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a b s t r a c t

Event-related functional magnetic resonance imaging (efMRI) has emerged as a powerful
technique for detecting brains’ responses to presented stimuli. A primary goal in efMRI
data analysis is to estimate the Hemodynamic Response Function (HRF) and to locate
activated regions in human brains when specific tasks are performed. This paper develops
new methodologies that are important improvements not only to parametric but also
to nonparametric estimation and hypothesis testing of the HRF. First, an effective and
computationally fast scheme for estimating the error covariance matrix for efMRI is
proposed. Second, methodologies for estimation and hypothesis testing of the HRF are
developed. Simulations support the effectiveness of our proposed methods. When applied
to an efMRI dataset from an emotional control study, our method reveals moremeaningful
findings than the popular methods offered by AFNI and FSL.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Functional magnetic resonance imaging (fMRI) is a recent and exciting method that allows investigators to determine
which areas of the brain are involved in a particular task. In an fMRI experiment, subjects are asked to perform certain
motor, sensory or cognitive tasks, and a time series of three-dimensional MR images is recorded. The fMRI signal is a result
of the blood oxygen level dependent (BOLD) contrast. One important task in analyzing fMRI data is to determine regions of
activation.

Traditional fMRI experiments are block-designed and constrained by successive stimuli, which are of the same type.
Event-related fMRI (efMRI) is a more recently developed technique that is used to detect brain responses to brief stimuli
and offers more flexibility over traditional block-designed fMRI techniques. For example, in a neuroimage study (Gobbini
et al., 2004), subjects viewed a random series of face photos. The study showed that subjects have a stronger response
when viewing faces of personally familiar individuals than faces of famous individuals or strangers, which as interpreted
by Gobbini et al. (2004) may “reflect the spontaneous activation of social knowledge about the personality and attitudes of
close friends and relatives and the less guarded attitude one has around these people”. For a more complete review of efMRI
and related statistical issues, refer to Rosen et al. (1998) and Josephs and Henson (1999).

The analysis ofmassive spatio-temporal data sets generated by efMRI requires adequate statisticalmodeling. Let {y(ti)}ni=1
be the observed efMRI time series on a specific voxel (for volume element in three dimensional space). Let s(·) be the observed
input stimulus function which assumes values of 1 and 0, indicating presence and absence of a stimulus in the experimental
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design. Denote by ∗ the convolution operator. A convolution model popularly used in fMRI study is captured by

y(t) = s ∗ h(t) + d(t) + ε(t), t = t1, . . . , tn, (1.1)

where h, d and ε represent the unknown hemodynamic response function (HRF), drift function and noise process
respectively. Most existing methods model h(·) as the difference of two gamma functions or a linear combination of gamma
functions or a linear combination of a gamma function and its Taylor expansion (Worsley et al., 2002; Lange and Zeger, 1997;
Josephs and Henson, 1999). Genovese (2000) constructed h(·) as a “bell” function with cubic splines. The temporal drift d(·)
is usually approximated by a quadratic or higher-order polynomial (Worsley et al., 2002) or polynomial splines (Genovese,
2000). Note that restrictive assumptions on the HRF and drift may produce biased estimates of the true hemodynamic
responses. Goutte et al. (2000) estimated h(·) using smooth FIR filters and reported that some subtle details of the HRF
can be revealed by the filters but not by previous approaches based on gamma functions.

The noise components in (1.1) are well-known to be temporally auto-correlated. In practice, for any parametric or
nonparametric estimation method for the HRF and drift, an effective and computationally fast method for estimating the
noise covariance matrix is needed. Genovese (2000) assumed independent errors for computational convenience. Other
assumptions like the AR(p) structure, most commonly AR(1), are used in Worsley et al. (2002).

Since an fMRI dataset contains time-course measurements over voxels, the number of which is typically of the order of
104–105, amultiple testing procedure is also needed. In the seminalwork,Worsley et al. (2002) proposed a Gaussian random
field method which approximates the family-wise error by modeling test statistics over the entire brain as a Gaussian
random field. It has been found to be conservative in some cases (Nichols and Hayasaka, 2003). Nichols and Hayasaka
(2003) also discussed the use of permutation tests and their simulation studies show that permutation tests tend to be
more sensitive in finding activated regions. The false discovery rate (FDR) has recently become popular. Genovese et al.
(2002) discussed the use of FDR in fMRI. Pacifico et al. (2004) extended FDR control to random fields and illustrated its use
for fMRI data.

This paper aims to develop new methodologies which are important not only to parametric, but also to nonparametric,
estimation and hypothesis testing of the HRF. First, an effective and computationally fast scheme for estimating the error
covariance matrix is proposed. Second, methodologies for estimation and hypothesis testing of the HRF are developed. The
rest of the article is organized as follows. Section 2 introduces the background of efMRI. Section 3 proposes a method for
estimating the noise covariance matrix. Section 4 presents methodologies for estimation and hypothesis testing of the HRF.
Simulation evaluation and real data analysis are illustrated in Sections 5 and 6 respectively. The paper concludes with a brief
discussion in Section 7.

2. Background of efMRI data

2.1. Probabilistic aspects of efMRI design

Following Josephs and Henson (1999, Sec. 6) and Friston et al. (1999), the efMRI designs can be categorized into
two groups, deterministic and stochastic. In deterministic designs, the stimulus transition probabilities are either 0 or 1.
Stochastic designs refer to those in which the probability is strictly less than 1, and a special case of stochastic designs is
fully randomized designs,which are desirable inmost situations. Stochastic designsmay be stationary,where the probability
is constant over time, or dynamic, where the probabilities vary with time. Rapid-presentation event-related (RPER) design
is itself a fully randomized design and includes other fully randomized designs (like the fixed-interval event-related design)
as special cases. Software is also available for automatically implementing the RPER design.

Suppose that there are r event types. At any time, the stationary stochastic design randomly chooses an event type or
“no event” with fixed probabilities. Furthermore, for the RPER design, not only are the probabilities fixed, but the choice of
the current event type is also independent of the choices of the previous event types. For stimulus functions s1(t), . . . , sr(t)
associated with r event types, the stationary stochastic design can be characterized by P{sj(t) = 1} = pj, j = 1, . . . , r, i.e. at
any time t, (s1(t), . . . , sr(t), 1−

∑r
j=1 sj(t)) follows a multinomial distribution (1; p1, . . . , pr, 1−

∑r
j=1 pj). Furthermore, if we

assume that sj1(tu) and sj2(tv) are independent at any tu 6= tv, then the design is RPER.

2.2. Convolution model for efMRI

We start with a single event type. Typically, the peak value of the HRF h(·) is reached after a short delay of the stimulus
and drops quickly to zero. We thus suppose that h(t) = 0 for t > tm and focus on estimating the firstm values of h(ti), where
m is far below n, the length of the fMRI time series. To facilitate discussion, we assume that y(·) and s(·) have equal time
resolution of 1 s. Letting h = (h(t1), . . . , h(tm))T and si = (s(ti − t1), . . . , s(ti − tm))T where s(t) = 0 for t < 0, model (1.1)
can be rewritten as y(ti) = sTi h + d(ti) + ε(ti) and re-expressed as

y = Sh + d + ε, (2.1)

where y = (y(t1), . . . , y(tn))T, S = [s1, . . . , sn]T, d = (d(t1), . . . , d(tn))T and ε = (ε(t1), . . . , ε(tn))T.
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For multiple types of events, model (1.1) can be extended to the general form,
y(t) = s1 ∗ h1(t) + · · · + sr ∗ hr(t) + d(t) + ε(t), t = t1, . . . , tn, (2.2)

in which we assume that h1(·), . . ., hr(·) and d(·) are smooth functions. Let Sj be the designmatrix and hj be the vector of the
HRF corresponding to the jth event type. Then the form of (2.1) continues to hold, since the matrix form of (2.2) becomes

y = S1h1 + · · · + Srhr + d + ε ≡ Sh + d + ε, (2.3)
where S = [S1, . . . , Sr] and h = [hT

1, . . . ,h
T
r ]

T.

3. Estimation of noise covariance matrix for efMRI

In fMRI data analysis, not all commonly used assumptions on the error process are computationally feasible in
estimating the error covariance matrix. Since the temporal correlation decreases significantly as the time interval between
measurements increases, we assume that {ε(ti)} is a zero-mean stationary g-dependent sequence (Sen, 1968, p. 1724) with
variance equal to σ2, where g is a non-negative integer. Namely, the random vectors (ε(t1), . . . , ε(ti)) and (ε(tj), ε(tj+1), . . .)
are stochastically independent if j − i > g. Denote by ρ(j) and γ(j) the auto-correlation and auto-covariance of {ε(ti)}
respectively, with time lag j ≥ 0. It is readily seen that

ρ(0) = 1, and ρ(|j|) = 0 for |j| > g, (3.1)

γ(j) = σ2ρ(j). (3.2)
Denote by Rn the true correlation matrix of ε, i.e., cov(ε, ε) = σ2Rn, where

Rn =


1 ρ(1) · · · ρ(n − 1)

ρ(1) 1 · · · ρ(n − 2)
...

...
. . .

...
ρ(n − 1) ρ(n − 2) · · · 1

 .

To reduce the computational cost in analyzing massive fMRI data sets, we propose a difference-based approach for
estimating σ2Rn. Unlike some smoothing-based approaches, the difference-based method enjoys computational simplicity
and good practical performance. Define by D{y}(ti) = y(ti) − y(ti−1) the operator for the first-order difference of {y(ti)}
and by Dk

= DDk−1 the kth-order difference. Concerning the order of difference, analogous to the asymptotic study (Fan
and Zhang, 2003) performed in diffusion models for financial time series, the higher-order difference may decrease the
estimation bias but may also exponentially escalade the variance of an estimator. In the convolution model (2.2) for fMRI
data, our simulation studies indicate that the second-order difference outperforms the first-order difference in estimating
the covariance matrix and thus the second-order difference is adopted. Denote by

e(ti) ≡ D2

(
y −

r∑
j=1

sj ∗ hj

)
(ti) (3.3)

the transformed data after applying the second-order difference. Let γe(j) be the auto-covariance of {e(ti)}, with time lag
j ≥ 0. Since e(ti) = D2d(ti) + ε(ti) − 2ε(ti−1) + ε(ti−2), direct calculations give that

γe(j) = γ(j − 2) − 4γ(j − 1) + 6γ(j) − 4γ(j + 1) + γ(j + 2), j = 0, 1, . . . .
This, along with (3.1)–(3.2), leads to the identities,

γe(0)
γe(1)
γe(2)

...
γe(g − 1)

γe(g)


=



6 −8 2 0 0 · · · 0 0 0 0
−4 7 −4 1 0 · · · 0 0 0 0
1 −4 6 −4 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · 1 −4 6 −4
0 0 0 0 0 · · · 0 1 −4 6





γ(0)
γ(1)
γ(2)

...
γ(g − 1)

γ(g)


. (3.4)

Substituting {γe(j)} with their empirical moment estimates and solving Eq. (3.4), we can obtain the estimates {γ̂(j)} of
{γ(j)}. Utilizing (3.1)–(3.2), the noise variance and auto-correlation can be estimated by σ̂2

= γ̂(0) and ρ̂(j) = γ̂(j)/γ̂(0)
respectively. It is then immediate to acquire an estimate R̂n of Rn.

In practice, we need a preliminary estimate of the HRF in (3.3). Again, this initial estimate ĥDBE can be obtained via a
difference-basedmethod: apply the first-order difference to y and S simultaneously, ignore the drift term in (2.3), followed by an
ordinary least-squares estimation of the HRF. To illustrate the idea, let us take the difference of (2.3). Under the smoothness
assumption on the drift function d(·), d(ti) − d(ti−1) = d′(ti−1)n−1

+ O(n−2) = O(n−1). Hence the difference of (2.3) yields
y(ti) − y(ti−1) = (ei − ei−1)

TSh + ε(ti) − ε(ti−1) + O(n−1), i = 2, . . . , n,
where ej denotes the jth column of an identity matrix. As the sequence length n grows, the magnitude of the difference (and
higher-order difference) of d(·) will be negligible. This example lends support to the root-n consistency of ĥDBE under mild
conditions.
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4. Methodology for inference of the HRF

In this section, we first developmethodologies for the flexible estimation of the HRF and then conduct hypothesis testing
for the HRF. The local-linear smoothing (Fan and Gijbels, 1996) techniquewill be focused on. Extensions to local-polynomial
smoothing and other nonparametric curve-fitting methods can similarly be made.

4.1. Two stage estimation of the HRF

Let Sd be an n× n local-linear smoothing matrix (see Zhang (2003)), associated with the design points {t1, . . . , tn}, where
the subscript d emphasizes the use for estimating the drift. Throughout the paper, ti = i/n is assumed. Then the vector of
smoothed responses, via local-linear smoothing to a vector y of responses, is given by Sdy. Note that Sd carries information
about the design points, a kernel function K and a bandwidth parameter b, but does not rely on the configuration of the
response variables. Refer to Zhang (2003, Sec. 2.3) for further discussion on finite-sample and asymptotic properties of the
smoothing matrix.

First consider a single event type. For given h, applying Sd to y− Sh in (2.1) supplies an estimate, Sd(y− Sh), of the vector
d of drift component. Putting this estimate to (2.1), we obtain

ỹ .
= S̃h + ε, (4.1)

where ỹ = (I − Sd)y, S̃ = (I − Sd)S and I denotes an identity matrix. Notice that (4.1) can be regarded as a general linear
model. Suppose that Rn, the true correlation matrix of ε, is known. (For unknown Rn, refer to the preceding Section 3 for the
estimation of Rn.) By the weighted least squares method, a rough estimate of h is produced by

ĥrough = (̃STR−1
n S̃)−1S̃TR−1

n ỹ. (4.2)

This offers the first-stage estimate of the HRF. The second-stage estimate of the HRF smooths ĥrough to produce a refined
estimate,

ĥsmooth = Shĥrough,

where Sh denotes an m × m local-linear smoothing matrix associated with the design points {t1, . . . , tm} and the subscript h
emphasizes the use for estimating the HRF h in (2.1).

For multiple types of events, suppose that hj, j = 1, . . . , r, in (2.3) are of common length m. We can similarly obtain the
first- and second-stage estimates of the HRF,

ĥrough = (̃STR−1
n S̃)−1S̃TR−1

n ỹ, and ĥsmooth = Shĥrough, (4.3)

where Sh = diag{Sh1 , . . . , Shr } (in which the diag operator is used to define Sh as a block-diagonal matrix) and each Shj is an
m × m local-linear smoothing matrix. Our simulation studies in Section 5.1 demonstrate that the efficiency gain of ĥsmooth

over ĥrough in estimating the HRF is negative when the noise level is small and is negligible when the noise level is large.

4.2. Selection of bandwidth

Bandwidth selection in the first-stage smoothing: The bandwidth selection used in Sd for ĥrough serves as bandwidth
selection for the parametric component in model (2.3). Define Vn = R−1

n and d̃ = (I − Sd)d. From (4.3), the mean squared
error (MSE) of ĥrough is

E[‖ĥrough − h‖
2
|{sk(ti − tj) : 1 ≤ k ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ min(i,m)}] = I1 + I2, (4.4)

where I1 = ‖(̃STVnS̃)−1S̃TVnd̃‖
2 reflects the squared bias, and I2 = trace{(̃STVnS̃)−1S̃TVn(I − Sd)Rn(I − STd)VnS̃(̃S

T
VnS̃)−1

}σ2

reflects the variance. To balance the trade off between the bias and variance of ĥrough, the data-driven bandwidth can be
chosen to minimize the plug-in estimate of (4.4). That is, substituting the unknown quantities σ2 and Rn by the estimates
developed in Section 3; replacing d by an estimate obtained from local-linear smoothing to y−SĥDBE (where the bandwidth
parameter can be selected via minimizing the generalized cross-validation criterion).

Bandwidth selection in the second-stage smoothing: The second-stage smoothing, applied to the first-stage estimate ĥrough,
intends to produce a smoother estimate. Nevertheless, care is needed in choosing the amount of smoothing. For a small noise
level, the excessive bias introduced by the second-stage smoothingmay deteriorate ĥrough. In contrast, for a large noise level,
since ĥrough tends to be very rough, an appropriate smoothing may increase the estimation efficiency. We propose a data-
driven bandwidth selector used in Sh for the second-stage smoothing to minimize Mallow’s Cp criterion,

Cp = ‖ĥrough − Shĥrough‖
2
+ 2σ̂2trace{(̃STR̂−1

n S̃)−1Sh}, (4.5)

where (̃STR̂−1
n S̃)−1σ̂2 estimates var(ĥrough|{sk(ti − tj) : 1 ≤ k ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ min(i,m)}).
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4.3. Hypothesis testing for the HRF

Besides estimating the HRF, neuro-scientists are particularly interested in learning whether a specific voxel is activated
by the stimuli, andwhether HRFs activated by different types of events really differ. They correspond to testing the following
hypotheses,

H0 : h = 0 versus H1 : h 6= 0, (4.6)

and H0 : hj1 = hj2versus H1 : hj1 6= hj2 , where j1 6= j2. These testing problems can be rephrased in a more general form,

H0 : Ah = 0 versus H1 : Ah 6= 0, (4.7)

where A is a full row rank matrix.
We now describe a pseudo nonparametric F-type test statistic. Recall that approximation (4.1) takes the form of a general

linear model. Let k = rank(A). For an HRF estimator ĥ, the pseudo F-test statistic is formed by

(Aĥ)T{A(̃STR̂−1
n S̃)−1AT

}
−1(Aĥ)/k

σ̃2 ,

where ĥ = ĥrough and σ̃2
= r̂TR̂−1

n r̂/(n − rm) with r̂ = ỹ − S̃ĥ. Our simulations in Fig. 4 lend numerical support that the
sampling distribution of the pseudo F-test statistic, under the null hypothesis in (4.7), can be well approximated by an F
distribution with degrees of freedom k and n − rm. Insights into the distributional approximation can be gained from Fan
et al. (2001).

In the meantime, our simulations reveal that the approximation may be less accurate when the noise level is small. The
lack of accuracy is caused by the approximation (4.1) which ignores the d̃ term. This term is negligible when the noise level
is large, but becomes a significant source of biaswhen the noise level is small. To remedy this, we use a bias corrected pseudo
F-test statistic,

(Aĥbc)
T
{A(̃STR̂−1

n S̃)−1AT
}
−1(Aĥbc)/k

σ̃2
bc

,

where ĥbc = ĥ − (̃STR̂−1
n S̃)−1S̃TR̂−1

n

˜̂d and σ̃2
bc = r̂TbcR̂−1

n r̂bc/(n − rm), with r̂bc = ỹ − S̃ĥ −
˜̂d, ˜̂d = (I − Sd)d̂, d̂ = Sd(y − Sĥ) and

ĥ = ĥrough. Note that for a large noise level, ˜̂d is negligible and thus the bias corrected and un-corrected versions are similar.

5. Simulation study

5.1. Simulation over a single voxel

We simulate an fMRI experiment with a single run and a single event type. In the simulation, n = 200, ti = i/n,
i = 1, . . . , n,m = 18 and 1000 realizations are conducted. The stimuli are generated from independent Bernoulli trials such
that P{s(t) = 1} = .5. Following Glover (1999), the HRF is h(t) = g1(1.5(200t−1))/a1 −g2(1.5(200t−1))/a2, t = t1, . . . , t18,
where g1(t) = (t−5.5)5 exp{−(t−5.5)/.9} and g2(t) = .4(t−5.5)12 exp{−(t−5.5)/.7}, a1 = max{g1(t)} and a2 = max{g2(t)}.
The drift function is d(t) = 10 sin{π(t − .21)}, t = t1, . . . , t200. The noise process is ε = ε1 + ε2, with independent {ε1} and
{ε2} (see Purdon et al. (2001)); {ε1(t)} are i.i.d. normal with mean zero and variance .52162, .36892, .26082 and .18442,
respectively; ε2 is AR(1), i.e. ε2(ti) = ρε2(ti−1) + z(ti) with ρ = .638 and z(ti) follows the normal distribution with mean
zero and variance .52162, .36892, .26082 and .18442 respectively such that the noise lag-one auto-correlation equals .4 and
the signal-to-noise ratio (SNR) is about 1, 2, 4 and 8, where SNR = var(Sh)/var(ε). Throughout the paper, the Epanechnikov
kernel function is used in the implementation and g = 2 is used in the covariance matrix estimation.

First, we compare the sums of squared errors (SSE) of six types of HRF estimates.
WPLt: ĥ = (̃STR−1

n S̃)−1S̃TR−1
n ỹ where the bandwidth b in Sd minimizes ‖ĥ − h‖

2.
WPLe: ĥ = (̃STR̂−1

n S̃)−1S̃TR̂−1
n ỹ where b in Sd minimizes ‖ĥ − h‖

2.
pWPL: ĥrough = (̃STR̂−1

n S̃)−1S̃TR̂−1
n ỹ where b in Sd minimizes the estimate of (4.4).

2WPL: ĥsmooth, where b in Sh minimizes the Cp criterion (4.5).
nWPL: ĥ = (̃STR̂−1

n S̃)−1S̃TR̂−1
n ỹ where b in Sd minimizes the generalized cross-validation.

DBE: ĥDBE described at the end of Section 3.
In practice, since the true Rn is unknown,WPLt andWPLe are infeasible but theoretically offer benchmarks for evaluating

the performances of the estimated covariancematrix and the HRF estimator. Conclusions can be drawn from Fig. 1. First, the
SSEs of WPLt, WPLe, pWPL, nWPL and DBE are ranked in decreasing order. Second, the SSEs of WPLt and WPLe are nearly
indistinguishable. This reinforces the effectiveness of the estimated covariance matrix in Section 3. Third, 2WPL slightly
outperforms pWPL when the noise level is large, but has adverse effects when the noise level is small. Fourth, the pWPL

estimate of the HRF achieves a smaller SSE than nWPL and thus will be adopted in the rest of the paper.
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Fig. 1. Boxplots of ‖ĥ − h‖
2 for six types of estimates ĥ listed in Section 5.1.

Fig. 2. Comparison of first-stage, second-stage and AFNI estimates of the HRF and drift. Top panel: boxplots of ĥrough and ĥsmooth; the solid curves are the
true function h(t). Bottom panel: solid curves denote the true drift d(t), and the estimated curves from two typical samples are presented corresponding
to the 25th (the dashed curve) and the 75th (the dash-dotted curve) percentiles among the ASE–ranked values, where ASE =

∑n
i=1{d̂(i) − d(i)}2/n.

Second, we compare the first-stage and second-stage estimates of the HRF and temporal drift. Fig. 2 (with SNR = 1) and
Fig. 3 (with SNR = 8) are displayed, where the first- and second-stage estimates of drifts are d̂rough = Sd(y − Shrough) and
d̂smooth = Sd(y− Shsmooth) respectively. Evidently, compared with ĥsmooth, ĥrough are more centered around the actual values
of the HRF. On the other hand, the drift function estimates are less affected by first-stage and second-stage estimation of the
HRF. Besides, the HRF and drift estimates by our method outperform those by AFNI.

Next, we perform the hypothesis testing of (4.6). The fMRI data are simulated in the same way as above except that
h = 0. For the sake of presentation, only the cases of SNR equal to 1 and 8 are studied; the former is the “large noise level”
case whereas the latter is the “small noise level” case. To focus on the performance of the proposed F-test, we use the true
covariance matrix and fix the smoothing parameters at their theoretically optimal values (minimizing MSE of estimators)
for estimating the HRF and drift in each simulation. The QQ plots of the (1st up to 99th) percentiles of the bias corrected
pseudo F-test statistic against those of the Fm,n−m distribution are presented in Fig. 4. For either large or small noise levels,
we observe that the sampling distribution of the bias corrected F-test statistic nearly perfectly agreeswith the F distribution.

5.2. Simulation over an entire brain

Wesimulate awhole brain fMRI dataset, inwhich the experiment design, timings and size are identical to those of the real
fMRI dataset in Section 6. An HRF profile is extracted from a voxel which shows the strongest responses in the real dataset.
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Fig. 3. The captions are the same as those in Fig. 2, except that SNR = 8.

Fig. 4. Empirical quantiles (star) of the bias corrected pseudo F-test statistic versus quantiles (solid line) of Fm,n−m distribution.

For each voxel, the simulated drift is obtained from an adequate smoothing to the time series for the corresponding voxel of
the real dataset. The simulated noise variance profile is determined from a variancemap, which ismade by a 5×5×5 spatial
median smoothing on median values of squared residuals of the real time series subtracting the simulated drift profile as
mentioned before. The noise process ε(ti) is generated in a fashion similar to that of Section 5.1. Specifically, the variances
of ε1(ti) and z(ti) are set equal such that var{ε(ti)} is one fifth of the variance map. The HRF profile, in accordance with the
stimuli in the experiment, are added to two regions which are postulated to be truly active. In those zones, the HRFs have
been re-scaled to about 17% and 12% of the amplitude of the original HRF profiles so that the estimation of the HRF is more
challenging.

We compare the activated regions detected using our method with popular imaging tools AFNI (at http://afni.nimh.nih.
gov/afni/) (Cox, 1996) and FSL (at http://www.fmrib.ox.ac.uk/fsl/) (Smith et al., 2004; Woolrich et al., 2001). Particularly,
we specify the HRF in FSL as the difference of two gamma functions, the canonical form implemented in FSL, and specify
the drift term in AFNI as a quadratic polynomial. The FDR level .05 is used for performing the multiple comparison. Fig. 5
highlights the true activated regions. From Figs. 6–8, both AFNI and FSL fail to locate an activated brain area, and that the
other region, though correctly detected, has appreciably reduced size relative to the actual size. Our method has the best
detection of both activated regions.

6. Real data application

In an emotional control study, subjects saw a series of negative or positive emotional images, and were asked to either
suppress or enhance their emotional response to the image, or to simply attend to the image. So there are 6 types of

http://afni.nimh.nih.gov/afni/
http://afni.nimh.nih.gov/afni/
http://afni.nimh.nih.gov/afni/
http://afni.nimh.nih.gov/afni/
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Fig. 5. True activated regions (denoted by hot color) for the simulated fMRI dataset.

Fig. 6. Activated regions discovered by AFNI for the simulated fMRI dataset.
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Fig. 7. Activated regions discovered by FSL for the simulated fMRI dataset.

Fig. 8. Activated regions discovered by our Method for the simulated fMRI dataset.
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Fig. 9. Activated regions discovered by AFNI for the real fMRI dataset.

events: negative-enhance, negative-attend, negative-suppress, positive-enhance, positive-attend and positive-suppress.
The sequence of trials was randomized. The time between successive trials also varied.

The size of the whole brain dataset is 64 × 64 × 30. At each voxel, the time series has 6 runs, each containing 185
observations with a time resolution of 2 s, thus TR = 2 s and the total length is 1110. In contrast, the length of stimuli is
2220; the timing of the stimuli has a time resolution of 1 s, and thus each HRF output will also be sampled at 1 s. The study
aims to estimate the BOLD response to each of the trial types for 1–18 s following the image onset. We analyze the fMRI
dataset containing one subject. The length of the estimated HRF is set equal to 18.

6.1. Description of preprocessing and postprocessing

The pre-processing prior to statistical analysis was conducted on all images using FSL. Motion correction using MCFLIRT
(part of FSL) was applied to the images time series. Following this, an automated Brain Extraction Tool (part of FSL) was
utilized to remove the skull.

After the statistical analysis, the FLIRT tool (part of FSL) was applied to register the low resolution fMRI image time series
onto the high resolution T1-weighted image. The obtained spatial transformwas then applied to the image of test statistics.

6.2. Detection of activated regions

Figs. 9–11 compare detected regions using our method with those using AFNI and FSL. Again we specify the HRF in FSL
as the difference of two gamma functions and specify the drift in AFNI as a quadratic polynomial. We use FDR level .001 to
carry out the multiple comparison. Regions detected by our method are closer to those afforded by AFNI, but our method
finds activation in more clustered regions of the brain. AFNI gives more tiny scattered findings, which are more likely to be
false discoveries. FSL detects very scattered regionswhich are difficult to interpret. Additionally, the volumes of the detected
regions by FSL are substantially smaller than those of AFNI and our method.

7. Discussion

We have presented new methodologies for the statistical analysis of efMRI data from two challenging aspects. From
the modeling aspect, a difference-based approach for estimating the large noise covariance matrix is proposed. This is
particularly useful for modeling massive datasets where computational effectiveness and simplicity are highly demanded.
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Fig. 10. Activated regions discovered by FSL for the real fMRI dataset.

Fig. 11. Activated regions discovered by our method for the real fMRI dataset.
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From the inference part, we present a two-stage estimation of the HRF, followed by a nonparametric hypothesis testing of
the HRF. This is particularly useful for determining whether a voxel is inactivated or not.

In closing, several points bear mentioning. First, for the sake of illustration, we concentrate on the Frequentist approach
for modeling and inference of the HRF nonparametrically. Other innovative work using Bayesian non- and semi-parametric
methods includesGenovese (2000), Fahrmeir andGössl (2002), Ciuciu et al. (2003) andMarrelec et al. (2003). Comparedwith
the methodology using the Bayesian paradigm, our approach does not need to choose the prior distribution (which is not
always easy to be selected in practice) for model parameters and the computational load is reduced. A thoroughly detailed
comparison between the Frequentist and Bayesian approaches for brain mapping is beyond the scope of the current paper
and we hope to report in future study. Second, Zhang et al. (2006) proposed a new multiple comparison procedure, called
FDRm. Simulation studies suggest that FDRm better accommodates the spatially dependent information of voxel-wise p-
values than the conventional FDR procedure. (Following the suggestions of the associate editor and the referee, illustration
and application of FDRm to fMRI datasets are removed from the paper.)
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Appendix. List of notations and symbols

• n: the length of the time series.
• m: length of hj for the jth stimulus.
• r: the number of types of stimuli.
• y: n × 1 vector for fMRI signals.
• s(·): the input stimulus function.
• sj(·): the jth input stimulus function, j = 1, . . . , r.
• S = [S1, . . . , Sr]: n × rm matrix.
• h = [hT

1, . . . ,h
T
r ]

T: rm × 1 vector for HRFs.
• d: n × 1 vector for drift components.
• ti = i/n, i = 1, . . . , n.
• γ(j): auto-covariance of {ε(ti)}.

ρ(j): auto-correlation of {ε(ti)}.
γe(j): auto-covariance of {e(ti)}.

• ε: n × 1 vector for errors, and var(ε) = σ2Rn.
• Rn = (ρ(|i − j|)): n × n, the true correlation matrix of ε.

Vn = R−1
n .

• Sd: n × n, smoothing matrix associated with the design points {t1, . . . , tm} for estimating drift vector d.
• Sh: m × m, smoothing matrix associated with the design points {t1, . . . , tm} for estimating HRF h.
• ỹ = (I − Sd)y, and S̃ = (I − Sd)S.
• K(·): a kernel function.
• k = rank(A): where the matrix A is k × rm and k ≤ rm.
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