& -\mathcal{A}_{n} \max _{1 \leqslant j \leqslant s_{n}} \sup _{|\alpha| \leqslant \delta}\left\{C_{0} \mu_{0}\left(\alpha-b_{j}\right) \frac{1}{n} \sum_{i=1}^{n} X_{i j}\right\} \\
\equiv & I_{1,1}+I_{1,2}+I_{1,3} .
\end{aligned}
$$

We see that $\left|I_{1,3}\right| \leqslant O_{P}\left[\mathcal{A}_{n}\left\{\log \left(s_{n}\right) / n\right\}^{1 / 2}\right] \delta$, by Bernstein's inequality (Lemma 2.2.11 in van der Vaart \& Wellner 1996). Again $\left|I_{1,2}\right|=O_{P}\left[\mathcal{A}_{n}\left\{\log \left(s_{n}\right) / n\right\}^{1 / 2}\right] \delta$ by an argument similar to that of Theorem 2. Choosing $b_{j}=-2 \delta \operatorname{sign}\left\{C_{0} E\left(Y X_{j}\right)\right\}$, which satisfies $\left|b_{j}\right|=2 \delta$, gives $I_{1,1} \geqslant\left|C_{0}\right| c \mathcal{A}_{n}^{2} \delta$. For I_{2} and I_{3}, we observe that $\left|I_{2}\right| \leqslant O_{P}\left(\mathcal{A}_{n}^{2}\right) \delta^{2}$ and $\left|I_{3}\right|=O\left(\mathcal{A}_{n} \kappa_{n}\right) \delta$. By the assumptions, we can choose a small enough $\delta>0$ such that with probability tending to $1, I_{1,2}, I_{1,3}, I_{2}$ and I_{3} are dominated by $I_{1,1}$, which is positive. Thus (A4) is proved.

Part 2 . To verify that $\hat{w}_{\text {min }}^{(I I)} \lambda_{n} \rightarrow \infty$ in probability, it suffices to prove that for any $\epsilon>0$, there exist local minimizers $\hat{\beta}_{j}^{\text {PCR }}$ of $\ell_{n, j}^{\text {PR }}(\alpha)$ much that $\lim _{n \rightarrow \infty} \operatorname{pr}\left(\max _{s_{n}+1 \leqslant j \leqslant p_{n}}\left|\hat{\beta}_{j}^{\text {PRR }}\right| \leqslant \lambda_{n} \epsilon\right)=1$. Similar to the proof of Theorem 1, we will prove that for any $\epsilon>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{pr}\left[\min _{j=s_{n}+1, \ldots, p_{n}}\left\{\inf _{|\alpha|=\epsilon} \ell_{n, j}^{\mathrm{PCR}}\left(\lambda_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}(0)\right\}>0\right]=1 \tag{A6}
\end{equation*}
$$

For $j=1, \ldots, s_{n}$, by Taylor's expansion,

$$
\begin{aligned}
& \min _{j=s_{n}+1, \ldots, p_{n}}\left\{\inf _{|\alpha|=\epsilon} \ell_{n, j}^{\mathrm{PCR}}\left(\lambda_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}(0)\right\} \geqslant \lambda_{n} \min _{j=s_{n}+1, \ldots, p_{n} \mid} \inf _{|\alpha|=\epsilon}\left\{\alpha \frac{1}{n} \sum_{i=1}^{n} q_{1}\left(Y_{i} ; 0\right) X_{i j}\right\} \\
&+\frac{\lambda_{n}^{2}}{2} \min _{j=s_{n}+1, \ldots, p_{n}|\alpha|=\epsilon} \inf ^{2}\left\{\alpha^{2} \frac{1}{n} \sum_{i=1}^{n} q_{2}\left(Y_{i} ; X_{i j} \lambda_{n} \alpha_{j}^{*}\right) X_{i j}^{2}\right\}+\lambda_{n} \inf _{|\alpha|=\epsilon}\left(\kappa_{n}|\alpha|\right) \\
& \equiv I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where α_{j}^{*} is between 0 and α. Similar to the proof in Part $1,\left|I_{1}\right| \leqslant O_{P}\left[\lambda_{n}\left\{\log \left(p_{n}-s_{n}+1\right) / n\right\}^{1 / 2}\right] \epsilon+$ $o\left(\lambda_{n} \mathcal{B}_{n}\right) \epsilon$. Note that $\left|I_{2}\right| \leqslant O_{P}\left(\lambda_{n}^{2}\right) \epsilon^{2}$ and $I_{3}=\lambda_{n} \kappa_{n} \epsilon$. By assumptions, with probability tending to $1, I_{1}$ and I_{2} are dominated by $I_{3}>0$. So (A6) is proved.

Proof of Theorem 9. We first need to show Lemma A1.
Lemma A1. Suppose that $\left(X^{o}, Y^{o}\right)$ follows the distribution of (X, Y) and is independent of the training set \mathcal{T}_{n}. If Q satisfies (3), then $E\left[Q\left\{Y^{o}, \hat{m}\left(X^{o}\right)\right\}\right]=E\left[Q\left\{Y^{o}, m\left(X^{o}\right)\right\}\right]+E\left[Q\left\{m\left(X^{o}\right), \hat{m}\left(X^{o}\right)\right\}\right]$.

Proof. Let q be the generating function of Q. We deduce from Corollary 3, p. 223 of Chow \& Teicher (1988) that $E\left\{q\left(Y^{o}\right) \mid \mathcal{T}_{n}, X^{o}\right\}=E\left\{q\left(Y^{o}\right) \mid X^{o}\right\}$ and $E\left[Y^{o} q^{\prime}\left\{\hat{m}\left(X^{o}\right)\right\} \mid \mathcal{T}_{n}, X^{o}\right]=E\left(Y^{o} \mid X^{o}\right) q^{\prime}$ $\left\{\hat{m}\left(X^{o}\right)\right\}=m\left(X^{o}\right) q^{\prime}\left\{\hat{m}\left(X^{o}\right)\right\}$.

We now show Theorem 9. Setting Q in Lemma A1 to be the misclassification loss gives

$$
\begin{aligned}
1 / 2\left[E\{R(\hat{\phi})\}-R\left(\phi_{B}\right)\right] \leqslant & E\left[\left|m\left(X^{o}\right)-0.5\right| I\left\{m\left(X^{o}\right) \leqslant 0.5, \hat{m}\left(X^{o}\right)>0.5\right\}\right] \\
& +E\left[\left|m\left(X^{o}\right)-0.5\right| I\left\{m\left(X^{o}\right)>0.5, \hat{m}\left(X^{o}\right) \leqslant 0.5\right\}\right] \\
\equiv & I_{1}+I_{2} .
\end{aligned}
$$

For any $\epsilon>0, I_{1} \leqslant \operatorname{pr}\left\{\left|\hat{m}\left(X^{o}\right)-m\left(X^{o}\right)\right|>\epsilon\right\}+\epsilon$ and $I_{2} \leqslant \epsilon+\operatorname{pr}\left\{\left|\hat{m}\left(X^{o}\right)-m\left(X^{o}\right)\right| \geqslant \epsilon\right\}$. The proof completes by showing $I_{1} \rightarrow 0$ and $I_{2} \rightarrow 0$.

References

Altun, Y. \& Smola, A. (2006). Unifying divergence minimization and statistical inference via convex duality. In Learning Theory: 19th Ann. Conf. Learn. Theory, Ed. G. Lugosi and H. U. Simon, pp. 139-53. Berlin: Springer.
Bartlett, M. S. (1953). Approximate confidence intervals. Biometrika 40, 12-19.
Bickel, P. \& Li, B. (2006). Regularization in statistics (with discussion). Test 15, 271-344.
Bregman, L. M. (1967). A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. USSR Comp. Math. Math. Phys. 7, 620-31.
Chow, Y. S. \& Teicher, H. (1988). Probability Theory, 2nd ed. New York: Springer.
Efron, B. (1986). How biased is the apparent error rate of a prediction rule? J. Am. Statist. Assoc. 81, 461-70.
Efron, B., Hastie, T., Johnstone, I., \& Tibshirani, R. (2004). Least angle regression. Ann. Statist. 32, 407-99.
FAN, J. \& LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Assoc. 96, 1348-60.
Fan, J. \& Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32, 928-61.
Golub, G. H. \& Van Loan, C. F. (1996). Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins University Press.
Grünwald, P. D. \& Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory. Ann. Statist. 32, 1367-433.
Güvenir, H. A., AcAR, B., Demiröz, G. \& Çekin, A. (1997). A supervised machine learning algorithm for arrhythmia analysis. Comp. Cardiol. 24, 433-6.
Hastie, T., Tibshirani, R. \& Friedman, J. (2001). The Elements of Statistical Learning. New York: Springer.
Huang, J., MA, S. G. \& Zhang, C. H. (2008). Adaptive lasso for sparse high-dimensional regression models. Statist. Sinica 18, 1603-18.
Kivinen, J. \& Warmuth, M. K. (1999). Boosting as entropy projection. In Proc. 12th Ann. Conf. Comp. Learn. Theory, pp. 134-44. New York: ACM Press.
Knight, K. \& Fu, W. J. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28, 1356-78.
lafferty, J. D., Della Piestra, S., \& Della Piestra, V. (1997). Statistical learning algorithms based on Bregman distances. In Proc. 5th Can. Workshop Info. Theory.
Lafferty, J. (1999). Additive models, boosting, and inference for generalized divergences. In Proc. 12th Ann. Conf. Comp. Learn. Theory, pp. 125-33. New York: ACM Press.
McCullagh, P. (1983). Quasi-likelihood functions. Ann. Statist. 11, 59-67.
Meinshausen, N. \& Buhlmann, P. (2006). High dimensional graphs and variable selection with the lasso. Ann. Statist. 34, 1436-62.
Rosset, S. \& Zhu, J. (2007). Piecewise linear regularized solution paths. Ann. Statist. 35, 1012-30.
Shen, X., Tseng, G. C., Zhang, X. \& Wong, W. H. (2003). On ψ-learning. J. Am. Statist. Assoc. 98, 724-34.
Strimmer, K. (2003). Modeling gene expression measurement error: a quasi-likelihood approach. BMC Bioinformatics $4,10$.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
Vapnik, V. (1996). The Nature of Statistical Learning Theory. New York: Springer.
van der Vaart, A. W. \& Wellner, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. New York: Springer.
Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61, 439-47.
Zhang, C. M., Jiang, Y. \& Shang, Z. (2009). New aspects of Bregman divergence in regression and classification with parametric and nonparametric estimation. Can. J. Statist. 37, 119-39.
Zhang, C. M. \& Zhang, Z. J. (2010). Regularized estimation of hemodynamic response function for fMRI data. Statist. Interface 3, 15-32.
Zhao, P. \& Yu, B. (2006). On model selection consistency of lasso. J. Mach. Learn. Res. 7, 2541-67.
Zou, H. (2006). The adaptive lasso and its oracle properties. J. Am. Statist. Assoc. 101, 1418-29.

Proof of Theorem 1

We follow the idea of the proof in Fan and Peng (2004). Let $r_{n}=\sqrt{p_{n} / n}$ and $\widetilde{\mathbf{u}}=$ $\left(u_{0}, u_{1}, \ldots, u_{p_{n}}\right)^{T} \in \mathbb{R}^{p_{n}+1}$. It suffices to show that for any given $\epsilon>0$, there is a sufficiently large constant C_{ϵ} such that, for large n we have

$$
\begin{equation*}
P\left\{\inf _{\|\widetilde{\mathbf{u}}\|=C_{\epsilon}} \ell_{n}\left(\widetilde{\boldsymbol{\beta}}_{0}+r_{n} \widetilde{\mathbf{u}}\right)>\ell_{n}\left(\widetilde{\boldsymbol{\beta}}_{0}\right)\right\} \geq 1-\epsilon . \tag{A.1}
\end{equation*}
$$

This implies that with probability at least $1-\epsilon$, there exists a local minimizer $\widehat{\widetilde{\boldsymbol{\beta}}}$ of $\ell_{n}(\widetilde{\boldsymbol{\beta}})$ in the ball $\left\{\widetilde{\boldsymbol{\beta}}_{0}+r_{n} \widetilde{\mathbf{u}}:\|\widetilde{\mathbf{u}}\| \leq C_{\epsilon}\right\}$ such that $\left\|\widetilde{\widetilde{\boldsymbol{\beta}}}-\widetilde{\boldsymbol{\beta}}_{0}\right\|=O_{P}\left(r_{n}\right)$. To show (A.1), consider

$$
\begin{align*}
D_{n}(\widetilde{\mathbf{u}})= & \frac{1}{n} \sum_{i=1}^{n}\left\{Q\left(Y_{i}, F^{-1}\left(\widetilde{\mathrm{X}}_{i}^{T}\left(\widetilde{\boldsymbol{\beta}}_{0}+r_{n} \widetilde{\mathbf{u}}\right)\right)\right)-Q\left(Y_{i}, F^{-1}\left(\widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}_{0}\right)\right)\right\} \\
& +\sum_{j=1}^{p_{n}}\left\{P_{\lambda_{n}}\left(\left|\beta_{j ; 0}+r_{n} u_{j}\right|\right)-P_{\lambda_{n}}\left(\left|\beta_{j ; 0}\right|\right)\right\} \\
\equiv & I_{1}+I_{2} \tag{A.2}
\end{align*}
$$

where $\|\widetilde{\mathbf{u}}\|=C_{\epsilon}$.
First, we consider I_{1}. Recall (2.5). Then for $\mu=F^{-1}(\theta)$,

$$
\begin{align*}
\mathrm{q}_{1}(y ; \theta) & =(y-\mu) q^{(2)}(\mu) / F^{(1)}(\mu), \\
\mathrm{q}_{2}(y ; \theta) & =-q^{(2)}(\mu) /\left\{F^{(1)}(\mu)\right\}^{2}+(y-\mu) A_{1}(\mu), \tag{A.3}\\
\mathrm{q}_{3}(y ; \theta) & \equiv A_{2}(\mu)+(y-\mu) A_{3}(\mu),
\end{align*}
$$

where $A_{1}(\mu)=\left\{q^{(3)} F^{(1)}-q^{(2)} F^{(2)}\right\} /\left\{F^{(1)}\right\}^{3}(\mu), A_{2}(\mu)=\left\{-2 q^{(3)} F^{(1)}+3 q^{(2)} F^{(2)}\right\} /\left\{F^{(1)}\right\}^{4}(\mu)$ and $A_{3}(\mu)=\left[q^{(4)}\left\{F^{(1)}\right\}^{2}-3 q^{(3)} F^{(1)} F^{(2)}-q^{(2)} F^{(1)} F^{(3)}+3 q^{(2)}\left\{F^{(2)}\right\}^{2}\right] /\left\{F^{(1)}\right\}^{5}(\mu)$. By Taylor's expansion,

$$
\begin{equation*}
I_{1}=I_{1,1}+I_{1,2}+I_{1,3} \tag{A.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1,1}=\frac{r_{n}}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}_{0}\right) \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\mathbf{u}} \\
& I_{1,2}=\frac{r_{n}^{2}}{2 n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}_{0}\right)\left(\widetilde{\mathrm{X}}_{i}^{T} \widetilde{\mathbf{u}}\right)^{2} \\
& I_{1,3}=\frac{r_{n}^{3}}{6 n} \sum_{i=1}^{n} \mathrm{q}_{3}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}^{*}\right)\left(\widetilde{\mathrm{X}}_{i}^{T} \widetilde{\mathbf{u}}\right)^{3}
\end{aligned}
$$

for $\widetilde{\boldsymbol{\beta}}^{*}$ located between $\widetilde{\boldsymbol{\beta}}_{0}$ and $\widetilde{\boldsymbol{\beta}}_{0}+r_{n} \widetilde{\mathbf{u}}$. Hence

$$
\begin{equation*}
\left|I_{1,1}\right| \leq r_{n}\left\|\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}_{0}\right) \widetilde{\mathrm{X}}_{i}\right\|\|\widetilde{\mathbf{u}}\|=O_{P}\left(r_{n} \sqrt{p_{n} / n}\right)\|\widetilde{\mathbf{u}}\| . \tag{A.5}
\end{equation*}
$$

For $I_{1,2}$ in (A.4), equation (A.3) gives that

$$
\begin{aligned}
I_{1,2} & =-\frac{r_{n}^{2}}{2 n} \sum_{i=1}^{n} \frac{q^{(2)}\left(m\left(\mathrm{X}_{i}\right)\right)}{\left\{F^{(1)}\left(m\left(\mathrm{X}_{i}\right)\right)\right\}^{2}}\left(\widetilde{\mathrm{X}}_{i}^{T} \widetilde{\mathbf{u}}\right)^{2}+\frac{r_{n}^{2}}{2 n} \sum_{i=1}^{n}\left\{Y_{i}-m\left(\mathrm{X}_{i}\right)\right\} A_{1}\left(m\left(\mathrm{X}_{i}\right)\right)\left(\widetilde{\mathrm{X}}_{i}^{T} \widetilde{\mathbf{u}}\right)^{2} \\
& \equiv I_{1,2,1}+I_{1,2,2}
\end{aligned}
$$

Note that

$$
\left\|\frac{1}{n} \sum_{i=1}^{n} \frac{q^{(2)}\left(m\left(\mathrm{X}_{i}\right)\right)}{\left\{F^{(1)}\left(m\left(\mathrm{X}_{i}\right)\right)\right\}^{2}} \widetilde{\mathrm{X}}_{i} \widetilde{\mathrm{X}}_{i}^{T}-E\left[\frac{q^{(2)}(m(\mathrm{X}))}{\left\{F^{(1)}(m(\mathrm{X}))\right\}^{2}} \widetilde{\mathrm{X}} \widetilde{\mathrm{X}}^{T}\right]\right\|_{F}=O_{P}\left(p_{n} / \sqrt{n}\right)
$$

Thus

$$
I_{1,2,1}=-\frac{r_{n}^{2}}{2} \widetilde{\mathbf{u}}^{T} E\left[\frac{q^{(2)}(m(\mathrm{X}))}{\left\{F^{(1)}(m(\mathrm{X}))\right\}^{2}} \widetilde{\mathrm{X}} \widetilde{\mathrm{X}}^{T}\right] \widetilde{\mathbf{u}}+r_{n}^{2} O_{P}\left(p_{n} / \sqrt{n}\right)\|\widetilde{\mathbf{u}}\|^{2}
$$

Meanwhile, we have

$$
\left|I_{1,2,2}\right| \leq r_{n}^{2}\left\|\frac{1}{n} \sum_{i=1}^{n}\left\{Y_{i}-m\left(\mathrm{X}_{i}\right)\right\} A_{1}\left(m\left(\mathrm{X}_{i}\right)\right) \widetilde{\mathrm{X}}_{i} \widetilde{\mathrm{X}}_{i}^{T}\right\|_{F}\|\widetilde{\mathbf{u}}\|^{2}=r_{n}^{2} O_{P}\left(p_{n} / \sqrt{n}\right)\|\widetilde{\mathbf{u}}\|^{2}
$$

Thus,

$$
I_{1,2}=-\frac{r_{n}^{2}}{2} \widetilde{\mathbf{u}}^{T} E\left[\frac{q^{(2)}(m(\mathrm{X}))}{\left\{F^{(1)}(m(\mathrm{X}))\right\}^{2}} \widetilde{\mathrm{X}} \widetilde{\mathrm{X}}^{T}\right] \widetilde{\mathbf{u}}+O_{P}\left(r_{n}^{2} p_{n} / \sqrt{n}\right)\|\widetilde{\mathbf{u}}\|^{2}
$$

For $I_{1,3}$ in (A.4), we observe that

$$
\left|I_{1,3}\right| \leq r_{n}^{3} \frac{1}{n} \sum_{i=1}^{n}\left|\mathrm{q}_{3}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}^{*}\right)\right|\left|\widetilde{\mathrm{X}}_{i}^{T} \widetilde{\mathbf{u}}\right|^{3}=O_{P}\left(r_{n}^{3} p_{n}^{3 / 2}\right)\|\widetilde{\mathbf{u}}\|^{3},
$$

which follows from Conditions A1 and A4.
Next, we consider I_{2} in (A.2). By Taylor's expansion, we have

$$
\begin{aligned}
I_{2} & \geq \sum_{j=1}^{s_{n}}\left\{P_{\lambda_{n}}\left(\left|\beta_{j ; 0}+r_{n} u_{j}\right|\right)-P_{\lambda_{n}}\left(\left|\beta_{j ; 0}\right|\right)\right\} \\
& =r_{n} \sum_{j=1}^{s_{n}} P_{\lambda_{n}}^{\prime}\left(\left|\beta_{j ; 0}\right|\right) \operatorname{sign}\left(\beta_{j ; 0}\right) u_{j}+\frac{r_{n}^{2}}{2} \sum_{j=1}^{s_{n}} P_{\lambda_{n}}^{(2)}\left(\left|\beta_{j}^{*}\right|\right) u_{j}^{2} \\
& \equiv I_{2,1}+I_{2,2},
\end{aligned}
$$

where β_{j}^{*} is between $\beta_{j ; 0}$ and $\beta_{j ; 0}+r_{n} u_{j}$. Thus, we have

$$
\begin{align*}
& \left|I_{2,1}\right| \leq r_{n}\left|\sum_{j=1}^{s_{n}} P_{\lambda_{n}}^{\prime}\left(\left|\beta_{j ; 0}\right|\right) u_{j}\right| \leq r_{n} a_{n}\left\|\mathbf{u}^{(\mathrm{I})}\right\|_{1} \\
& \left|I_{2,2}\right| \leq r_{n}^{2} b_{n}\left\|\mathbf{u}^{\mathrm{I})}\right\|^{2}+D r_{n}^{3}\left\|\mathbf{u}^{\mathrm{I})}\right\|^{3} \tag{A.6}
\end{align*}
$$

where $\mathbf{u}^{(\mathrm{I})}=\left(u_{1}, \ldots, u_{s_{n}}\right)^{T}$. By (A.5)-(A.6) and $p_{n}^{4} / n \rightarrow 0$, we can choose some large C_{ϵ} such that $I_{1,1}, I_{1,3}, I_{2,1}$ and $I_{2,2}$ are all dominated by $I_{1,2}$, which is positive by Condition A5. This implies (A.1).

Proof of Theorem 2

We first need to show Lemma 2.

Lemma 2 Assume Condition B in the Appendix. If $p_{n}^{2} / n=O(1),\left(p_{n} / \sqrt{n}\right) / \lambda_{n} \rightarrow 0$ and $\liminf _{n \rightarrow \infty} \liminf _{\theta \rightarrow 0+} P_{\lambda_{n}}^{\prime}(\theta) / \lambda_{n}>0$, then for any given $\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}$ satisfying $\left\|\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right\|=O_{P}\left(\sqrt{p_{n} / n}\right)$ and any constant $C>0$, it follows that with probability tending to $1, \ell_{n}\left(\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}, \mathbf{0}\right)=\min _{\left\|\boldsymbol{\beta}^{(\mathrm{II})}\right\| \leq C \sqrt{p_{n} / n}} \ell_{n}\left(\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}\right.$,

Proof: It suffices to prove that for any $\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}$ satisfying $\left\|\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right\|=O_{P}\left(\sqrt{p_{n} / n}\right)$, with probability tending to 1 , the inequalities hold for all $j \in\left\{s_{n}+1, \ldots, p_{n}\right\}$,

$$
\frac{\partial \ell_{n}(\widetilde{\boldsymbol{\beta}})}{\partial \beta_{j}}<0 \text { for } \beta_{j}<0, \quad \text { and } \frac{\partial \ell_{n}(\widetilde{\boldsymbol{\beta}})}{\partial \beta_{j}}>0 \text { for } \beta_{j}>0
$$

namely, with probability tending to 1 ,

$$
\begin{align*}
& \max _{s_{n}+1 \leq j \leq p_{n}} \sup _{\left\|\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{0}\right\|=O_{P}\left(\sqrt{p_{n} / n}\right) ; \beta_{j}<0} \frac{\partial \ell_{n}(\widetilde{\boldsymbol{\beta}})}{\partial \beta_{j}}<0, \tag{A.7}\\
& \min _{s_{n}+1 \leq j \leq p_{n}} \inf _{\left\|\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{0}\right\|=O_{P}\left(\sqrt{p_{n} / n}\right) ; \beta_{j}>0} \frac{\partial \ell_{n}(\widetilde{\boldsymbol{\beta}})}{\partial \beta_{j}}>0 .
\end{align*}
$$

We only need to show (A.7). Note that

$$
\begin{aligned}
& \frac{\partial \ell_{n}(\widetilde{\boldsymbol{\beta}})}{\partial \beta_{j}}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}\right) X_{i j}+P_{\lambda_{n}}^{\prime}\left(\left|\beta_{j}\right|\right) \operatorname{sign}\left(\beta_{j}\right) \\
& \quad=\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}_{0}\right) X_{i j}+\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}^{*}\right)\left\{\widetilde{\mathrm{X}}_{i}^{T}\left(\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{0}\right)\right\} X_{i j} \\
& \quad+P_{\lambda_{n}}^{\prime}\left(\left|\beta_{j}\right|\right) \operatorname{sign}\left(\beta_{j}\right),
\end{aligned}
$$

where $\widetilde{\boldsymbol{\beta}}^{*}$ lies between $\widetilde{\boldsymbol{\beta}}_{0}$ and $\widetilde{\boldsymbol{\beta}}$. It follows that

$$
\begin{aligned}
& \max _{s_{n}+1 \leq j \leq p_{n}} \sup _{\left\|\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{\boldsymbol{0}}\right\|=O_{P}\left(\sqrt{p_{n} / n}\right) ; \beta_{j}<0} \frac{\partial \ell_{n}(\widetilde{\boldsymbol{\beta}})}{\partial \beta_{j}} \\
& \leq \max _{s_{n}+1 \leq j \leq p_{n}} \frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}_{0}\right) X_{i j} \\
& +\max _{s_{n}+1 \leq j \leq p_{n}} \sup _{\left\|\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{0}\right\|=O_{P}\left(\sqrt{\left.p_{n} / n\right)}\right.} \frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}^{*}\right)\left\{\widetilde{\mathrm{X}}_{i}^{T}\left(\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{0}\right)\right\} X_{i j} \\
& \quad-\min _{s_{n}+1 \leq j \leq p_{n}\left\|\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{0}\right\|=O_{P}\left(\sqrt{\left.p_{n} / n\right)}\right.}^{\inf _{\lambda_{n}}^{\prime}\left(\left|\beta_{j}\right|\right)} \\
& \equiv \\
& I_{1}+I_{2}-\min _{s_{n}+1 \leq j \leq p_{n}}^{\left\|\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{0}\right\|=O_{P}\left(\sqrt{p_{n} / n}\right)} P_{\lambda_{n}}^{\prime}\left(\left|\beta_{j}\right|\right) .
\end{aligned}
$$

The first term I_{1} satisfies that

$$
\begin{equation*}
\left|I_{1}\right| \leq O_{P}\left(\left\{\log \left(p_{n}-s_{n}+1\right) / n\right\}^{1 / 2}\right) \tag{A.8}
\end{equation*}
$$

For I_{2},

$$
\begin{equation*}
\left|I_{2}\right| \leq O_{P}\left(p_{n} / \sqrt{n}\right) \tag{A.9}
\end{equation*}
$$

Thus, by (A.8) and (A.9), the left hand side of (A.7) is

$$
\begin{aligned}
& \leq O_{P}\left(p_{n} / \sqrt{n}\right)-\min _{s_{n}+1 \leq j \leq p_{n}\left\|\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{0}\right\|=O_{P}\left(\sqrt{p_{n} / n}\right)} \inf _{\lambda_{n}}^{\prime}\left(\left|\beta_{j}\right|\right) \\
& \leq \lambda_{n}\left[O_{P}\left(\frac{p_{n} / \sqrt{n}}{\lambda_{n}}\right)-\min _{s_{n}+1 \leq j \leq p_{n}\left\|\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{0}\right\|=O_{P}\left(\sqrt{\left.p_{n} / n\right)}\right.}\left\{P_{\lambda_{n}}^{\prime}\left(\left|\beta_{j}\right|\right) / \lambda_{n}\right\}\right]
\end{aligned}
$$

$\operatorname{By}\left(p_{n} / \sqrt{n}\right) / \lambda_{n} \rightarrow 0$ and $\liminf _{n \rightarrow \infty} \liminf _{\theta \rightarrow 0+} P_{\lambda_{n}}^{\prime}(\theta) / \lambda_{n}>0$, (A.7) is proved.
We now show Theorem 2. By Lemma 2, the first part of Theorem 2 holds that $\widehat{\widetilde{\boldsymbol{\beta}}}=\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}, \mathbf{0}^{T}\right)^{T}$. To verify the second part of Theorem 2, notice the estimating equations $\left.\left(\partial / \partial \widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}\right) \ell_{n}\left(\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}, \mathbf{0}\right)\right|_{\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}=\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}}=\mathbf{0}$, since $\widetilde{\boldsymbol{\boldsymbol { \beta }}}^{(\mathrm{I})}$ is a local minimizer of $\ell_{n}\left(\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}, \mathbf{0}\right)$. Denote $\mathbf{d}_{n}\left(\widetilde{\boldsymbol{\beta}}_{n}^{(\mathrm{I})}\right)=\left(0, P_{\lambda_{n}}^{\prime}\left(\left|\beta_{1}\right|\right) \operatorname{sign}\left(\beta_{1}\right), \ldots, P_{\lambda_{n}}^{\prime}\left(\left|\beta_{s_{n}}\right|\right) \operatorname{sign}\left(\beta_{s_{n}}\right)\right)^{T}$ and $\Sigma_{n}\left(\widetilde{\boldsymbol{\beta}}_{n}^{(\mathrm{I})}\right)=\operatorname{diag}\left\{0, P_{\lambda_{n}}^{\prime \prime}\left(\left|\beta_{1}\right|\right), \ldots, P_{\lambda_{n}}^{\prime \prime}\left(\left|\beta_{s_{n}}\right|\right)\right.$ which are equal to \mathbf{d}_{n} and Σ_{n} when $\widetilde{\boldsymbol{\beta}}_{n}^{(\mathrm{I})}=\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}$. Taylor's expansion applied to the left side of the estimating equations yields

$$
\begin{equation*}
\mathbf{0} \equiv\left\{\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}+\mathbf{d}_{n}\right\}+K_{2}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)+K_{3}, \tag{A.10}
\end{equation*}
$$

where both $\widetilde{\boldsymbol{\beta}}^{*(\mathrm{I})}$ and $\widetilde{\boldsymbol{\beta}}^{* *(\mathrm{I})}$ lie between $\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}$ and $\widehat{\boldsymbol{\beta}}^{(\mathrm{I})}$. Below, we will show

$$
\begin{align*}
\left\|K_{2}-\left(\mathbf{H}_{n}+\Sigma_{n}\right)\right\| & =O_{P}\left(p_{n} / \sqrt{n}\right) \tag{A.11}\\
\left\|K_{3}\right\| & =O_{P}\left(p_{n}^{5 / 2} / n\right) \tag{A.12}
\end{align*}
$$

First, to show (A.11), note that $K_{2}-\left(\mathbf{H}_{n}+\Sigma_{n}\right) \equiv L_{1}+L_{2}$, where

$$
\begin{aligned}
L_{1}= & -\left(\frac{1}{n} \sum_{i=1}^{n} \frac{q^{(2)}\left(m\left(\mathrm{X}_{i}\right)\right)}{\left\{F^{(1)}\left(m\left(\mathrm{X}_{i}\right)\right)\right\}^{2}} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T}-E\left[\frac{q^{(2)}(m(\mathrm{X}))}{\left\{F^{(1)}(m(\mathrm{X}))\right\}^{2}} \widetilde{\mathrm{X}}^{(\mathrm{I})} \widetilde{\mathrm{X}}^{(\mathrm{I}) T}\right]\right) \\
& +\frac{1}{n} \sum_{i=1}^{n}\left\{Y_{i}-m\left(\mathrm{X}_{i}\right)\right\} A_{1}\left(m\left(\mathrm{X}_{i}\right)\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \\
\equiv & L_{1,1}+L_{1,2}, \\
L_{2} \equiv & \operatorname{diag}\left\{0, P_{\lambda_{n}}^{\prime \prime}\left(\left|\beta_{1}^{* *}\right|\right)-P_{\lambda_{n}}^{\prime \prime}\left(\left|\beta_{1 ; 0}\right|\right), \ldots, P_{\lambda_{n}}^{\prime \prime}\left(\left|\beta_{s_{n}}^{* *}\right|\right)-P_{\lambda_{n}}^{\prime \prime}\left(\left|\beta_{s_{n} ; 0}\right|\right)\right\} .
\end{aligned}
$$

Similar arguments for the proof of Theorem 1 give $\left\|L_{1,1}\right\|=O_{P}\left(s_{n} / \sqrt{n}\right)$ and $\left\|L_{1,2}\right\|=$ $O_{P}\left(s_{n} / \sqrt{n}\right)$. Thus $\left\|L_{1}\right\|=O_{P}\left(s_{n} / \sqrt{n}\right)$. For the term L_{2}, by the assumptions $\min _{1 \leq j \leq s_{n}}\left|\beta_{j ; 0}\right| / \lambda_{n} \rightarrow$ ∞ and $\sqrt{p_{n} / n} / \lambda_{n} \rightarrow 0$, and the fact $\left\|\widetilde{\boldsymbol{\beta}}^{* *(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right\|=O_{P}\left(\sqrt{p_{n} / n}\right)$, we have that $\min _{1 \leq j \leq s_{n}}\left|\beta_{j}^{* *}\right| / \lambda_{n} \rightarrow$ ∞ with probability tending to 1 , and consequently, by Condition A8, $\left\|L_{2}\right\|=O_{P}\left(\sqrt{p_{n} / n}\right)$.

Second, a similar proof used for $I_{1,3}$ in (A.4) completes (A.12).
Third, by (A.10)-(A.12) and $\left\|\widehat{\widetilde{\boldsymbol{\beta}}}-\widetilde{\boldsymbol{\beta}}_{0}\right\|=O_{P}\left(\sqrt{p_{n} / n}\right)$, we see that

$$
\begin{equation*}
\left(\mathbf{H}_{n}+\Sigma_{n}\right)\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)+\mathbf{d}_{n}=-\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}+\mathbf{u} \tag{A.13}
\end{equation*}
$$

where $\|\mathbf{u}\|=O_{P}\left(p_{n}^{5 / 2} / n\right)$. By Condition B5,

$$
\begin{aligned}
& \left\|\sqrt{n} A_{n} \Omega_{n}^{-1 / 2} \mathbf{u}\right\| \leq \sqrt{n}\left\|A_{n}\right\|_{F} \lambda_{\max }\left(\Omega_{n}^{-1 / 2}\right)\|\mathbf{u}\| \\
& \quad=\sqrt{n}\left\{\operatorname{tr}\left(A_{n} A_{n}^{T}\right)\right\}^{1 / 2} / \lambda_{\min }^{1 / 2}\left(\Omega_{n}\right)\|\mathbf{u}\|=O_{P}\left(p_{n}^{5 / 2} / \sqrt{n}\right)=o_{P}(1) .
\end{aligned}
$$

Thus

$$
\sqrt{n} A_{n} \Omega_{n}^{-1 / 2}\left\{\left(\mathbf{H}_{n}+\Sigma_{n}\right)\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)+\mathbf{d}_{n}\right\}=-\frac{1}{\sqrt{n}} A_{n} \Omega_{n}^{-1 / 2} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}+o_{P}(1) .
$$

To complete proving the second part of Theorem 2, we apply the Lindeberg-Feller central limit theorem (van der Vaart, 1998) to $\sum_{i=1}^{n} \boldsymbol{Z}_{i}$, where $\boldsymbol{Z}_{i}=-n^{-1 / 2} A_{n} \Omega_{n}^{-1 / 2} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}$. It suffices to check that (I) $\sum_{i=1}^{n} \operatorname{cov}\left(\boldsymbol{Z}_{i}\right) \rightarrow G$ and (II) $\sum_{i=1}^{n} E\left(\left\|\boldsymbol{Z}_{i}\right\|^{2+\delta}\right)=o(1)$ for some $\delta>0$. Condition (I) follows from $\operatorname{var}\left\{\mathrm{q}_{1}\left(Y ; \widetilde{\mathrm{X}}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}^{(\mathrm{I})}\right\}=\Omega_{n}$. To verify condition (II), notice that

$$
\begin{aligned}
E\left(\left\|\boldsymbol{Z}_{n}\right\|^{2+\delta}\right) & \leq n^{-(2+\delta) / 2} E\left\{\left\|A_{n}\right\|_{F}^{2+\delta}\left[\left\|\Omega_{n}^{-1 / 2} \widetilde{\mathrm{X}}^{(\mathrm{I})}\right\|\left|\frac{q^{(2)}(m(\mathrm{X}))}{F^{(1)}(m(\mathrm{X}))}\{Y-m(\mathrm{X})\}\right|\right]^{2+\delta}\right\} \\
& \leq 2 C s_{n}^{(2+\delta) / 2} n^{-(2+\delta) / 2}\left[E\left(|Y|^{2+\delta}\right)+E\left\{|m(\mathrm{X})|^{2+\delta}\right\}\right] \\
& \leq O\left\{\left(s_{n} / n\right)^{(2+\delta) / 2}\right\} .
\end{aligned}
$$

Thus, we get $\sum_{i=1}^{n} E\left(\left\|\boldsymbol{Z}_{i}\right\|^{2+\delta}\right) \leq O\left\{n\left(s_{n} / n\right)^{(2+\delta) / 2}\right\}=O\left\{s_{n}^{(2+\delta) / 2} / n^{\delta / 2}\right\}$, which is $o(1)$ by Condition B3. This verifies Condition (II).

Proof of Proposition 1

Note $\left\|A_{n}\left(\widehat{V}_{n}-V_{n}\right) A_{n}^{T}\right\| \leq\left\|\widehat{V}_{n}-V_{n}\right\|\left\|A_{n}\right\|_{F}^{2}$. Since $\left\|A_{n}\right\|_{F}^{2} \rightarrow \operatorname{tr}(G)$, it suffices to prove that $\left\|\widehat{V}_{n}-V_{n}\right\|=o_{P}(1)$. Define $S_{n}=\mathbf{H}_{n}+\Sigma_{n}$ and $\widehat{S}_{n}=\widehat{\mathbf{H}}_{n}+\widehat{\Sigma}_{n}$.

First, we prove $\left\|\widehat{S}_{n}-S_{n}\right\|=o_{P}(1)$. Note that

$$
\begin{aligned}
\widehat{S}_{n}- & \left.S_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{\mathrm{I}) T}+\Sigma_{n} \widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)-\mathbf{H}_{n}-\Sigma_{n}\left(\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \\
= & \frac{1}{n} \sum_{i=1}^{n}\left\{\mathrm{q}_{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)-\mathrm{q}_{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)\right\} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \\
& +\left\{\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T}-\mathbf{H}_{n}+\Sigma_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)-\Sigma_{n}\left(\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)\right\} \\
\equiv & I_{1}+I_{2} .
\end{aligned}
$$

From the proof of (A.11) in Theorem 2, we know that $\left\|I_{2}\right\|=O_{P}\left(p_{n} / \sqrt{n}\right)=o_{P}(1)$. We only need to consider the term I_{1},

$$
\begin{aligned}
I_{1}= & -\frac{1}{n} \sum_{i=1}^{n}\left[\frac{q^{(2)}\left(\widehat{m}\left(\mathrm{X}_{i}\right)\right)}{\left\{F^{(1)}\left(\widehat{m}\left(\mathrm{X}_{i}\right)\right)\right\}^{2}}-\frac{q^{(2)}\left(m\left(\mathrm{X}_{i}\right)\right)}{\left\{F^{(1)}\left(m\left(\mathrm{X}_{i}\right)\right)\right\}^{2}}\right] \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \\
& +\frac{1}{n} \sum_{i=1}^{n}\left[\left\{Y_{i}-\widehat{m}\left(\mathrm{X}_{i}\right)\right\} A_{1}\left(\widehat{m}\left(\mathrm{X}_{i}\right)\right)-\left\{Y_{i}-m\left(\mathrm{X}_{i}\right)\right\} A_{1}\left(m\left(\mathrm{X}_{i}\right)\right)\right] \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T}
\end{aligned}
$$

$$
\equiv I_{1,1}+I_{1,2}
$$

Let $g(\cdot)=q^{(2)}(\cdot) /\left\{F^{(1)}(\cdot)\right\}^{2}$. By the assumptions, $g(\cdot)$ is differentiable. Thus

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left|g\left(\widehat{m}\left(\mathrm{X}_{i}\right)\right)-g\left(m\left(\mathrm{X}_{i}\right)\right)\right| \\
& \quad=\frac{1}{n} \sum_{i=1}^{n}\left|\left(g \circ F^{-1}\right)^{\prime}\left(\widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}^{*(\mathrm{I})}\right) \mathrm{X}_{i}^{(\mathrm{I}) T}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)\right|=O_{P}\left(p_{n} / \sqrt{n}\right),
\end{aligned}
$$

where $\widetilde{\boldsymbol{\beta}}^{*(\mathrm{I})}$ is between $\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}$ and $\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}$. Thus

$$
\left\|I_{1,1}\right\| \leq\left\|\frac{1}{n} \sum_{i=1}^{n}\left|g\left(\widehat{m}\left(\mathrm{X}_{i}\right)\right)-g\left(m\left(\mathrm{X}_{i}\right)\right)\right| \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T}\right\|_{F}=O_{P}\left(p_{n}^{2} / \sqrt{n}\right)
$$

Similar arguments give $\left\|I_{1,2}\right\|=O_{P}\left(p_{n}^{2} / \sqrt{n}\right)$. Thus $\left\|I_{1}\right\|=O_{P}\left(p_{n}^{2} / \sqrt{n}\right)=o_{P}(1)$.
Second, we show $\left\|\widehat{\Omega}_{n}-\Omega_{n}\right\|=o_{P}(1)$. Define $T_{1}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}^{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}^{(\mathrm{I}) T}$. Then $\widehat{\Omega}_{n}=T_{1}$. It is easy to see that

$$
\begin{aligned}
T_{1}= & \frac{1}{n} \sum_{i=1}^{n}\left\{\mathrm{q}_{1}^{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}\right)-\mathrm{q}_{1}^{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)\right\} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \\
& +\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}^{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \\
= & \Delta_{1,1}+\left(\Omega_{n}+\Delta_{1,2}\right)
\end{aligned}
$$

where $\left\|\Delta_{1,1}\right\|=O_{P}\left(p_{n}^{2} / \sqrt{n}\right)$ and $\left\|\Delta_{1,2}\right\|=O_{P}\left(s_{n} / \sqrt{n}\right)$. We observe that $\left\|\widehat{\Omega}_{n}-\Omega_{n}\right\|=$ $O_{P}\left(p_{n}^{2} / \sqrt{n}\right)=o_{P}(1)$.

Third, we show $\left\|\widehat{V}_{n}-V_{n}\right\|=o_{P}(1)$. We notice the equation similar to that in the proof of Fan and Peng (2004), $\widehat{V}_{n}-V_{n}=L_{1}+L_{2}+L_{3}$, where $L_{1}=\widehat{S}_{n}^{-1}\left(\widehat{\Omega}_{n}-\Omega_{n}\right) \widehat{S}_{n}^{-1}$, $L_{2}=\widehat{S}_{n}^{-1}\left(S_{n}-\widehat{S}_{n}\right) S_{n}^{-1} \Omega_{n} \widehat{S}_{n}^{-1}$ and $L_{3}=S_{n}^{-1} \Omega_{n} \widehat{S}_{n}^{-1}\left(S_{n}-\widehat{S}_{n}\right) S_{n}^{-1}$. By Assumption B5, it is straightforward to verify that $\left\|S_{n}^{-1}\right\| \leq O(1),\left\|\widehat{S}_{n}^{-1}\right\| \leq O_{P}(1)$ and $\left\|S_{n}^{-1} \Omega_{n}\right\| \leq O(1)$. Since $\left\|L_{1}\right\| \leq\left\|\widehat{S}_{n}^{-1}\right\|\left\|\widehat{\Omega}_{n}-\Omega_{n}\right\|\left\|\widehat{S}_{n}^{-1}\right\|$, we conclude $\left\|L_{1}\right\|=o_{P}(1)$. Similar arguments lead to $\left\|L_{2}\right\|=o_{P}(1)$ and $\left\|L_{3}\right\|=o_{P}(1)$. Hence $\left\|\widehat{V}_{n}-V_{n}\right\|=o_{P}(1)$.

Proof of Theorem 3

Before showing Theorem 3, Lemma 3 is needed.
Lemma 3 Assume conditions of Theorem 3. Then

$$
\begin{aligned}
& \widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}=-\frac{1}{n} \mathbf{H}_{n}^{-1} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}+o_{P}\left(n^{-1 / 2}\right), \\
& \sqrt{n}\left(A_{n} \widehat{\mathbf{H}}_{n}^{-1} \widehat{\Omega}_{n} \widehat{\mathbf{H}}_{n}^{-1} A_{n}^{T}\right)^{-1 / 2} A_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \xrightarrow{\mathcal{L}} N\left(\mathbf{0}, \mathbf{I}_{k}\right) .
\end{aligned}
$$

Proof: Following (A.13) in the proof of Theorem 2, we observe that $\|\mathbf{u}\|=O_{P}\left(p_{n}^{5 / 2} / n\right)=$ $o_{P}\left(n^{-1 / 2}\right)$. Furthermore, $\left\|\mathbf{d}_{n}\right\|=O_{P}\left(\sqrt{s_{n}} a_{n}\right)=o_{P}\left(n^{-1 / 2}\right)$ and $\left\|\Sigma_{n} \times\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)\right\| \leq$ $b_{n}\left\|\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right\|=O_{P}\left(b_{n} \sqrt{p_{n} / n}\right)=o_{P}\left(n^{-1 / 2}\right)$. Condition B5 completes the proof for the first part.

To show the second part, denote $U_{n}=A_{n} \mathbf{H}_{n}^{-1} \Omega_{n} \mathbf{H}_{n}^{-1} A_{n}^{T}$ and $\widehat{U}_{n}=A_{n} \widehat{\mathbf{H}}_{n}^{-1} \widehat{\Omega}_{n} \widehat{\mathbf{H}}_{n}^{-1} A_{n}^{T}$. Notice that the eigenvalues of $\mathbf{H}_{n}^{-1} \Omega_{n} \mathbf{H}_{n}^{-1}$ are uniformly bounded away from 0 . So are the eigenvalues of U_{n}. From the first part, we see that

$$
A_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)=-\frac{1}{n} A_{n} \mathbf{H}_{n}^{-1} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}+o_{P}\left(n^{-1 / 2}\right) .
$$

It follows that $\sqrt{n} U_{n}^{-1 / 2} A_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)=\sum_{i=1}^{n} \boldsymbol{Z}_{i}+o_{P}(1)$, where $\boldsymbol{Z}_{i}=-n^{-1 / 2} U_{n}^{-1 / 2} A_{n} \mathbf{H}_{n}^{-1} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)$ To show $\sum_{i=1}^{n} \boldsymbol{Z}_{i} \xrightarrow{\mathcal{L}} N\left(\mathbf{0}, \mathbf{I}_{\mathrm{k}}\right)$, similar to the proof for Theorem 2, we check (III) $\sum_{i=1}^{n} \operatorname{cov}\left(\boldsymbol{Z}_{i}\right) \rightarrow$ \mathbf{I}_{k} and (IV) $\sum_{i=1}^{n} E\left(\left\|\boldsymbol{Z}_{i}\right\|^{2+\delta}\right)=o(1)$ for some $\delta>0$. Condition (III) is straightforward since $\sum_{i=1}^{n} \operatorname{cov}\left(\boldsymbol{Z}_{i}\right)=U_{n}^{-1 / 2} U_{n} U_{n}^{-1 / 2}=\mathbf{I}_{\mathrm{k}}$. To check condition (IV), similar arguments used in the proof of Theorem 2 give that $E\left(\left\|\boldsymbol{Z}_{n}\right\|^{2+\delta}\right)=O\left\{\left(s_{n} / n\right)^{(2+\delta) / 2}\right\}$. This and Condition B3 yield $\sum_{i=1}^{n} E\left(\left\|\boldsymbol{Z}_{i}\right\|^{2+\delta}\right) \leq O\left\{s_{n}^{(2+\delta) / 2} / n^{\delta / 2}\right\}=o(1)$. Hence

$$
\begin{equation*}
\sqrt{n} U_{n}^{-1 / 2} A_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \xrightarrow{\mathcal{L}} N\left(\mathbf{0}, \mathbf{I}_{\mathrm{k}}\right) . \tag{A.14}
\end{equation*}
$$

From the proof of Proposition 1, it can be concluded that $\left\|\widehat{U}_{n}-U_{n}\right\|=o_{P}(1)$ and that the eigenvalues of \widehat{U}_{n} are uniformly bounded away from 0 and ∞ with probability tending to one. Consequently,

$$
\begin{equation*}
\left\|\widehat{U}_{n}^{-1 / 2} U_{n}^{1 / 2}-\mathbf{I}_{\mathrm{k}}\right\|=o_{P}(1) \tag{A.15}
\end{equation*}
$$

Combining (A.14), (A.15) and Slutsky's theorem completes the proof that $\sqrt{n} \widehat{U}_{n}^{-1 / 2} A_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}-\right.$ $\left.\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \xrightarrow{\mathcal{L}} N\left(\mathbf{0}, \mathbf{I}_{\mathrm{k}}\right)$.

We now show Theorem 3, which follows directly from H_{0} in (3.2) and the second part of Lemma 3.

Proof of Theorem 4

For the matrix A_{n} in (3.2), there exists a $\left(s_{n}+1-\mathrm{k}\right) \times\left(s_{n}+1\right)$ matrix B_{n} satisfying $B_{n} B_{n}^{T}=\mathbf{I}_{s_{n}+1-\mathrm{k}}$ and $A_{n} B_{n}^{T}=\mathbf{0}$. Thus, $A_{n} \widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}=\mathbf{0}$ is equivalent to $\widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}=B_{n}^{T} \boldsymbol{\gamma}_{n}$, where $\boldsymbol{\gamma}_{n}$ is a $\left(s_{n}+1-\mathbf{k}\right) \times 1$ vector. Thus under H_{0} in (3.2), we have $\widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}=B_{n}^{T} \boldsymbol{\gamma}_{0}$. Then minimizing $\ell_{n}(\widetilde{\boldsymbol{\beta}})$ subject to $A_{n} \widetilde{\boldsymbol{\beta}}^{(\mathrm{I})}=\mathbf{0}$ is equivalent to minimizing $\ell_{n}\left(B_{n}^{T} \boldsymbol{\gamma}_{n}, \mathbf{0}\right)$ with respect to $\boldsymbol{\gamma}_{n}$, and we denote by $\widehat{\boldsymbol{\gamma}}_{n}$ the minimizer. Under (2.6), $\widehat{\widetilde{\boldsymbol{\beta}}}$ is the unique minimizer of $\ell_{n}(\widetilde{\boldsymbol{\beta}})$. Hence $\Lambda_{n}=2 n\left\{\ell_{n}\left(B_{n}^{T} \widehat{\gamma}_{n}, \mathbf{0}\right)-\ell_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}, \mathbf{0}\right)\right\}$. Before showing Theorem 4, we need Lemma 4.

Lemma 4 Assume conditions of Theorem 4. Then under the null hypothesis H_{0} in (3.2), we have that

$$
B_{n}^{T}\left(\widehat{\gamma}_{n}-\gamma_{0}\right)=-\frac{1}{n} B_{n}^{T}\left(B_{n} \mathbf{H}_{n} B_{n}^{T}\right)^{-1} B_{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}+o_{P}\left(n^{-1 / 2}\right),
$$

and

$$
2 n\left\{\ell_{n}\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}, \mathbf{0}\right)-\ell_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}, \mathbf{0}\right)\right\}=n\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)^{T} \mathbf{H}_{n}\left(B_{n}^{T} \widehat{\gamma}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)+o_{P}(1)
$$

Proof: To obtain the first part, following the proof of (A.13) in Theorem 2, we have a similar expression for $\widehat{\gamma}_{n}$,

$$
B_{n}\left(\mathbf{H}_{n}+\Sigma_{n}\right) B_{n}^{T}\left(\widehat{\gamma}_{n}-\gamma_{0}\right)+B_{n} \mathbf{d}_{n}=-\frac{1}{n} B_{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ;\left(B_{n} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}\right)^{T} \boldsymbol{\gamma}_{0}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}+\mathbf{v}_{n},
$$

where $\left\|\mathbf{v}_{n}\right\|=O_{P}\left(p_{n}^{5 / 2} / n\right)=o_{P}\left(n^{-1 / 2}\right)$. Moreover,

$$
\left\|B_{n} \mathbf{d}_{n}\right\| \leq\left\|B_{n}\right\|\left\|\mathbf{d}_{n}\right\|=O_{P}\left(\sqrt{s_{n}} a_{n}\right)=o_{P}\left(n^{-1 / 2}\right)
$$

the fact that $\left\|B_{n} \Sigma_{n} B_{n}^{T}\right\| \leq\left\|\Sigma_{n}\right\|$ leads to

$$
\left\|B_{n} \Sigma_{n} B_{n}^{T}\left(\widehat{\gamma}_{n}-\gamma_{0}\right)\right\| \leq\left\|\Sigma_{n}\right\|\left\|\widehat{\gamma}_{n}-\gamma_{0}\right\|=O_{P}\left(b_{n} \sqrt{p_{n} / n}\right)=o_{P}\left(n^{-1 / 2}\right)
$$

Thus, under H_{0},

$$
B_{n} \mathbf{H}_{n} B_{n}^{T}\left(\widehat{\gamma}_{n}-\gamma_{0}\right)=-\frac{1}{n} B_{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}+\mathbf{w}_{n}
$$

with $\left\|\mathbf{w}_{n}\right\|=o_{P}\left(n^{-1 / 2}\right)$. As a result,

$$
B_{n}^{T}\left(\widehat{\boldsymbol{\gamma}}_{n}-\boldsymbol{\gamma}_{0}\right)=-\frac{1}{n} B_{n}^{T}\left(B_{n} \mathbf{H}_{n} B_{n}^{T}\right)^{-1} B_{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}+B_{n}^{T}\left(B_{n} \mathbf{H}_{n} B_{n}^{T}\right)^{-1} \mathbf{w}_{n}
$$

We notice that

$$
\left\|B_{n}^{T}\left(B_{n} \mathbf{H}_{n} B_{n}^{T}\right)^{-1} \mathbf{w}_{n}\right\| \leq\left\|\left(B_{n} \mathbf{H}_{n} B_{n}^{T}\right)^{-1}\right\|\left\|\mathbf{w}_{n}\right\| \leq\left\|\mathbf{w}_{n}\right\| / \lambda_{\min }\left(\mathbf{H}_{n}\right)=o_{P}\left(n^{-1 / 2}\right)
$$

in which the fact $\lambda_{\min }\left(B_{n} \mathbf{H}_{n} B_{n}^{T}\right) \geq \lambda_{\text {min }}\left(\mathbf{H}_{n}\right)$ is used.
The proof of the second part proceed in three steps. In Step 1, we use the Taylor expansion for $\ell_{n}\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}, \mathbf{0}\right)-\ell_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}, \mathbf{0}\right)$,

$$
\ell_{n}\left(B_{n}^{T} \widehat{\gamma}_{n}, \mathbf{0}\right)-\ell_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}, \mathbf{0}\right)=\frac{1}{2 n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)\left\{\widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T}\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)\right\}^{2}
$$

$$
\begin{aligned}
& +\frac{1}{6 n} \sum_{i=1}^{n} \mathrm{q}_{3}\left(Y_{i} ; \widetilde{\mathrm{X}}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}^{*(\mathrm{I})}\right)\left\{\widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T}\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)\right\}^{3} \\
& +\frac{1}{2}\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{\mathrm{I})}\right)^{T}\left\{\Sigma_{n}\left(\widetilde{\boldsymbol{\beta}}^{* *(\mathrm{II})}\right)\right\}\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right) \\
\equiv & I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where both $\widetilde{\boldsymbol{\beta}}^{*(\mathrm{I})}$ and $\widetilde{\boldsymbol{\beta}}^{* *(\mathrm{I})}$ lie between $\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}$ and $B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}$.
In Step 2, we analyze the stochastic order of $B_{n}^{T} \widehat{\gamma}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}$. For a matrix X whose column vectors are linearly independent, set $P_{X}=X\left(X^{T} X\right)^{-1} X^{T}$. Define $H_{n}=\mathbf{I}_{s_{n}+1}-P_{\mathbf{H}_{n}^{1 / 2} B_{n}^{T}}$. Then $\mathbf{H}_{n}^{-1}-B_{n}^{T}\left(B_{n} \mathbf{H}_{n} B_{n}^{T}\right)^{-1} B_{n}=\mathbf{H}_{n}^{-1 / 2} H_{n} \mathbf{H}_{n}^{-1 / 2}$. By Lemma 3 and the first part of Lemma 4, we see immediately that

$$
\begin{equation*}
B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}=\mathbf{H}_{n}^{-1 / 2} H_{n} \mathbf{H}_{n}^{-1 / 2}\left(\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1, i} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}\right)+o_{P}\left(n^{-1 / 2}\right), \tag{A.16}
\end{equation*}
$$

where $\mathrm{q}_{1, i}=\mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right)$. Note that $\left\|\mathbf{H}_{n}^{-1 / 2} H_{n} \mathbf{H}_{n}^{-1 / 2}\left(n^{-1} \sum_{i=1}^{n} \mathrm{q}_{1, i} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}\right)\right\|=O_{P}(1 / \sqrt{n})$. This gives

$$
\begin{equation*}
\left\|B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right\|=O_{P}(1 / \sqrt{n}) \tag{A.17}
\end{equation*}
$$

In Step 3, we conclude from (A.17) that $I_{2}=O_{P}\left\{\left(p_{n} / n\right)^{3 / 2}\right\}=o_{P}(1 / n)$ and $I_{3}=$ $o_{P}(1) O_{P}\left(n^{-1}\right)=o_{P}(1 / n)$. Then $2 n\left\{\ell_{n}\left(B_{n}^{T} \widehat{\gamma}_{n}, \mathbf{0}\right)-\ell_{n}\left(\widehat{\boldsymbol{\beta}}^{(\mathrm{I})}, \mathbf{0}\right)\right\}=2 n I_{1}+o_{P}(1)$. Similar to the proof of Proposition 1, it is straightforward to see that

$$
\begin{array}{rl}
2 n & n I_{1}=n\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)^{T}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{\mathrm{I}) T}\right\}\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{\mathrm{I})}\right) \\
& =n\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{\mathrm{I})}\right)^{T}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T}\right\}\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)+o_{P}(1) \\
& =n\left(B_{n}^{T} \widehat{\gamma}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)^{T} E\left\{\mathrm{q}_{2}\left(Y ; \widetilde{\mathrm{X}}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}^{(\mathrm{I})} \widetilde{\mathrm{X}}^{(\mathrm{I}) T}\right\}\left(B_{n}^{T} \widehat{\boldsymbol{\gamma}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}\right)+o_{P}(1) \\
&)^{T} \mathbf{H}_{n}\left(B_{n}^{T} \widehat{\widetilde{\boldsymbol{\gamma}}}_{n}-\widehat{\widetilde{\boldsymbol{\beta}}}^{\mathrm{I})}\right)+o_{P}(1) .
\end{array}
$$

Then the second part of Lemma 4 is proved.
We now show Theorem 4. A direct use of Lemma 4 and (A.16) leads to

$$
\begin{aligned}
& 2 n\left\{\ell_{n}\left(B_{n}^{T} \widehat{\gamma}_{n}, \mathbf{0}\right)-\ell_{n}\left(\widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}, \mathbf{0}\right)\right\} \\
& \quad=\left(\frac{1}{\sqrt{n}} \mathbf{H}_{n}^{-1 / 2} \sum_{i=1}^{n} \mathrm{q}_{1, i} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}\right)^{T} H_{n}\left(\frac{1}{\sqrt{n}} \mathbf{H}_{n}^{-1 / 2} \sum_{i=1}^{n} \mathrm{q}_{1, i} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}\right)+o_{P}(1) .
\end{aligned}
$$

Since H_{n} is idempotent of rank k , it can be written as $H_{n}=C_{n}^{T} C_{n}$, where C_{n} is a $\mathrm{k} \times\left(s_{n}+1\right)$ matrix satisfying $C_{n} C_{n}^{T}=\mathbf{I}_{\mathrm{k}}$. Then

$$
\left.2 n\left\{\ell_{n}\left(B_{n}^{T} \widehat{\gamma}_{n}, \mathbf{0}\right)-\ell_{n} \widehat{\widetilde{\boldsymbol{\beta}}}^{(\mathrm{I})}, \mathbf{0}\right)\right\}
$$

$$
=\left(\frac{1}{\sqrt{n}} C_{n} \mathbf{H}_{n}^{-1 / 2} \sum_{i=1}^{n} \mathrm{q}_{1, i} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}\right)^{T}\left(\frac{1}{\sqrt{n}} C_{n} \mathbf{H}_{n}^{-1 / 2} \sum_{i=1}^{n} \mathrm{q}_{1, i} \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})}\right)+o_{P}(1) .
$$

When the generalized Bartlett identity (3.3) holds for the q-function, we have $\mathbf{H}_{n}=\Omega_{n} / c$. In this case, similar arguments for Theorem 2 yields

$$
\frac{1}{\sqrt{n}} C_{n} \mathbf{H}_{n}^{-1 / 2} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\boldsymbol{\beta}}_{0}^{(\mathrm{I})}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I})} \xrightarrow{\mathcal{L}} N\left(\mathbf{0}, c \mathbf{I}_{\mathrm{k}}\right)
$$

which completes the proof.

Proof of Lemma 1

Analogous to the proof of Theorem 1, it suffices to show (A.1). Note that (A.2) continues to hold with the terms $I_{2}=\lambda_{n} \sum_{j=1}^{p_{n}} w_{j}\left(\left|\beta_{j ; 0}+r_{n} u_{j}\right|-\left|\beta_{j ; 0}\right|\right)$ and I_{1} unchanged. Clearly, $I_{2} \geq-\lambda_{n} r_{n} \sum_{j=1}^{s_{n}} w_{j}\left|u_{j}\right| \equiv I_{2,1}$, in which $\left|I_{2,1}\right| \leq \lambda_{n} r_{n} w_{\max }^{(\mathrm{I})}\left\|\mathbf{u}^{(\mathrm{I})}\right\|_{1}$. The rest of the proof resembles that of Theorem 1 and is omitted.

Proof of Theorem 5

Write $\widetilde{\mathbf{u}}=\left(\widetilde{\mathbf{u}}^{(\mathrm{I}) T}, \mathbf{u}^{(\mathrm{II}) T}\right)^{T}$, where $\widetilde{\mathbf{u}}^{(\mathrm{I})}=\left(u_{0}, u_{1}, \ldots, u_{s_{n}}\right)^{T}$ and $\mathbf{u}^{(\mathrm{II})}=\left(u_{s_{n}+1}, \ldots, u_{p_{n}}\right)^{T}$. Following the proof of Lemma 1, it suffices to show (A.1) for $r_{n}=\sqrt{s_{n} / n}$.

For $I_{1,1}$ in (A.4),

$$
I_{1,1}=\frac{r_{n}}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}_{0}\right) \widetilde{\mathrm{X}}_{i}^{(\mathrm{I}) T} \widetilde{\mathbf{u}}^{(\mathrm{I})}+\frac{r_{n}}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; \widetilde{\mathrm{X}}_{i}^{T} \widetilde{\boldsymbol{\beta}}_{0}\right) \mathrm{X}_{i}^{(\mathrm{II}) T} \mathbf{u}^{(\mathrm{II})} \equiv I_{1,1}^{(\mathrm{I})}+I_{1,1}^{(\mathrm{II})}
$$

It follows that

$$
\left|I_{1,1}^{(\mathrm{I})}\right| \leq r_{n} O_{P}\left(\sqrt{s_{n} / n}\right)\left\|\widetilde{\mathbf{u}}^{(\mathrm{I})}\right\|_{2}, \quad\left|I_{1,1}^{(\mathrm{II})}\right| \leq r_{n} O_{P}(1 / \sqrt{n})\left\|\mathbf{u}^{(\mathrm{II})}\right\|_{1} .
$$

For $I_{1,2}$ in (A.4), similar to the proof of Theorem $1, I_{1,2}=I_{1,2,1}+I_{1,2,2}$. Define $d_{i}=$ $q^{(2)}\left(m\left(\mathrm{X}_{i}\right)\right) /\left\{F^{(1)}\left(m\left(\mathrm{X}_{i}\right)\right)\right\}^{2}$. This yields

$$
I_{1,2,1} \geq-\frac{r_{n}^{2}}{2 n} \sum_{i=1}^{n} d_{i}\left\{\mathrm{X}_{i}^{(\mathrm{I}) T} \widetilde{\mathbf{u}}^{(\mathrm{I})}\right\}^{2}-\frac{r_{n}^{2}}{n} \sum_{i=1}^{n} d_{i}\left\{\mathrm{X}_{i}^{(\mathrm{I}) T} \widetilde{\mathbf{u}}^{(\mathrm{I})}\right\}\left\{\mathrm{X}_{i}^{(\mathrm{II}) T} \mathbf{u}^{(\mathrm{II})}\right\}=I_{1,2,1}^{(\mathrm{I})}-I_{1,2,1}^{(\mathrm{cross})}
$$

Then there exists a constant $C>0$ such that

$$
\begin{aligned}
I_{1,2,1}^{(\mathrm{I})} & \geq C r_{n}^{2}\left\{1+o_{P}(1)\right\}\left\|\widetilde{\mathbf{u}}^{(\mathrm{I})}\right\|_{2}^{2} \\
\left|I_{1,2,1}^{\text {(cross })}\right| & \leq O_{P}\left(r_{n}^{2} \sqrt{s_{n}}\right)\left\|\widetilde{\mathbf{u}}^{(\mathrm{I})}\right\|_{2} \cdot\left\|\mathbf{u}^{(\mathrm{II})}\right\|_{1} .
\end{aligned}
$$

For $I_{1,2,2}$,

$$
\begin{aligned}
I_{1,2,2} & =\frac{r_{n}^{2}}{2 n} \sum_{i=1}^{n}\left\{Y_{i}-m\left(\mathrm{X}_{i}\right)\right\} A_{1}\left(m\left(\mathrm{X}_{i}\right)\right)\left[\left\{\mathrm{X}_{i}^{(\mathrm{I}) T} \widetilde{\mathbf{u}}^{(\mathrm{I})}\right\}^{2}+2\left\{\mathrm{X}_{i}^{(\mathrm{I}) T} \widetilde{\mathbf{u}}^{(\mathrm{I})}\right\}\left\{\mathrm{X}_{i}^{(\mathrm{II}) T} \mathbf{u}^{(\mathrm{II})}\right\}+\left\{\mathrm{X}_{i}^{(\mathrm{II}) T} \mathbf{u}^{(\mathrm{II})}\right\}^{2}\right] \\
& \equiv I_{1,2,2}^{(\mathrm{I})}+I_{1,2,2}^{(\text {cross })}+I_{1,2,2}^{(\mathrm{II})}
\end{aligned}
$$

where

$$
\begin{aligned}
\left|I_{1,2,2}^{(\mathrm{I})}\right| & \leq r_{n}^{2} O_{P}\left(s_{n} / \sqrt{n}\right)\left\|\widetilde{\mathbf{u}}^{(\mathrm{I})}\right\|_{2}^{2}, \\
\left|I_{1,2,2}^{(\mathrm{crsss})}\right| & \leq r_{n}^{2} O_{P}\left(\sqrt{s_{n} / n}\right)\left\|\widetilde{\mathbf{u}}^{(\mathrm{I})}\right\|_{2}\left\|\mathbf{u}^{\mathrm{II})}\right\|_{1}, \\
\left|I_{1,2,2}^{\mathrm{II})}\right| & \leq r_{n}^{2} O_{P}(1 / \sqrt{n})\left\|\mathbf{u}^{(\mathrm{II})}\right\|_{1}^{2} .
\end{aligned}
$$

For $I_{1,3}$ in (A.4), since $s_{n} p_{n}=o(n),\left\|\widetilde{\boldsymbol{\beta}}^{*}\right\|_{1}$ is bounded and thus

$$
\left|I_{1,3}\right| \leq O_{P}\left(r_{n}^{3}\right)\left\|\widetilde{\mathbf{u}}^{(\mathrm{I})}\right\|_{1}^{3}+O_{P}\left(r_{n}^{3}\right)\left\|\mathbf{u}^{(\mathrm{II})}\right\|_{1}^{3} \equiv I_{1,3}^{(\mathrm{I})}+I_{1,3}^{(\mathrm{II})}
$$

where

$$
\left|I_{1,3}^{(\mathrm{I})}\right| \leq O_{P}\left(r_{n}^{3} s_{n}^{3 / 2}\right)\left\|\widetilde{\mathbf{u}}^{\mathrm{I})}\right\|_{2}^{3}, \quad\left|I_{1,3}^{(\mathrm{II})}\right| \leq O_{P}\left(r_{n}^{3}\right)\left\|\mathbf{u}^{(\mathrm{II})}\right\|_{1}^{3}
$$

For I_{2} in (A.2), $I_{2} \geq I_{2,1}^{(\mathrm{I})}+I_{2,1}^{(\mathrm{II})}$, where $I_{2,1}^{(\mathrm{I})}=-\lambda_{n} r_{n} \sum_{j=1}^{s_{n}} w_{j}\left|u_{j}\right|$ and $I_{2,1}^{(\mathrm{II})}=\lambda_{n} r_{n} \sum_{j=s_{n}+1}^{p_{n}} w_{j}\left|u_{j}\right|$. Thus, we have

$$
\left|I_{2,1}^{\mathrm{I})}\right| \leq \lambda_{n} r_{n} w_{\max }^{(\mathrm{I})} \sqrt{s_{n}}\left\|\mathbf{u}^{\mathrm{I})}\right\|_{2}, \quad I_{2,1}^{(\mathrm{II})} \geq \lambda_{n} r_{n} w_{\min }^{(\mathrm{II})}\left\|\mathbf{u}^{(\mathrm{II})}\right\|_{1}
$$

It can be shown that either $I_{1,2,1}^{(\mathrm{I})}$ or $I_{2,1}^{(\mathrm{II})}$ dominates all other terms in groups, $\mathcal{G}_{1}=$ $\left\{I_{1,2,2}^{(\mathrm{I})}, I_{1,3}^{(\mathrm{I})}\right\}, \mathcal{G}_{2}=\left\{I_{1,1}^{(\mathrm{II})}, I_{1,2,2}^{(\mathrm{II})}, I_{1,3}^{(\mathrm{II})}, I_{1,2,1}^{\text {(cross })}, I_{1,2,2}^{(\text {cross })}\right\}$ and $\mathcal{G}_{3}=\left\{I_{1,1}^{(\mathrm{I})}, I_{2,1}^{(\mathrm{I})}\right\}$. Namely, $I_{1,2,1}^{(\mathrm{I})}$ dominates \mathcal{G}_{1}, and $I_{2,1}^{(\mathrm{II})}$ dominates \mathcal{G}_{2}. For \mathcal{G}_{3}, since $\left\|\widetilde{\mathbf{u}}^{(\mathrm{I})}\right\|_{2} \leq C_{\epsilon}$, we have that

$$
\left|I_{1,1}^{(\mathrm{I})}\right| \leq O_{P}\left(r_{n} \sqrt{s_{n} / n}\right) C_{\epsilon}, \quad\left|I_{2,1}^{(\mathrm{I})}\right| \leq \lambda_{n} r_{n} \sqrt{s_{n}} w_{\max }^{(\mathrm{I})} C_{\epsilon} .
$$

Hence, if $\left\|\mathbf{u}^{(\mathrm{II})}\right\|_{1} \leq C_{\epsilon} / 2$, then $\left\|\widetilde{\mathbf{u}}^{(\mathrm{I})}\right\|_{2}>C_{\epsilon} / 2$, and thus \mathcal{G}_{3} is dominated by $I_{1,2,1}^{(\mathrm{I})}$, which is positive; if $\left\|\mathbf{u}^{(\text {II })}\right\|_{1}>C_{\epsilon} / 2$, then \mathcal{G}_{3} is dominated by $I_{2,1}^{(\text {II })}$, which is positive. This completes the proof.

Proof of Theorems 6-7

They are similar to those of Theorems 2-3 and are omitted.

Proof of Theorem 8

Minimizing (4.3) is equivalent to minimizing $\ell_{n, j}^{\mathrm{PCR}}(\alpha)=n^{-1} \sum_{i=1}^{n} Q\left(Y_{i}, F^{-1}\left(X_{i j} \alpha\right)\right)+$ $\kappa_{n}|\alpha|$, for $j=1, \ldots, p_{n}$. The proof is separated into two parts.

Part 1. To show $\widehat{w}_{\max }^{(\mathrm{I})}=O_{P}\left\{1 /\left(\lambda_{n} \sqrt{n}\right)\right\}$, it suffices to show that for $\mathcal{A}_{n}=\lambda_{n} \sqrt{n}$, there exist local minimizers $\widehat{\beta}_{j}^{\mathrm{PCR}}$ of $\ell_{n, j}^{\mathrm{PCR}}(\alpha)$ such that $\lim _{\delta \rightarrow 0} \inf _{n \geq 1} P\left(\min _{1 \leq j \leq s_{n}}\left|\widehat{\beta}_{j}^{\mathrm{PCR}}\right|>\mathcal{A}_{n} \delta\right)=$ 1. It suffices to prove that for $1 \leq j \leq s_{n}$ there exist some b_{j} with $\left|b_{j}\right|=2 \delta$ such that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \inf _{n \geq 1} P\left(\min _{1 \leq j \leq s_{n}}\left\{\inf _{|\alpha| \leq \delta} \ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} b_{j}\right)\right\}>0\right)=1, \tag{A.18}
\end{equation*}
$$

and there exists some large enough $C_{n}>0$ such that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \inf _{n \geq 1} P\left(\min _{1 \leq j \leq s_{n}}\left\{\inf _{|\alpha| \geq C_{n}} \ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} b_{j}\right)\right\}>0\right)=1 \tag{A.19}
\end{equation*}
$$

(A.18) and (A.19) imply that with probability tending to one, there must exist local minimizers $\widehat{\beta}_{j}^{\mathrm{PCR}}$ of $\ell_{n, j}^{\mathrm{PCR}}(\alpha)$ such that $\mathcal{A}_{n} \delta<\left|\widehat{\beta}_{j}^{\mathrm{PCR}}\right|<\mathcal{A}_{n} C_{n}$ for $1 \leq j \leq s_{n}$.

First, we prove (A.19). For every $n \geq 1$, when $|\alpha| \rightarrow \infty$,

$$
\min _{1 \leq j \leq s_{n}}\left\{\ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} b_{j}\right)\right\} \geq \kappa_{n} \mathcal{A}_{n}|\alpha|-\max _{1 \leq j \leq s_{n}} \ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} b_{j}\right) \xrightarrow{P} \infty .
$$

Thus (A.19) holds.
Second, we prove (A.18). Note that $\left|\mathcal{A}_{n} \alpha\right| \leq \mathcal{A}_{n} \delta=O(1) \delta \rightarrow 0$ as $\delta \downarrow 0$. For $1 \leq j \leq s_{n}$, by Taylor's expansion,

$$
\begin{aligned}
\ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} \alpha\right)= & \frac{1}{n} \sum_{i=1}^{n} Q\left(Y_{i}, \mu_{0}\right)+\mathcal{A}_{n} \alpha \frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; 0\right) X_{i j} \\
& +\frac{\mathcal{A}_{n}^{2} \alpha^{2}}{2} \frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; X_{i j} \mathcal{A}_{n} \alpha_{j}^{*}\right) X_{i j}^{2}+\mathcal{A}_{n} \kappa_{n}|\alpha|,
\end{aligned}
$$

where $\mu_{0}=F^{-1}(0)$ and α_{j}^{*} is between 0 and α. Thus we have that

$$
\begin{aligned}
\min _{1 \leq j \leq s_{n}} & \left\{\inf _{|\alpha| \leq \delta} \ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}\left(\mathcal{A}_{n} b_{j}\right)\right\} \\
\geq & \mathcal{A}_{n} \min _{1 \leq j \leq s_{n}} \inf _{|\alpha| \leq \delta}\left\{\left(\alpha-b_{j}\right) \frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; 0\right) X_{i j}\right\} \\
& +\frac{\mathcal{A}_{n}^{2}}{2} \min _{1 \leq j \leq s_{n}} \inf _{|\alpha| \leq \delta}\left\{\alpha^{2} \frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; X_{i j} \mathcal{A}_{n} \alpha_{j}^{*}\right) X_{i j}^{2}-b_{j}^{2} \frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; X_{i j} \mathcal{A}_{n} b_{j}^{*}\right) X_{i j}^{2}\right\} \\
& +\mathcal{A}_{n} \min _{1 \leq j \leq s_{n}} \inf _{|\alpha| \leq \delta}\left\{\kappa_{n}\left(|\alpha|-\left|b_{j}\right|\right)\right\} \\
\equiv & I_{1}+I_{2}+I_{3},
\end{aligned}
$$

with b_{j}^{*} between 0 and b_{j}. Let $C_{0}=q^{\prime \prime}\left(\mu_{0}\right) / F^{\prime}\left(\mu_{0}\right) \neq 0$. Then

$$
\begin{aligned}
I_{1}= & \mathcal{A}_{n} \min _{1 \leq j \leq s_{n}} \inf _{|\alpha| \leq \delta}\left\{C_{0}\left(\alpha-b_{j}\right) E\left(Y X_{j}\right)\right\} \\
& +\mathcal{A}_{n} \min _{1 \leq j \leq s_{n}} \inf _{|\alpha| \leq \delta}\left[C_{0}\left(\alpha-b_{j}\right) \frac{1}{n} \sum_{i=1}^{n}\left\{Y_{i} X_{i j}-E\left(Y X_{j}\right)\right\}\right] \\
& -\mathcal{A}_{n} \max _{1 \leq j \leq s_{n}} \sup _{|\alpha| \leq \delta}\left\{C_{0} \mu_{0}\left(\alpha-b_{j}\right) \frac{1}{n} \sum_{i=1}^{n} X_{i j}\right\} \\
\equiv & I_{1,1}+I_{1,2}+I_{1,3} .
\end{aligned}
$$

We can see that $\left|I_{1,3}\right| \leq O_{P}\left(\mathcal{A}_{n}\left\{\log \left(s_{n}\right) / n\right\}^{1 / 2}\right) \delta$, by the Bernstein's inequality (van der Vaart and Wellner, 1996, Lemma 2.2.11). Again $\left|I_{1,2}\right|=O_{P}\left(\mathcal{A}_{n}\left\{\log \left(s_{n}\right) / n\right\}^{1 / 2}\right) \delta$ by an argument similar to that of Theorem 2. Choosing $b_{j}=-2 \delta \operatorname{sign}\left\{C_{0} E\left(Y X_{j}\right)\right\}$, which satisfies $\left|b_{j}\right|=2 \delta$, gives

$$
I_{1,1}=\mathcal{A}_{n} \min _{1 \leq j \leq s_{n}} \inf _{|\alpha| \leq \delta}\left\{\alpha C_{0} E\left(Y X_{j}\right)+2 \delta\left|C_{0} E\left(Y X_{j}\right)\right|\right\}
$$

$$
\geq \mathcal{A}_{n} \delta\left|C_{0}\right| \min _{1 \leq j \leq s_{n}}\left|E\left(Y X_{j}\right)\right| \geq\left|C_{0}\right| c \mathcal{A}_{n}^{2} \delta
$$

For I_{2} and I_{3}, we observe that $\left|I_{2}\right| \leq O_{P}\left(\mathcal{A}_{n}^{2}\right) \delta^{2}$ and $\left|I_{3}\right|=O\left(\mathcal{A}_{n} \kappa_{n}\right) \delta$. The conditions $\log \left(p_{n}\right)=o\left(n \kappa_{n}^{2}\right)$ and $\mathcal{A}_{n} / \kappa_{n} \rightarrow \infty$ imply that $\left\{\log \left(s_{n}\right) / n\right\}^{1 / 2} / \mathcal{A}_{n}=o(1)$. Together with the condition $\mathcal{A}_{n} / \kappa_{n} \rightarrow \infty$, we can choose a small enough $\delta>0$ such that with probability tending to one, $I_{1,2}, I_{1,3}, I_{2}$ and I_{3} are dominated by $I_{1,1}$, which is positive. Thus (A.18) is proved.

Part 2. To verify $\widehat{w}_{\min }^{(I I)} \lambda_{n} \xrightarrow{P} \infty$, it suffices to prove that for any $\epsilon>0$, there exist local minimizers $\widehat{\beta}_{j}^{\mathrm{PCR}}$ of $\ell_{n, j}^{\mathrm{PCR}}(\alpha)$ such that $\lim _{n \rightarrow \infty} P\left(\max _{s_{n}+1 \leq j \leq p_{n}}\left|\widehat{\beta}_{j}^{\mathrm{PCR}}\right| \leq \lambda_{n} \epsilon\right)=1$. Similar to the proof of Theorem 1, we will prove that for any $\epsilon>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\min _{s_{n}+1 \leq j \leq p_{n}}\left\{\inf _{|\alpha|=\epsilon} \ell_{n, j}^{\mathrm{PCR}}\left(\lambda_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}(0)\right\}>0\right)=1 \tag{A.20}
\end{equation*}
$$

For $1 \leq j \leq s_{n}$, by Taylor's expansion,

$$
\begin{aligned}
& \min _{s_{n}+1 \leq j \leq p_{n}}\left\{\inf _{|\alpha|=\epsilon} \ell_{n, j}^{\mathrm{PCR}}\left(\lambda_{n} \alpha\right)-\ell_{n, j}^{\mathrm{PCR}}(0)\right\} \\
& \geq \\
& \lambda_{n} \min _{s_{n}+1 \leq j \leq p_{n}} \inf _{|\alpha|=\epsilon}\left\{\alpha \frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{1}\left(Y_{i} ; 0\right) X_{i j}\right\} \\
& \quad+\frac{\lambda_{n}^{2}}{2} \min _{s_{n}+1 \leq j \leq p_{n}} \inf _{|\alpha|=\epsilon}\left\{\alpha^{2} \frac{1}{n} \sum_{i=1}^{n} \mathrm{q}_{2}\left(Y_{i} ; X_{i j} \lambda_{n} \alpha_{j}^{*}\right) X_{i j}^{2}\right\}+\lambda_{n} \inf _{|\alpha|=\epsilon}\left(\kappa_{n}|\alpha|\right) \\
& \equiv \\
& \equiv I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where α_{j}^{*} is between 0 and α. Similar to the proof in Part 1 ,

$$
\begin{aligned}
I_{1}= & \lambda_{n} \min _{s_{n}+1 \leq j \leq p_{n}} \inf _{|\alpha|=\epsilon}\left\{C_{0} \alpha E\left(Y X_{j}\right)\right\} \\
& +\lambda_{n} \min _{s_{n}+1 \leq j \leq p_{n}} \inf _{|\alpha|=\epsilon}\left[C_{0} \alpha \frac{1}{n} \sum_{i=1}^{n}\left\{Y_{i} X_{i j}-E\left(Y X_{j}\right)\right\}\right] \\
& -\lambda_{n} \max _{s_{n}+1 \leq j \leq p_{n}} \sup _{|\alpha|=\epsilon}\left(C_{0} \mu_{0} \alpha \frac{1}{n} \sum_{i=1}^{n} X_{i j}\right) \\
\equiv & I_{1,1}+I_{1,2}+I_{1,3} .
\end{aligned}
$$

Then $\left|I_{1,3}\right| \leq O_{P}\left[\lambda_{n}\left\{\log \left(p_{n}-s_{n}+1\right) / n\right\}^{1 / 2}\right] \epsilon,\left|I_{1,2}\right| \leq O_{P}\left[\lambda_{n}\left\{\log \left(p_{n}-s_{n}+1\right) / n\right\}^{1 / 2}\right] \epsilon$ and $\left|I_{1,1}\right| \leq o\left(\lambda_{n} \mathcal{B}_{n} \epsilon\right)$. Hence $\left|I_{1}\right| \leq O_{P}\left[\lambda_{n}\left\{\log \left(p_{n}-s_{n}+1\right) / n\right\}^{1 / 2}\right] \epsilon+o\left(\lambda_{n} \mathcal{B}_{n}\right) \epsilon$. For I_{2}, we have that $\left|I_{2}\right| \leq O_{P}\left(\lambda_{n}^{2}\right) \epsilon^{2}$. Note $I_{3}=\lambda_{n} \kappa_{n} \epsilon$. Since $\log \left(p_{n}\right)=o\left(n \kappa_{n}^{2}\right), \mathcal{B}_{n}=O\left(\kappa_{n}\right)$ and $\lambda_{n}=o\left(\kappa_{n}\right)$, with probability tending to one, I_{1} and I_{2} are dominated by I_{3}, which is positive. So (A.20) is proved.

Proof of Theorem 9

We first need to show Lemma 5.
Lemma 5 Suppose that $\left(\mathrm{X}^{o}, Y^{o}\right)$ follows the distribution of (X, Y) and is independent of the training set \mathcal{T}_{n}. If Q is a BD , then $E\left\{Q\left(Y^{o}, \widehat{m}\left(\mathrm{X}^{o}\right)\right)\right\}=E\left\{Q\left(Y^{o}, m\left(\mathrm{X}^{o}\right)\right)\right\}+E\left\{Q\left(m\left(\mathrm{X}^{o}\right), \widehat{m}\left(\mathrm{X}^{o}\right)\right)\right\}$.

Proof: Let q be the generating function of Q . Then

$$
\begin{gather*}
\mathrm{Q}\left(Y^{o}, \widehat{m}\left(\mathrm{X}^{o}\right)\right)=\left[\mathrm{q}\left(m\left(\mathrm{X}^{o}\right)\right)-E\left\{\mathrm{q}\left(Y^{o}\right) \mid \mathcal{T}_{n}, \mathrm{X}^{o}\right\}\right]+\left[E\left\{\mathrm{q}\left(Y^{o}\right) \mid \mathcal{T}_{n}, \mathrm{X}^{o}\right\}\right. \\
\left.-\mathrm{q}\left(Y^{o}\right)\right]-\mathrm{q}\left(m\left(\mathrm{X}^{o}\right)\right)+\mathrm{q}\left(\widehat{m}\left(\mathrm{X}^{o}\right)\right)+\left\{Y^{o}-\widehat{m}\left(\mathrm{X}^{o}\right)\right\} \mathrm{q}^{\prime}\left(\widehat{m}\left(\mathrm{X}^{o}\right)\right) . \tag{A.21}
\end{gather*}
$$

Since $\left(\mathrm{X}^{o}, Y^{o}\right)$ is independent of \mathcal{T}_{n}, we deduce from Chow and Teicher (1988, Corollary 3, p. 223) that

$$
\begin{equation*}
E\left\{\mathrm{q}\left(Y^{o}\right) \mid \mathcal{T}_{n}, \mathrm{X}^{o}\right\}=E\left\{\mathrm{q}\left(Y^{o}\right) \mid \mathrm{X}^{o}\right\} \tag{A.22}
\end{equation*}
$$

Similarly,

$$
\begin{gather*}
E\left\{Y^{o} \mathrm{q}^{\prime}\left(\widehat{m}\left(\mathrm{X}^{o}\right)\right) \mid \mathcal{T}_{n}, \mathrm{X}^{o}\right\}=E\left(Y^{o} \mid \mathcal{T}_{n}, \mathrm{X}^{o}\right) \mathrm{q}^{\prime}\left(\widehat{m}\left(\mathrm{X}^{o}\right)\right) \\
=E\left(Y^{o} \mid \mathrm{X}^{o}\right) \mathrm{q}^{\prime}\left(\widehat{m}\left(\mathrm{X}^{o}\right)\right)=m\left(\mathrm{X}^{o}\right) \mathrm{q}^{\prime}\left(\widehat{m}\left(\mathrm{X}^{o}\right)\right) \tag{A.23}
\end{gather*}
$$

Applying (A.22) and (A.23) to (A.21) results in

$$
\begin{aligned}
& E\left\{\mathrm{Q}\left(Y^{o}, \widehat{m}\left(\mathrm{X}^{o}\right)\right) \mid \mathcal{T}_{n}, \mathrm{X}^{o}\right\}=\left[\mathrm{q}\left(m\left(\mathrm{X}^{o}\right)\right)-E\left\{\mathrm{q}\left(Y^{o}\right) \mid \mathrm{X}^{o}\right\}\right]+\mathrm{Q}\left(m\left(\mathrm{X}^{o}\right), \widehat{m}\left(\mathrm{X}^{o}\right)\right) \\
& \quad=E\left\{\mathrm{Q}\left(Y^{o}, m\left(\mathrm{X}^{o}\right)\right) \mid \mathrm{X}^{o}\right\}+\mathrm{Q}\left(m\left(\mathrm{X}^{o}\right), \widehat{m}\left(\mathrm{X}^{o}\right)\right)
\end{aligned}
$$

and thus the conclusion.
We now show Theorem 9. Setting Q in Lemma 5 to be the misclassification loss gives

$$
\begin{aligned}
1 / 2 & {\left[E\{R(\widehat{\phi})\}-R\left(\phi_{\mathrm{B}}\right)\right]=E\left(\left|m\left(\mathrm{X}^{o}\right)-.5\right| \mathrm{I}\left[\mathrm{I}\left\{m\left(\mathrm{X}^{o}\right)>.5\right\} \neq \mathrm{I}\left\{\widehat{m}\left(\mathrm{X}^{o}\right)>.5\right\}\right]\right) } \\
\leq & E\left[\left|m\left(\mathrm{X}^{o}\right)-.5\right| \mathrm{I}\left\{m\left(\mathrm{X}^{o}\right) \leq .5, \widehat{m}\left(\mathrm{X}^{o}\right)>.5\right\}\right] \\
& +E\left[\left|m\left(\mathrm{X}^{o}\right)-.5\right| \mathrm{I}\left\{m\left(\mathrm{X}^{o}\right)>.5, \widehat{m}\left(\mathrm{X}^{o}\right) \leq .5\right\}\right] \\
\equiv & I_{1}+I_{2}
\end{aligned}
$$

For any $\epsilon>0$, it follows that

$$
\begin{aligned}
I_{1}= & E\left[\left|m\left(\mathrm{X}^{o}\right)-.5\right| \mathrm{I}\left\{m\left(\mathrm{X}^{o}\right)<.5-\epsilon, \widehat{m}\left(\mathrm{X}^{o}\right)>.5\right\}\right] \\
& +E\left[\left|m\left(\mathrm{X}^{o}\right)-.5\right| \mathrm{I}\left\{.5-\epsilon \leq m\left(\mathrm{X}^{o}\right) \leq .5, \widehat{m}\left(\mathrm{X}^{o}\right)>.5\right\}\right] \\
\leq & P\left\{\left|\widehat{m}\left(\mathrm{X}^{o}\right)-m\left(\mathrm{X}^{o}\right)\right|>\epsilon\right\}+\epsilon ;
\end{aligned}
$$

similarly, $I_{2} \leq \epsilon+P\left\{\left|\widehat{m}\left(\mathrm{X}^{o}\right)-m\left(\mathrm{X}^{o}\right)\right| \geq \epsilon\right\}$. Recall that

$$
\left|\widehat{m}\left(\mathrm{X}^{o}\right)-m\left(\mathrm{X}^{o}\right)\right|=\left|F^{-1}\left(\widetilde{\mathrm{X}^{o}}{ }^{T} \widehat{\widetilde{\boldsymbol{\beta}}}\right)-F^{-1}\left({\widetilde{\mathrm{X}^{o}}}^{T} \widetilde{\boldsymbol{\beta}}_{0}\right)\right| \leq\left|\left(F^{-1}\right)^{\prime}\left(\widetilde{\mathrm{X}}^{T} \widetilde{\boldsymbol{\beta}}^{*}\right)\right|\left\|\widetilde{\mathrm{X}^{o}}\right\|\| \| \widetilde{\boldsymbol{\beta}^{\prime}}-\widetilde{\boldsymbol{\beta}}_{0} \|,
$$

for some $\widetilde{\boldsymbol{\beta}}^{*}$ between $\widetilde{\boldsymbol{\beta}}_{0}$ and $\widehat{\boldsymbol{\beta}}$, where $\widetilde{\mathrm{X}^{o}}=\left(1, \mathrm{X}^{o T}\right)^{T}$. By Condition A4, we conclude that $\left(F^{-1}\right)^{\prime}\left({\widetilde{\mathrm{X}^{o}}}^{T} \widetilde{\boldsymbol{\beta}}^{*}\right)=O_{P}(1)$. This along with $\left\|\widetilde{\boldsymbol{\beta}}-\widetilde{\boldsymbol{\beta}}_{0}\right\|=O_{P}\left(r_{n}\right)$ and $\left\|\widetilde{\mathrm{X}^{o}}\right\|=O_{P}\left(\sqrt{p_{n}}\right)$ implies that

$$
\left|\widehat{m}\left(\mathrm{X}^{o}\right)-m\left(\mathrm{X}^{o}\right)\right|=O_{P}\left(r_{n} \sqrt{p_{n}}\right)=o_{P}(1) .
$$

Thus $I_{1} \rightarrow 0$ and $I_{2} \rightarrow 0$, which completes the proof.

