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Abstract: Temporal dependence is frequently encountered in large-scale
structured noisy data, arising from scientific studies in neuroscience and
meteorology, among others. This challenging characteristic may not align
with existing theoretical frameworks or data analysis tools. Motivated by
multi-session fMRI time series data, this paper introduces a novel semi-
parametric inference procedure suitable for a broad class of “non-stationary,
non-Gaussian, temporally dependent” noise processes in time-course data.
It develops a new test statistic based on a tapering-type estimator of the
large-dimensional noise auto-covariance matrix and establishes its asymp-
totic chi-squared distribution. Our method not only relaxes the consistency
requirement for the noise covariance matrix estimator but also avoids direct
matrix inversion without sacrificing detection power. It adapts well to both
stationary and a wider range of temporal noise processes, making it partic-
ularly effective for handling challenging scenarios involving very large scales
of data and large dimensions of noise covariance matrices. We demonstrate
the efficacy of the proposed procedure through simulation evaluations and
real fMRI data analysis.
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1. Introduction

The advancement of high-throughput technology has transformed research in
many fields. Large-scale structured data often exhibit complex forms of depen-
dence, non-stationarity, and non-Gaussianity. Examples include datasets from
functional magnetic resonance imaging (fMRI) in neuroinformatics, interfero-
metric synthetic aperture radar images from Earth-orbiting satellites in geo-
physics [1, 8], and air quality measurements from thousands of weather stations
in meteorology [25, 37, 11], among others. These challenging features may not
align with existing theoretical frameworks or data analysis tools. Ignoring such
dependencies and non-Gaussian non-stationarity can lead to inaccurate statis-
tical estimations and inference procedures for large-scale imaging data. This
paper aims to develop some useful statistical methodologies and inference tools
to effectively address temporal dependence.
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1.1. Motivation of this work

In recent years, the study of human cognition has greatly benefited from innova-
tions in fMRI, an exciting technique aimed at delineating task-activated regions
in the human brains. A typical fMRI dataset for a single subject and session
can be viewed as a huge collection of cuboid elements, typically ranging from
104 to 105 voxels v, each associated with a time series of responses denoted as
{Y (v)(ti) : i = 1, . . . , n; v ∈ V}, where the series length, n, can extend to the
order of 103. Analyzing fMRI data commonly involves two stages:

Stage-I (voxelwise analysis): modeling and making inferences
for fMRI signals at each voxel.

Stage-II (whole-brain inference): detecting regions of brain activity
across the entire brain.

A significant challenge in voxelwise inference lies in the fact that the ob-
served signals are contaminated with highly correlated noise in the time do-
main. Moreover, several factors may induce non-Gaussian non-stationarity in
the noise process. For instance, background memory processes or extraneous
auditory and visual stimuli can lead to changes in the noise’s variance [17, 26].
Additionally, abrupt movements by the subject represent another source of non-
stationarity [9]. Thus, it is essential to adequately account for non-stationary,
non-Gaussian temporal dependence to accurately detect activation in fMRI.

In the literature, several statistical modeling and analysis methods have been
developed for single-voxel fMRI, including the general linear model (GLM)
[19, 20, 39] and the semi-parametric model approach [46], each with its own
constraints.

(i) GLM approaches usually assume that the noise process is a stationary
time series, such as AR(1) [4], AR(m) [39], and ARMA(1, 1) [31], among others.
Some variations of non-stationarity, such as independent heterogeneous pro-
cesses [26, 29], AR combined with independent heterogeneous noise [9], and
long-range dependent 1/f -like processes [26], have been considered within the
GLM framework. However, GLM approaches often require restrictive assump-
tions on model parameters, such as specific parametric forms for the hemo-
dynamic response function (HRF) and the temporal drift function [39]. These
assumptions can lead to biased estimators of true responses and test statistics
with limited power for detection.

(ii) Semi-parametric models of the form:

Y (v) = Sh(v) + d(v) + ε(v), v ∈ V (1.1)

were developed in [46] for time-course data Y (v) = (Y (v)(t1), . . . , Y (v)(tn))T
at voxel v, with external stimuli in the matrix S common to all voxels. These
models provide more flexibility in modeling assumptions compared to the GLM
approach but are restricted to a stationary g-dependent noise process ε(v) =
(ε(v)(t1), . . . , ε(v)(tn))T . Detailed descriptions can be found in Section 2.1. [15]
considered two types of stationary noise processes: a gn-dependent sequence and
a linear process with a dependence structure related to the number n of time
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points. [27] modeled the noise process as a fractional Brownian motion process.
These approaches require the noise covariance matrix estimator Σ̂ ∈ Rn×n to be
consistent to the true Σn and involve taking the inverse of Σ̂, posing significant
challenges for statistical inference with large-scale time-course data.

In the literature, semi-parametric inference for stationary time series includes
[10], [16], [22], and [23], among others. Specifically, [10] studied the partially lin-
ear single-index model; [16] proposed the partial-linear single-index model with
ARMA noise; and [22] examined the partially time-varying coefficient model.
However, these mentioned semi-parametric models differ from the partially lin-
ear model presented in our paper. [23] considered the partially linear model
and investigated the simultaneous inference of the nonparametric part with
stationary noise, but their results do not apply to non-stationary noise. Semi-
parametric models for non-stationary time series have also been explored in the
literature; see, e.g., [35], [38], and [13]. [35] introduced the semi-parametric fac-
tor model, which is distinct from the partially linear model in our work. [38]
conducted semi-parametric inference for panel data with non-stationary noise.
However, they assumed that the noise terms are independent, so their results
are not applicable to non-stationary temporally dependent noise. [13] examined
the semi-parametric model, which encompasses the partially linear model. Al-
though the response in their model is a non-stationary time series, they assumed
that the noise term is stationary. Consequently, their results cannot be used to
analyze our model with non-stationary noise. Moreover, if the model in [13]
simplifies to the partially linear model, as it does in our paper, their estimation
method corresponds to ours, except that we employ the local-linear method
while they opt for the local-constant method. Consequently, there is no need to
compare our method with the approaches mentioned above.

In stark contrast, very few works have explored the semi-parametric model for
fMRI data in the context of non-stationary, non-Gaussian, temporally dependent
noise. Given the inherently time-varying nature of fMRI noises, the assumption
of stationarity may not be realistically appropriate. Therefore, it is desirable
to investigate how the identification of activated brain voxels can benefit from
semi-parametric modeling, including parameter learning and inference under a
broader range of temporally dependent noise processes.

1.2. Outline of this work

To detect activated brain regions, we first conduct voxelwise inference in Stage-I
using the data {Y (v) : v ∈ V}, and subsequently, in Stage-II, we conduct mul-
tiple testing using the sequence of voxelwise p-values {p(v) : v ∈ V}. This paper
mainly focuses on Stage-I for theoretical analysis, while both stages are involved
in the numerical studies. Regarding Stage-II, exploring alternative approaches,
such as the recent multivariate tensor method, could be an interesting topic for
future research.

In this paper, we will conduct a novel semi-parametric inference procedure
that accommodates serially correlated noise, which can be non-stationary and
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non-Gaussian. This has applications in fMRI and other large-scale imaging data
with time series noise. We will investigate three key issues.

Concerning the structure of temporally dependent noise, we will initially
consider short-range dependence, building on the framework presented in [47]
and [45]. This framework encompasses various time series models, including
stationary models (e.g., ARMA model [4, 39, 31], stationary g-dependent pro-
cess [46]) and non-stationary models (e.g., independent heterogeneous process
[26, 29] and AR+independent heterogeneous noise model [9]) as special cases.
See Section 2 for details. Extensions to other types of dependence will be ex-
plored in Section 8.

Inspired by the detection of brain activity within a voxel, we will explore
the significance test of the parameter vector in the semi-parametric model (2.1)
with temporally dependent noise. Due to non-stationarity and the unique struc-
ture of the Toeplitz design matrix, some existing forms of semi-parametric test
statistics, particularly well-suited for stationary noise, are no longer applicable
in non-stationary scenarios. To accommodate non-stationarity, we will develop
a new semi-parametric test statistic by utilizing an appropriate estimator Σ̂
of Σn. Unlike existing results, our method circumvents the consistency require-
ment and avoids direct inversion of Σ̂ in high dimensions while maintaining the
size without compromising detection power. This approach strikes a balance be-
tween statistical guarantees and computational efficiency, especially in practical
large-scale imaging data scenarios. See Section 3 for details.

Regarding the estimation of Σn for temporally dependent noise, several reg-
ularization methods have been studied in the context of estimating large covari-
ance matrices. These methods have been explored in areas of high-dimensional
inference [3, 5, 7, 18, 44] and stationary time series analysis [28, 40, 41, 43]. They
include techniques like banding, tapering, and thresholding. We will adopt the
tapering-based method [3, 43] for two reasons: (1) Most penalization methods
require a diverging (approaching infinity) number of i.i.d. replicates, whereas a
typical fMRI experiment involves only a finite number of replicates (e.g., ses-
sions, scans, or runs), making penalization methods unsuitable. (2) The entries
of Σn decay as they move away from the diagonal, and the tapering-based esti-
mator is positive semidefinite, further ensuring positive-definiteness by adding
κnIn with a shrinking κn > 0. The tapering method is more suitable than the
thresholding method due to the “tapering” structure of Σn, where elements far
from the diagonal exhibit decay. In contrast, the banding method does not guar-
antee positive-semidefiniteness. Therefore, the tapering method is the preferred
choice for estimating Σn. See Section 4 for further details.

Section 5 explores the asymptotic properties of the new inference procedure
and develops practical computational strategies. Simulation studies in Section 6,
which includes 1D, 2D, and 3D datasets, support these theoretical properties
and demonstrate the better performance of the new procedure compared to
existing ones. Section 7 analyzes a real fMRI dataset, and Section 8 provides a
brief conclusion.

Details of technical derivations and proofs are relegated to the Appendix.
We introduce some notations below. Denote 0q = (0, . . . , 0)T ∈ Rq, and 1q =
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(1, . . . , 1)T ∈ Rq for q ∈ Z+. Let Iq ∈ Rq×q be the identity matrix, and ei;q be
the ith column of Iq for i = 1, . . . , q. For a square matrix A ∈ Rq×q, A � 0
and A � 0 mean that A is positive definite and positive semidefinite, respec-
tively. Denote by λmax(A) the maximum eigenvalue of A. For a generic matrix
B ∈ Rq×q′ , let B(i, j) be the element of B in the ith row and jth column for
i = 1, . . . , q and j = 1, . . . , q′. The L1, L2, and L∞ norms of B are denoted
as ‖B‖1 = max1≤j≤q′

∑q
i=1 |B(i, j)|, ‖B‖2 = {λmax(BTB)}1/2, and ‖B‖∞ =

max1≤i≤q

∑q′

j=1 |B(i, j)|, respectively. For a vector v = (v1, . . . , vq)T ∈ Rq, the
L1 and L2 norms are represented as ‖v‖1 =

∑q
i=1 |vi| and ‖v‖2 = (

∑q
i=1 v

2
i )1/2,

respectively. For any scalar random variable X and constant a ∈ (0,∞), de-
fine |||X|||a = {E(|X|a)}1/a. In the following, C and c represent generic finite
constants that are independent of the sample size, denoted as n.

2. Semi-parametric model with temporally dependent noise

2.1. Semi-parametric model

We begin with a brief introduction to the semi-parametric partially-linear model
(PLM):

Yi = ST
i h + d(ti) + ε(ti), i = 1, . . . , n. (2.1)

Here, the response is denoted as Yi and the covariates are represented as (ti,Si),
where ti ∈ [0, 1]. In this model, we aim to estimate the unknown parameter
vector h and the non-parametric function d(·), while ε(ti) represents the noise
terms with E{ε(ti)} = 0. We impose the assumption ti ∈ [0, 1] to ensure that
d(·) is compactly supported, which is necessary for consistent non-parametric
estimation of d(t). It’s worth noting that, in the case of real fMRI data, the
duration between consecutive observations remains unchanged with n.

For temporal data measured at time points {ti}ni=1 (e.g., equally spaced ti =
i/n relevant to fMRI and [8]), denoting S = (S1, . . . ,Sn)T , the PLM (2.1) can
be re-expressed as:

Y = Sh + d + ε =
�∑

j=1
Sjhj + d + ε, (2.2)

with

• Y = (Y (t1), . . . , Y (tn))T ∈ Rn×1 for the observed responses.
• S = (S1, . . . ,S�) ∈ Rn×(�m) for the design matrix. E.g.,

Sj =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

sj(0) 0 · · · 0
sj(t2 − t1) sj(0) · · · 0

...
...

. . .
...

sj(tm − t1) sj(tm − t2) · · · sj(0)
...

...
. . .

...
sj(tn − t1) sj(tn − t2) · · · sj(tn − tm)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ Rn×m, j = 1, . . . , �,
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is a Toeplitz design matrix associated with sj(ti), representing the input
of the jth type of observed external stimulus at time ti. Please refer to
[46] for the derivation of S from the convolution model.

• h = (hT
1 , . . . ,h

T
� )T ∈ R(�m)×1 for the vector of unknown regression param-

eters (relevant to brain HRF) of primary research interest. For instance,
hj = (hj(t1), . . . , hj(tm))T ∈ Rm×1 is the parameter vector associated
with the jth type of observed external stimulus.

• d = (d(t1), . . . , d(tn))T ∈ Rn×1 for the unknown smooth functions d(·)
(related to temporal drift) at time points {ti}ni=1.

• ε = (ε(t1), . . . , ε(tn))T ∈ Rn×1 for the zero-mean noise process, indepen-
dent of S.

Model (2.2) corresponds to model (1.1) with the superscript (v) omitted for
notational brevity.

For fMRI data, � is the number of external stimuli, and m indicates the length
of each HRF parameter vector hj , j = 1, . . . , �. In real fMRI data, the HRF is
typically sparse, with m usually specified as a small integer much less than n,
for instance, a common choice is 18 as a rule of thumb. The design matrix S in
fMRI data depends on how external stimuli are presented to the subjects [39].
For the sake of presentation, we assume that sj(·) starts at the same time for
all j = 1, . . . , �. However, our method can also accommodate design matrices
that allow different starting times for different types of stimuli, e.g., sj(ti) = 0
for some j = 1, . . . , � and all i = 1, . . . , n0, with a fixed integer n0 > 1. While
our method is developed for fMRI data with the Toeplitz design matrix Sj ,
our theoretical arguments do not rely on the Toeplitz structure and hold for
general design matrices that satisfy Conditions A4 and A10. It’s worth noting
that model (2.2) also has the flexibility to accommodate multiple sessions (i.e.,
runs or segments). However, for brevity, the discussions in Sections 2–5 will
concentrate on a single run.

The smooth function d(t) describes the slowly drifting baseline in the fMRI
signal, which can vary between different voxels. The HRF characterizes the
stimulus-related variation in the signal for a specific voxel. For each voxel, the
HRF is commonly assumed to be identical when the same type of stimulus is
presented at different times, as discussed in [39].

This work aims to detect the brain activities by testing the significance of
the HRF parameters. While inference for the nonparametric part d(·) is feasible
(using methods such as [42]), it falls outside the scope of this paper because d(·)
is not directly relevant to event-related brain activities.

2.2. Assumptions on the noise process

The noise terms {ε(ti)}ni=1 in either (2.1) or (2.2) exhibit serial correlation, with
the covariance structure characterized by a positive-definite auto-covariance ma-
trix,

Σn = cov(ε, ε) ∈ Rn×n.
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Most of the current literature relies on the assumption of stationarity or Gaus-
sianity. Motivated from the framework in [45], we incorporate non-Gaussian
nonstationarity into the sequence of noise terms {ε(ti)}, as follows:

ε(ti) = G(ti;Fi), i = 1, . . . , n, (2.3)

where G : [0, 1] × R∞ → R is a measurable function, and Fi = (. . . , ei−1, ei)
represents a shift process associated with a sequence of i.i.d. random variables
{ek}∞k=−∞. This formulation ensures that ε(ti) is well-defined and maintains
E{ε(ti)} = 0. In (2.3), G(t; ·) describes the noise-generating mechanism, which
can be time-varying with respect to t. Conversely, if G(t; ·) does not depend on
t, then {ε(ti)} reduces to a stationary process. It’s important to note that the
noise mechanism in (2.3) is applicable to various types of time points ti ∈ [0, 1],
including ti = i/n. Model (2.3) encompasses a wide range of non-stationary
processes and naturally extends many existing stationary time series models to
their non-stationary counterparts. For instance, it includes non-stationary linear
processes G(t;Fi) =

∑∞
j=0 aj(t)εi−j , where εi represents i.i.d. random variables,

and aj(·), j = 1, 2, . . . , are functions that ensure G(t;Fi) is well defined for
all t ∈ [0, 1]. Furthermore, model (2.3) also includes non-stationary nonlinear
time series: G(t;Fi) = R(t, G(t;Fi−1), εi), where R is a measurable function.
As discussed in the fMRI literature, the noise is time-varying non-stationary;
see, e.g., [24] and [26], while our assumption includes common non-stationary
linear processes, e.g., time-varying AR and time-varying MA, as special cases.
For detailed descriptions and examples of the noise mechanism, please refer to
Section 2 of [45] and Section 4 of [47].

To further accommodate non-stationary short-range dependence, we intro-
duce e′i as an i.i.d. replicate of ei, and define

F ′
i;k =

{
(. . . , ek−1, e

′
k, ek+1, . . . , ei), if k ≤ i,

Fi, if k > i.

The dependence of G(t;Fi) on e0 across t ∈ [0, 1] can be quantified by

Δi,ω = sup
t∈[0,1]

|||G(t;Fi) −G(t;F ′
i;0)|||ω,

where ω > 0 is a constant. The cumulative dependence of {G(t;Fi)}∞i=q on e0
is represented by

Θq,ω =
∞∑
i=q

Δi,ω (2.4)

with a non-negative integer q. As in Condition A3 in Section 5.1, we consider the
short-range dependence condition, as expressed by the quantity Θq,ω in (2.4),
i.e.,

Θ0,ω < ∞ for a constant ω ∈ [4,∞). (2.5)
As a remark, the assumption ω ≥ 4 is necessary to derive the error bound for
the quadratic form of the noise in Lemma 4. This same condition was considered
for both stationary and non-stationary time series analysis, as seen in, e.g., [41]
and [45], respectively.
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2.3. Implications of the noise assumptions

Utilizing assumption (2.5), we demonstrate in Lemma 1 some properties of the
noise process {ε(ti)}. One noteworthy implication is that the absolute auto-
covariance of the noise diminishes as the time-lag q increases:

|Σn(i + q, i)| = |cov{ε(ti+q), ε(ti)}| ≤ C Θq,ω.

These properties further motivate us to develop a tapering-based estimator for
the noise auto-covariance matrix Σn in Section 4.

Lemma 1. Assume that {ε(ti)} follows a “non-stationary short-range depen-
dence” as described in (2.3) and (2.5). Then, supi=1,...,n |||ε(ti)|||ω ≤ Θ0,ω and
supi=1,...,n−q |E{ε(ti+q)ε(ti)}| ≤ CΘq,ω for any q ∈ {1, . . . , n − 1}, where C ∈
(0,∞) is a constant.

Under the short-range dependence condition (2.5), the noise mechanism (2.3)
encompasses a wide range of stationary and non-stationary time series noise
models as special cases. These include stationary ARMA models [4, 39, 31] and
g-dependent processes [46], as well as non-stationary i.ni.d. processes [26, 29]
and AR + i.ni.d. processes [9].

Lemma 1 only necessitates moment conditions (i.e., Condition A3) for the
noise terms {ε(ti)}, without imposing specific distributional assumptions. There-
fore, our method is generally applicable to non-Gaussian scenarios. Additionally,
the numerical results in Section 6 demonstrate the robust performance of our
method under non-Gaussian conditions.

3. Semi-parametric inference with temporally dependent noise

The detection of brain activity can be achieved by testing the significance of
the parametric part h (associated with HRF) in model (2.2). If a specific voxel
is activated by a certain type of stimulus, then the corresponding HRF is non-
identically zero; otherwise, the HRF is zero. Moreover, checking the equivalency
between HRFs activated by different types of stimuli is also of interest to neu-
roscientists. This inspires us to consider the linear form of hypotheses on h:

H0 : Ah = 0k versus H1 : Ah 
= 0k. (3.1)

Here, A ∈ Rk×(�m) is a full row rank matrix of coefficients, and k is a fixed
positive integer. In particular, if A = I�m, then (3.1) can be employed to detect
the activity at a single voxel. If A = (Im,−Im,0m×m, . . . ,0m×m), we can test
the equivalence of two HRFs, h1 and h2. Other choices of A are also applicable,
depending on the specific structures of the HRFs being tested.

To fit the semi-parametric model (2.2) and carry out the semi-parametric
inference (3.1) for h, we first develop a semi-parametric estimation for the non-
parametric part d in (2.2) using the local-linear estimation method [12]. Denote
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by Sb ∈ Rn×n the local-linear smoothing matrix associated with the design
points {t1, . . . , tn}, with entries given by:

Sb(i, j) = (1, 0){X(ti)TW(ti)X(ti)}−1(1, tj − ti)T
1
b
K
( tj − ti

b

)
, (3.2)

for i, j = 1, . . . , n, where K(·) is a kernel function, b > 0 is a bandwidth param-
eter, and

X(t)=
(

1 · · · 1
t1 − t · · · tn − t

)T

, W(t)=diag
{

1
b
K

(
t1 − t

b

)
, . . . ,

1
b
K

(
tn − t

b

)}
.

Applying the local-linear estimation method to model (2.2), we obtain SbY =
Sb(Sh + d + ε), which leads to:

Ỹ = S̃h + d̃ + ε̃, (3.3)

where Ỹ = (In − Sb)Y , S̃ = (In − Sb)S, d̃ = (In − Sb)d and ε̃ = (In − Sb)ε,
with In representing an identity matrix.

Due to the smoothness of the function d(·) (see Condition A1 in Section 5.1),
the part d̃ in (3.3) can be negligible. Consequently, model (3.3) takes the ap-
proximate form,

Ỹ ≈ S̃h + ε̃. (3.4)

The ordinary least squares method provides the estimator for the parametric
part h as

ĥ = (S̃T S̃)−1S̃T Ỹ . (3.5)

Similarly, the non-parametric part d is estimated as d̂ = Sb(Y − S ĥ).
The asymptotic normality of ĥ is demonstrated in Lemma 5 in the Appendix:

n1/2(ĥ − h) D→ N(0,M−1
1 M2M

−1
1 ) if n−1S̃T S̃ P→ M1 � 0 and n−1S̃TΣnS̃

P→
M2 � 0 under certain regularity conditions. This result allows us to propose a
new Wald-type test statistic for conducting the significance test of (3.1):

W(Σn; b) = (Aĥ)T {A(S̃T S̃)−1S̃TΣnS̃(S̃T S̃)−1AT }−1(Aĥ), (3.6)

which incorporates the noise auto-covariance matrix Σn = cov(ε, ε) ∈ Rn×n,
rather than Σ−1

n , due to the presence of Σn in n−1S̃TΣnS̃ in the asymptotic co-
variance of n1/2ĥ. In [46], R−1

n (the inverse of the noise auto-correlation matrix)
is used in their test statistics because they estimate h using the weighted least-
squares estimator, whose asymptotic covariance matrix includes R−1

n . Moreover,
we could directly use Σn in (3.6) instead of cov(ε̃, ε̃) because the auto-correlation
among Sbε is negligible, as shown in Lemma 2.

We wish to emphasize that, in comparison to certain existing methods like
(5.1) (combined with the estimator h̃ in (5.2)), which assume stationarity and
necessitate the computation of the inverse covariance matrix Σ−1

n for param-
eter estimation or significance testing, the new test statistic (3.6) (associated
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with the estimator ĥ in (3.5)) leverages Σn directly, without requiring the com-
putation of its inverse Σ−1

n . In Section 5, we provide statistical guarantees for
the broad applicability of W(Σn; b). Moreover, the advantages in numerical ef-
ficiency become especially evident when analyzing large-scale imaging data. In
cases with very large n, such as n = 2800 in the real fMRI data discussed in Sec-
tion 7, developing a valid empirical estimator for Σ−1

n presents more challenges
than estimating Σn itself. However, our proposed test statistic (4.2) only neces-
sitates the computation of the inverse of fixed-dimensional matrices, making it
computationally more efficient.

4. Auto-covariance matrix estimation for temporally dependent
noise

In practical applications, the true noise auto-covariance matrix Σn is unknown,
leading to the need for estimating Σn ∈ Rn×n before applying the Wald-type test
statistic in (3.6). We propose estimating Σn using the tapering-based estimator:

Σ̂ = {(Ỹ − S̃ ĥ)(Ỹ − S̃ ĥ)T } ◦ T + κn In. (4.1)

Here, the tapering matrix T ∈ Rn×n is positive-semidefinite and Toeplitz. The
operator “◦” represents the Schur matrix product [33] (or entrywise product),
and κn > 0 is a shrinking parameter. The inclusion of κn In in (4.1) ensures the
positivity of Σ̂. Theoretically, κn approaches zero, and it’s worth noting that our
theoretical results remain valid even if κn = 0. In practice, the choice of κn has
a negligible impact on numerical results, provided κn > 0 is sufficiently small.
We can set κn as a user-defined small constant, e.g., κn = 10−5, or adopt a
data-driven choice like κn = ‖Ỹ − S̃ ĥ‖2

2/n
ν with a user-defined constant ν ≥ 2,

as motivated by [28] (see Section 3 therein). By substituting the estimator Σ̂
into (3.6), we obtain a practical form of the semi-parametric test statistic:

W(Σ̂; b) = (Aĥ)T {A(S̃T S̃)−1S̃T Σ̂S̃(S̃T S̃)−1AT }−1(Aĥ). (4.2)

5. Theoretical and methodological issues

The tapering-based method is commonly employed for large covariance ma-
trix estimation in high-dimensional inference [3, 7] and stationary time series
analysis [28, 43]. This approach effectively ensures the positive-semidefiniteness
of the resulting estimator. However, in the presence of non-stationary noise,
directly verifying the consistency of the tapering-based estimator Σ̂ in (4.1) ap-
pears challenging. Therefore, conducting the asymptotic analysis of the proposed
semi-parametric test statistic W(Σ̂; b) with non-stationary dependent noise is a
nontrivial undertaking. Nonetheless, in Section 5.1, we demonstrate that the
proposed W(Σ̂; b) follows an asymptotic χ2

k distribution under the null hypothe-
sis. Furthermore, we derive the asymptotic power functions of the proposed test
statistic under both fixed and contiguous alternatives. Section 5.2 addresses the
selection of the tapering matrix T in the estimator Σ̂, and in Section 5.3, we
develop data-driven methods for tuning parameter selection.
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5.1. Asymptotic distributions of the proposed semi-parametric test
statistics

This section rigorously examines the asymptotic properties of W(Σn; b) and
W(Σ̂; b) in the presence of non-Gaussian temporally dependent noise. The tech-
nical assumptions for the theoretical analysis are provided below:

Condition A

A1. The second derivative of the drift function d(t) is continuous and bounded
for t ∈ [0, 1].

A2. The kernel K(x) is a Lipschitz continuous and bounded probability density
function, symmetric with respect to x = 0 and supported on [−L,L], where
L ∈ (0,∞) is a constant.

A3. The noise process {ε(ti)} satisfies (2.3), and Θ0,ω < ∞ for a constant
ω ∈ [4,∞).

A4. Assume {sj(·)} is independent of ε, E{sj(t)} = pj for j = 1, . . . , �, and
|sj(t)| < C for any j = 1, . . . , � and t ∈ [0, 1]. Suppose {sj(t1)}�j=1, . . . ,

{sj(tn)}�j=1 are i.i.d..
A5. b → 0 and nb → ∞ as n → ∞.
A6. ti = i/n for i = 1, . . . , n.
A7. κn > 0 and limn→∞ κn = 0.
A8. 0 < c ≤ λmin(Σn) ≤ λmax(Σn) ≤ C < ∞.
A9. Assume T � 0 is an n × n symmetric and Toeplitz matrix satisfying

1 = T(1, 1) ≥ T(2, 1) ≥ · · · ≥ T(n, 1) ≥ 0, and ‖T‖1 = o(n1/2). There
exists a sequence of positive integers {xn}∞n=1 such that limn→∞ xn = ∞
and limn→∞ T(xn, 1) = 1.

A10. E[{S− E(S)}T {S − E(S)}]/n � c I�m for some constant c > 0.

The asymptotic distributions of W(Σn; b) and W(Σ̂; b) under H0 are demon-
strated in Theorem 1 below.

Theorem 1. Assume Condition A in Section 5.1. Under H0 in (3.1) where
A is a k × (�m) matrix and rank(A) = k, we have that W(Σn; b) D→ χ2

k, and
W(Σ̂; b) D→ χ2

k.

Theorem 1 demonstrates that the null distributions of W(Σn; b) and W(Σ̂; b)
asymptotically follow χ2

k. To prove the results for W(Σ̂; b) in Theorem 1, a
challenging aspect involving showing that n−1S̃T Σ̂S̃− n−1S̃TΣnS̃ = oP(1) (see
Lemma 6 in the Appendix). In [46], for stationary noise processes, a similar con-
dition n−1S̃T R̂−1

n S̃−n−1S̃TR−1
n S̃ = oP(1) (see (A.16) therein) is demonstrated

to derive the asymptotic distributions of their proposed test statistics K and its
bias-corrected version Kbc. This is done by assuming that E(‖R̂−1

n −R−1
n ‖2

∞) =
o(1) (see Condition A8 therein), where R̂n is an estimator of the noise auto-
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correlation matrix Rn. There,

K = (Ah̃)T {A(S̃T R̂−1
n S̃)−1AT }−1(Ah̃)

r̂T R̂−1
n r̂/(n− �m)

, (5.1)

with r̂ = Ỹ − S̃ h̃ and

h̃ = (S̃T R̂−1
n S̃)−1S̃T R̂−1

n Ỹ . (5.2)

[15] demonstrated that a banded estimator of Rn satisfies Condition A8 in [46]
under a stationary gn-dependent assumption for ε. In our work, it appears that
a straightforward approach to prove Lemma 6 is to show E(‖Σ̂−Σn‖2

∞) = o(1).
However, under the non-stationary situation, demonstrating the consistency of
Σ̂ is extremely challenging due to the large number of parameters estimated.
Here, we establish Lemma 6 by leveraging the special structure of the tapering-
based estimator Σ̂ and the assumption of short-range dependence for the noise
process {ε(ti)}. Our assumption regarding the bandwidth, b → 0 and nb → ∞
in Condition A5 is milder than those required for analyzing the partially linear
model in [32] and [21]. This is because we considered fixed design points t1, . . . , tn
for the nonparametric component, while they used random design. Fixed design
allows us to disregard the estimation error of the conditional expectation of S
given the design points of the nonparametric component. Nevertheless, control-
ling this estimation error necessitates stringent conditions on b under random
design; refer to the first paragraph of Section 3 in [32] and the fourth paragraph
on page 278 in [21] for further details.
Remark 1. The primary technical tools employed in the proof of Theorem 1 to
address non-stationarity involve an-dependent and martingale approximations
for linear and quadratic forms. These tools only necessitate the short-range de-
pendence outlined in Condition A3. While Lipschitz continuity is often required,
for instance, to approximate Σn(i, j) using a specific covariance function for a
time-varying model as demonstrated in [45], it is not needed in our paper because
we directly employ Σn in the test statistic (3.6) without any approximation.

Next, we delve into the asymptotic powers of W(Σn; b) and W(Σ̂; b) against
the fixed alternative in (3.1).

Theorem 2. Assume Condition A in Section 5.1, with n−1S̃T S̃ P→ M1 � 0 and
n−1S̃TΣnS̃

P→ M2 � 0. Under the fixed alternative H1 in (3.1), we have that

n−1W(Σn; b) P→ (Ah)T (AM−1
1 M2M

−1
1 AT )−1(Ah) > 0,

n−1W(Σ̂; b) P→ (Ah)T (AM−1
1 M2M

−1
1 AT )−1(Ah) > 0.

Theorem 2 suggests that, under any fixed alternative H1, W(Σn; b) and
W(Σ̂; b) diverge to infinity with a rate of n. Hence, the power functions of the
proposed test statistics approach one under H1 as n → ∞. As demonstrated in
the proof of Theorem 1, n−1S̃TΣnS̃ − E(n−1S̃TΣnS̃) = oP(1) and n−1 S̃T S̃ −
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E(n−1S̃T S̃) = oP(1), which implies that M1 = limn→∞ E(n−1S̃TΣnS̃) and
M2 = limn→∞ E(n−1S̃T S̃), provided the limits exist. Given that the limits of
W(Σn; b) and W(Σ̂; b) are infinity and do not depend on the explicit forms of
M1 and M2, this prompts us to explore the possibility of relaxing the con-
ditions n−1S̃T S̃ P→ M1 � 0 and n−1S̃TΣnS̃

P→ M2 � 0 in Theorem 2. As
in the proof of Theorem 1, we can demonstrate that under Condition A, for
any subsequence {nl}∞l=1, there exists a further subsequence {nlj}∞j=1 such that
n−1
lj

S̃T S̃ P→ M∗
1 � 0 and n−1

lj
S̃TΣnlj

S̃ P→ M∗
2 � 0 as j → ∞. This result further

enables us to establish the divergence of W(Σn; b) and W(Σ̂; b) under H1 by
assuming relaxed conditions.

Corollary 1. Assume Condition A in Section 5.1. Under the fixed alternative
H1 in (3.1), we have that W(Σn; b) P→ ∞ and W(Σ̂; b) P→ ∞.

In addition to the fixed alternative H1 in (3.1), we also examine the shrinking
contiguous alternatives within an n−1/2 neighborhood of H0 in (3.1), defined
as:

H1n : Ah = n−1/2c, (5.3)

where c = (c1, . . . , ck)T 
= 0k. Theorem 3 below establishes nontrivial power
functions of W(Σn; b) and W(Σ̂; b) against the local alternatives in (5.3).

Theorem 3. Assume Condition A in Section 5.1, with n−1S̃T S̃ P→ M1 � 0
and n−1S̃TΣnS̃

P→ M2 � 0. Then, under the local alternative H1n in (5.3),
we have that W(Σn; b) D→ χ2

k(τ2) and W(Σ̂; b) D→ χ2
k(τ2), where the constant

τ2 = cT (AM−1
1 M2M

−1
1 AT )−1c > 0.

Theorem 3 asserts that under local alternatives, our proposed test statis-
tics follow an asymptotic noncentral χ2

k distribution, where the noncentrality
parameter τ2 depends on M1 and M2.

5.2. Choice of the tapering matrix T in (4.1)

The asymptotic properties of the proposed W(Σ̂; b) in (4.2) depend on certain
technical assumptions (Condition A9 in Section 5.1) concerning the tapering
matrix T used in (4.1) to construct Σ̂. A wide class of tapering matrices satisfies
these conditions. In our numerical experiments, we employ Tgn , defined as:

Tgn(i, j) =
{

1 − |i− j|/gn, if |i− j| < gn,

0, if |i− j| ≥ gn,
for i, j = 1, . . . , n, (5.4)

where the banding parameter gn ∈ {1, . . . , n} depends on n. This triangular
tapering matrix Tgn , as used in [43] for estimating the autocovariance matrix
in stationary time series, has been shown to be rate-optimal. Therefore, we
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adopt (5.4) for our method. Various other tapering methods are available in the
literature. For instance, [3] considered

Tτn(i, j) = exp(−|i− j|/τn)

(see Assumption A on page 207 therein), which satisfies our Condition A9 un-
der proper assumptions on τn. Another tapering matrix used in both [6] (see
equation (5) on page 2121 therein) and [28] (see Equation (4) therein) is defined
as:

Tkn(i, j) =

⎧⎪⎨⎪⎩
1, if |i− j| ≤ kn/2,
2 − 2|i− j|/kn, if kn/2 < |i− j| < kn,

0, if |i− j| ≥ kn,

for i, j = 1, . . . , n.

While [6] demonstrated that this tapering estimator is rate optimal for estimat-
ing high-dimensional covariance matrices with i.i.d. observations, it is important
to note that Tkn does not guarantee positive semidefiniteness. In Proposition 1
below, we discuss the conditions on gn under which Tgn fulfills Condition A9 as
outlined in Section 5.1.

Proposition 1. If limn→∞ gn = ∞ and gn = o(n1/2), then the tapering matrix
Tgn defined in (5.4) satisfies Condition A9 in Section 5.1.

For brevity, let’s denote the noise auto-covariance matrix estimator in (4.1)
as:

Σ̂b;gn = {(Ỹ − S̃ ĥ)(Ỹ − S̃ ĥ)T } ◦ Tgn + κn In, (5.5)

calculated with the bandwidth parameter b and banding parameter gn of the
tapering matrix Tgn . Together with Proposition 1, the conclusions in Theo-
rems 1–3 and Corollary 1 still hold for

W(Σ̂b;gn ; b) = (Aĥ)T {A(S̃T S̃)−1S̃T Σ̂b;gn S̃(S̃T S̃)−1AT }−1(Aĥ),

i.e., the semi-parametric test statistic calculated with the true Σn substituted
by the estimator Σ̂b;gn .

In [46], semi-parametric test statistics K and Kbc were developed based on
a g-banded estimator of the noise auto-correlation matrix Rn, with g as a fixed
integer. [15] studied a gn-banded estimator R̂n of Rn for K and Kbc, demon-
strating the consistency of R̂n by assuming gn = o(n1/14). Despite the different
structures and assumptions, it is important to clarify the distinction between
the divergence rate of the banding parameter gn for R̂n in [15] and that for Σ̂b;gn
in Proposition 1. On the one hand, R̂n is a banded estimator whereas Σ̂b;gn is
a tapering-based estimator. On the other hand, [15] aims to prove the consis-
tency of R̂n, which requires stronger conditions on gn, whereas the consistency
of Σ̂b;gn is not required in our paper.
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5.3. Selection of tuning parameters b and gn

This section develops the data-driven methods for selecting the bandwidth pa-
rameter b for the local-linear smoothing matrix Sb in (3.2) and the banding
parameter gn for the tapering matrix Tgn in (5.4). In practical implementation,
we proceed by first calculating the data-driven bandwidth b̂ of b, as explained
in Section 5.3.2 below. We then compute the data-driven choice ĝ(̂b) for gn,
as discussed in Section 5.3.1. Additional simulation evaluations (omitted in the
paper) demonstrate that the proposed method for selecting the tuning param-
eters b and gn is robust against a small percentage of outlier contamination.

5.3.1. Data-driven choice of gn using a given b

Recall that two tuning parameters, b and gn, serve different roles in the estimator
Σ̂b;gn in (5.5). We first develop a data-driven method to choose gn for any given
bandwidth parameter b.

In the literature on estimating high-dimensional auto-covariance or auto-
correlation matrices of stationary time series [40, 15], the risk-minimization
method is used to select the banding parameter. Estimating the risk functions
in these works involves using the sub-sampling technique [30], which entails
“overlapped” data splitting.

In cases involving non-stationary noise processes, the method of selecting gn
by directly minimizing E(‖Σ̂b;gn −Σn‖2) may not perform well, as the estimator
Σ̂b;gn may not be consistent to Σn for non-stationary noise processes. However,
the result n−1S̃T Σ̂b;gn S̃ − n−1S̃TΣnS̃ = oP(1) (see Lemma 6) enables us to es-
tablish a more appropriate approach of selecting gn by minimizing the proposed
risk function,

r(gn; b) = E{‖S̃T (Σ̂b;gn − Σn)S̃‖2}. (5.6)

To enhance computational efficiency (supported by Proposition 1), gn is chosen
from {1, . . . , C0} rather than the entire set {1, . . . , n}, where C0 is a predeter-
mined integer much smaller than n.

We will apply the concept of sub-sampling to estimate the proposed risk
function in (5.6). Despite the non-stationary nature of the noise process, where
the noise covariance structure may vary among sub-samples, a common decay-
ing pattern persists across all sub-samples due to the short-range dependence.
Therefore, the sub-sampling method can be employed to estimate the shared
banding parameter for all sub-samples. Let r̃es = Ỹ − S̃ ĥ represent the vector
of residuals from model (3.4). We use positive integers V and B to denote the
total number of blocks (each comprising sub-samples) and the number of sub-
samples within each block, respectively. Define Gν = {(ν−1)(n−B)/(V −1)�+
1, . . . , (ν − 1)(n−B)/(V − 1)�+B} to collect indices i ∈ {1, . . . , n} associated
with sub-samples in the νth block, for ν = 1, . . . , V , where ·� represents the
floor operator. Extract rows corresponding to indices i ∈ Gμ from r̃es and S̃,
denoted as r̃es

(μ) and S̃(μ), respectively. To estimate (5.6) using sub-samples,
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replace the unknown Σn with the matrix Σ(ν)
n = {r̃es(ν)}{r̃es(ν)}T ∈ RB×B

for ν ∈ {1, . . . , V }. Similarly, replace S̃ and Σ̂b;gn with S̃(μ) and

Σ̂(μ)
b;gn = Σ(μ)

n ◦ Tgn(1 : B, 1 : B) + κn IB ,

respectively, using blocks μ ∈ {1, . . . , V }, where Tgn(1 : B, 1 : B) denotes the
upper left B ×B submatrix of Tgn . Consequently, the sub-sample estimator of
r(gn; b) takes the form:

r̂(gn; b) = 1
V (V − 1)

V∑
ν=1

V∑
μ=1:μ�=ν

∥∥∥S̃(μ)T{Σ̂(μ)
b;gn − Σ(ν)

n

}
S̃(μ)

∥∥∥
2
.

For any given bandwidth b, this leads to the data-driven choice of the banding
parameter as follows:

ĝ(b) = arg min
gn∈{1,...,C0}

r̂(gn; b). (5.7)

Remark 2. The implementation of the data-driven method for selecting gn in-
volves choices of C0, V , and B. In our numerical evaluations, we have found
that reasonable choices are C0 = 3 log(10n)�, V = 20, and B = 8n1/3� for the
proposed test statistic W(Σ̂b̂;ĝ(b̂); b̂) across various settings.

5.3.2. Data-driven choice of b

Recall that the estimator ĥ in (3.5) of the parameter vector h relies on the
bandwidth b of the local-linear smoothing matrix Sb. It is thus natural to choose
b to minimize the mean squared error (MSE) of ĥ. In the presence of non-
stationary noise, this is expressed as

MSE(ĥ | S) = ‖(S̃T S̃)−1S̃T d̃‖2
2

+ tr{(S̃T S̃)−1S̃T (In − Sb)Σn(In − Sb)T S̃(S̃T S̃)−1}.
(5.8)

Ideally, if d and Σn are known, then we can calculate the oracle-constant band-
width boracle, which minimizes E{MSE(ĥ | S)}.

For realistic applications with unknown d and Σn, we select the data-driven
choice of b by minimizing the plug-in estimate M̂SE(ĥ | S), which replaces d

and Σn in MSE(ĥ | S) by their estimates. Detailed procedures are described in
Steps 1–3 below.

Step 1: Obtain an initial estimate of h by some preliminary procedure. E.g.,
taking the first-order difference of (2.2) yields D1Y = D1Sh+D1d+D1ε,
where D1 is an (n− 1) × n matrix defined as

D1 =

⎛⎜⎜⎜⎝
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −1 1

⎞⎟⎟⎟⎠ .
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Since d(·) is smooth under Condition A1, D1d is ignorable. The ordinary
least squares method supplies the initial difference-based estimate of h,

ĥDBE = {(D1S)T (D1S)}−1(D1S)T (D1Y ).

Step 2: Select an initial bandwidth parameter b̂init by minimizing the covariance-
penalty ‖(In − Sb)(Y − S ĥDBE)‖2

2 + 2tr{SbΣ̂b0;ĝ(b0)}, where ĥDBE is ob-
tained in Step 1, and ĝ(b0) is a banding parameter selected by (5.7) using
a predetermined bandwidth b0 = 0.5.

Step 3: The data-driven choice of the bandwidth b̂ is obtained by minimizing
the plug-in estimate M̂SE(ĥ | S), with d and Σn in (5.8) replaced by their
estimates Sb̂init

(Y −S ĥDBE) and Σ̂b̂init;ĝ(b̂init), respectively, where ĝ(̂binit) is
the choice of the banding parameter selected by (5.7) using the bandwidth
parameter b̂init in Step 2.

Our simulation studies indicate that the choice of b0 in Step 2 doesn’t appre-
ciably affect the performance of the proposed semi-parametric test statistic. In
practice, other proper choices of b0 can also be used.

6. Simulation study

6.1. Set-up

This section assesses the empirical performance of the proposed semi-parametric
test statistics in addressing inference questions pertinent to the fMRI study of
neural activity:

H0 : h = 0�m versus H1 : h 
= 0�m. (6.1)

The temporally correlated data at time points ti = i/n are generated from
model (2.2) for 2 runs, with n = 300 observations within each run. For the
external stimuli, we consider both a single event type (� = 1) with m = 16 and
{s1(ti)}ni=1

i.i.d.∼ Bernoulli(0.5), and two event types (� = 2) with m = 12 and
{s1(ti), s2(ti), 1−s1(ti)−s2(ti)}ni=1

i.i.d.∼ Multinomial(1; 1/3, 1/3, 1/3). The non-
parametric time drift function is defined as d(t) = 10 sin{π(t− 0.21)}, t ∈ [0, 1].
Non-parametric estimation utilizes local-linear estimation combined with the
Epanechnikov kernel function [34], which is supported on [−1, 1]. The tapering-
based covariance matrix estimator employs κn = 10−5 in (5.5).

We examine six noise models below, encompassing stationary (noise models 1
and 4), non-stationary (noise models 2, 3, 5, 6), and non-Gaussian (noise models
4, 5, 6) cases.

• Noise models 1 and 4 (stationary noise process): AR(1) + WN,

ε(ti) = ζ1(ti) + ζ2(ti), for i = 1, . . . , n,

where ζ1(ti) = 0.3 ζ1(ti−1)+zi is an AR(1) process, ζ2(ti) is the white noise
process, {ζ2(ti)}ni=1 is independent of {zi}ni=1. In noise model 1, {zi}ni=1

i.i.d.∼
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0.4N(0, 1), and {ζ2(ti)}ni=1
i.i.d.∼ 0.4N(0, 1). In noise model 4, {zi}ni=1

i.i.d.∼
c1 t4, and {ζ2(ti)}ni=1

i.i.d.∼ c2 t4, with constants c1 and c2 adjusted to match
variances with counterparts in noise model 1.

• Noise models 2 and 5 (non-stationary noise process): MA(3) with
time-varying coefficients,

ε(ti) = θ0,i zi + θ1,i zi−1 + θ2,i zi−2 + θ3,i zi−3, for i = 1, . . . , n,

with coefficients θq,i = {0.5+0.5(i+2−q)/(n+2)}{ I(q = 0)+0.3 I(q 
= 0)},
for q = 0, . . . , 3 and i = 1, . . . , n. In noise model 2, {zi}ni=−2

i.i.d.∼ N(0, 1). In
noise model 5, {zi}ni=−2

i.i.d.∼ c3 t5, with the constant c3 adjusted to match
the variance of the counterpart in noise model 2.

• Noise models 3 and 6 (non-stationary noise process): Time-varying
AR(1),

ε(ti) = ξi(ti), for i = 1, . . . , n,

where ξi(t) = ρ(t) ξi−1(t) + zi, for t ∈ (0, 1), with ρ(t) = −0.2{I(0 ≤ t ≤
1/4)+I(1/2 < t ≤ 3/4)}−0.6{I(1/4 < t ≤ 1/2)+I(3/4 < t ≤ 1)}; {zi}ni=1
are i.i.d., following the distribution N(0, 0.52) in noise model 3, and c4 t5 in
noise model 6, with the constant c4 adjusted to comply with the variances.

6.2. Inference for 1D temporally correlated data

The 1D temporally correlated data (S,Y ) are simulated from model (2.2) to
mimic voxelwise fMRI time series. The plots depict empirical percentiles (from
the 1st to the 99th) of the proposed semi-parametric test statistics, W(Σn; boracle)
and W(Σ̂b̂;ĝ(b̂); b̂), under H0 in (6.1) versus the theoretical percentiles of the χ2

�m

distribution. These plots are displayed in Figures 1, 3, and 5, corresponding to
temporal noise models 4, 5 and 6, respectively, based on Monte Carlo simulation
replications 500 times for each setting. Here, the oracle-constant bandwidth,
boracle, minimizes E{MSE(ĥ | S)}, where the expectation is approximated by an
empirical average across 100 simulated samples. The data-driven choices, b̂ and
ĝ(̂b), are as described in Section 5.3. For comparison, we also consider test statis-
tics K and Kbc from [46], which assume stationarity with the auto-correlation
matrix estimator R̂n by [15].

(i) Clearly, in both stationary and non-stationary cases, the finite-sample dis-
tributions of W(Σn; boracle) and W(Σ̂b̂;ĝ(b̂); b̂) agree reasonably well with
the χ2

�m distribution. This provides support for the notion that the pro-
posed test statistics W(Σ̂b̂;ĝ(b̂); b̂), using the tapering-based estimator of
Σn and data-driven choices of tuning parameters, are comparable to their
oracle counterparts, W(Σn; boracle), which use the true Σn and the oracle-
constant bandwidth parameter. Thus, both W(Σ̂b̂;ĝ(b̂); b̂) and W(Σn; boracle)
adapt conceivably well to the temporal dependence from either stationary
or non-stationary noise.
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Fig 1. (Noise model 4) Empirical quantiles (on the y-axis) of W(Σn; boracle), W(Σ̂
b̂;ĝ(b̂); b̂),

K and Kbc versus quantiles (on the x-axis) of χ2. Top panels: � = 1; bottom panels: � = 2.
Left panels: W(Σn; boracle); middle panels: W(Σ̂

b̂;ĝ(b̂); b̂); right panels: K and Kbc. The solid
line represents the 45 degree straight line.

Fig 2. (Noise model 4) Empirical power functions of W(Σn; boracle), W(Σ̂
b̂;ĝ(b̂); b̂), K and

Kbc. Top panels: � = 1; bottom panels: � = 2. Left panels: W(Σn; boracle); middle panels:
W(Σ̂

b̂;ĝ(b̂); b̂); right panels: K and Kbc. The dotted line represents the 5% significance level.



2982 C. Zhang et al.

Fig 3. (Noise model 5) Empirical quantiles (on the y-axis) of W(Σn; boracle), W(Σ̂
b̂;ĝ(b̂); b̂),

K and Kbc versus quantiles (on the x-axis) of χ2. Top panels: � = 1; bottom panels: � = 2.
Left panels: W(Σn; boracle); middle panels: W(Σ̂

b̂;ĝ(b̂); b̂); right panels: K and Kbc. The solid
line represents the 45 degree straight line.

(ii) In contrast, in the presence of non-stationary correlated noise, the finite
sampling distributions of K and Kbc in [46] do not closely resemble the χ2

�m

distribution, as observed in the right panels of Figures 3 and 5. The agree-
ment with the chi-squared distribution is confirmed only in the stationary
case, as displayed in the right panels of Figure 1.

To assess the test statistics’ power, data (S,Y ) were generated from model
(2.2) with a non-zero true parameter h = δ1�m, where δ ranges from −0.3 to
0.3 in increments of 0.05. Empirical rejection rates of H0 in (6.1) for different δ
values are plotted in Figures 2, 4, and 6.

(iii) As expected, when δ = 0, the powers of W(Σn; boracle) and W(Σ̂b̂;ĝ(b̂); b̂) are
nearly equal to the nominal significance level of 0.05. As δ deviates from
0, the powers increase towards one. Hence, the proposed test statistics
exhibit strong powers against the non-null h, while maintaining control
over the type-I error rate. Results for test statistics K and Kbc in [46],
displayed in the right panels of Figure 2, also perform welly and show
similar results to our proposed method due to the stationary nature of the
noise process.

(iv) However, unexpectedly, the right panels of Figures 4 and 6 reveal that
the empirical powers of K and Kbc in [46] exceed the nominal level when
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Fig 4. (Noise model 5) Empirical power functions of W(Σn; boracle), W(Σ̂
b̂;ĝ(b̂); b̂), K and

Kbc. Top panels: � = 1; bottom panels: � = 2. Left panels: W(Σn; boracle); middle panels:
W(Σ̂

b̂;ĝ(b̂); b̂); right panels: K and Kbc. The dotted line represents the 5% significance level.

Fig 5. (Noise model 6) Empirical quantiles (on the y-axis) of W(Σn; boracle), W(Σ̂
b̂;ĝ(b̂); b̂),

K and Kbc versus quantiles (on the x-axis) of χ2. Top panels: � = 1; bottom panels: � = 2.
Left panels: W(Σn; boracle); middle panels: W(Σ̂

b̂;ĝ(b̂); b̂); right panels: K and Kbc. The solid
line represents the 45 degree straight line.
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Fig 6. (Noise model 6) Empirical power functions of W(Σn; boracle), W(Σ̂
b̂;ĝ(b̂); b̂), K and

Kbc. Top panels: � = 1; bottom panels: � = 2. Left panels: W(Σn; boracle); middle panels:
W(Σ̂

b̂;ĝ(b̂); b̂); right panels: K and Kbc. The dotted line represents the 5% significance level.

δ = 0, a consequence of the non-stationary temporally correlated noise
process.

6.3. Inference for 2D temporally and spatially correlated data

This section illustrates the semi-parametric inference procedure for detecting
significant regions in 2D datasets. We simulate 101 replicates of fMRI data
sets on a 2D-slice formed by 64 × 64 coordinates. The number of scanned vox-
els V0 ∪ V1 is 578, and the number of truly active scanned voxels V1 is 104,
where V0 and V1 refer to the regions of background and activated voxels, re-
spectively. Within each simulation, at each voxel v ∈ V0 ∪ V1, the data are
simulated via Y (v) = Sh(v) + d(v) + ε(v), according to the set-up in Sec-
tion 6.1, containing n = 300 time points within each of 2 runs, with � = 1
and m = 16. Here h(v) = 0 at v ∈ V0, and h(v) 
= 0 at v ∈ V1. For the non-
zero h(v), we adopt [14] to specify the HRF parameters as hj(ti) = {g1(1.5(i−
1) − τs)/g1(a1b1) − c g2(1.5(i − 1) − τs)/g2(a2b2)}I(1.5(i − 1) − τs > 0), for
i = 1, . . . ,m and j = 1, . . . , �, where g1(t) = ta1e−t/b1 and g2(t) = ta2e−t/b2 ,
with a1 = 5, b1 = 0.9, a2 = 12, b2 = 0.7, c = 0.4, and τs = 5.5. The region V1
corresponds to two disks (as shown in red in the top left panel of Figure 7), cen-
tered at (47, 44) and (20, 27), with radii 5 and 6, respectively. Recall from (1.1)
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that stimuli in S are common to all voxels v ∈ V0 ∪ V1 but vary with dif-
ferent simulations. Hence, the 2D data are spatially correlated. The signal to
noise ratios (SNR) of simulated fMRI data at the activated voxels v ∈ V1 are
1.31, 0.59, 1.36, 1.31, 0.59, and 1.35 under noise models 1–6, respectively, where
SNR =

∑n
i=1 var(ST

i h
(v))/

∑n
i=1 var{ε(v)(ti)}.

To compare with the semi-parametric inference methods, we also include the
parametric F -test combined with “parametric OLS” estimation, which assumes
that the non-parametric component in (2.1) is fitted by a parametric quadratic
model, d(ti) = r0 + r1 ti + r2 t

2
i with unknown parameters (r0, r1, r2), and noise

terms {ε(ti)} are i.i.d. as N(0, σ2).
Two false discovery rate (FDR)-controlling procedures, the BH procedure

[2] and the Storey et al. procedure, [36], are employed to simultaneously test
the significance of h(v) in (6.1) at all 578 voxels, with the FDR control level
set at 0.05. Table 1 compares the calculated false discovery proportions (FDP),
averaged across 101 simulations. The proposed W(Σn; boracle) and W(Σ̂b̂;ĝ(b̂); b̂)
both effectively control the FDR, whereas the “parametric OLS” method inflates
the FDR due to misspecification of the non-parametric component.

Table 1

Compare the calculated FDP averaged over 101 simulations.

noise model OLS W(Σn; boracle) W(Σ̂
b̂;ĝ(b̂); b̂)

2D 1 BH 0.516 0.040 0.030
Storey et al. 0.556 0.049 0.034

2 BH 0.488 0.043 0.047
Storey et al. 0.532 0.051 0.054

3 BH 0.557 0.041 0.028
Storey et al. 0.606 0.051 0.034

2D 4 BH 0.573 0.055 0.026
Storey et al. 0.613 0.065 0.031

5 BH 0.500 0.052 0.045
Storey et al. 0.546 0.063 0.050

6 BH 0.509 0.057 0.037
Storey et al. 0.555 0.069 0.041

For graphical illustrations of the active regions detected by the parametric
and semi-parametric methods, Figure 7 presents plots representing each of the
three estimation methods (combined with the Storey et al. procedure). In this
context, “representative” signifies the median performance, ranked according
to the FDP, across 101 simulations. In Figure 7, the top left panel shows the
true active regions (in red), while the top right, bottom left, and bottom right
panels display the active regions (in purple) detected by the “parametric OLS”
method, the proposed W(Σn; boracle), and W(Σ̂b̂;ĝ(b̂); b̂), respectively. The com-
parison reveals that the “semi-parametric data-driven” method outperforms the
“parametric OLS” method in the presence of non-stationary non-Gaussian time
series noise.



2986 C. Zhang et al.

Fig 7. (Noise model 5; 2D) Top left: truly active regions; top right: detected active regions
by the “parametric OLS”; bottom left: detected active regions by W(Σn; boracle); bottom right:
detected active regions by W(Σ̂

b̂;ĝ(b̂); b̂).

6.4. Inference for 3D temporally and spatially correlated data

We simulate 101 sets of fMRI data on a 3D cube, with the number of 3D
coordinates equal to 64× 64× 8; the number of scanned voxels is 4949, and the
number of truly active scanned voxels is 773. The simulation setup at each voxel
is similar to that for the 2D inference in Section 6.3. In Figure 8, the top left
8 slices show the true active regions (in red), while the top right, bottom left,
and the bottom right 8 slices depict the active regions (in purple), which were
identified by the “parametric OLS” method, the proposed W(Σn; boracle), and
W(Σ̂b̂;ĝ(b̂); b̂). The graphical assessment of detected regions in Figure 8, along
with the numerical comparison of the FDPs summarized in Table 2, provides
compelling evidence of the superior performance of the “semi-parametric data-
driven” inference method over the parametric counterpart for data contaminated
with non-stationary, non-Gaussian, temporally correlated noise.

Table 2

Compare the calculated FDP averaged over 101 simulations.

noise model OLS W(Σn; boracle) W(Σ̂
b̂;ĝ(b̂); b̂)

3D 4 BH 0.532 0.062 0.026
Storey et al. 0.572 0.071 0.030

5 BH 0.519 0.057 0.049
Storey et al. 0.563 0.067 0.054

6 BH 0.502 0.058 0.031
Storey et al. 0.552 0.067 0.034

7. Real brain fMRI analysis

We analyze the StarPlus fMRI data originally collected at Carnegie Mellon Uni-
versity’s CCBI. Detailed information about the experiment design, data de-
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Fig 8. (Noise model 5; 3D) Top left 8 slices: truly active regions; top right 8 slices: de-
tected active regions by the “parametric OLS”; bottom left 8 slices: detected active regions
by W(Σn; boracle); bottom right 8 slices: detected active regions by W(Σ̂

b̂;ĝ(b̂); b̂).

scription, and subjects can be found at http://www.cs.cmu.edu/afs/cs.cmu.
edu/project/theo-81/www/. Images were captured every 0.5 seconds for 6 sub-
jects, with only a portion of each subject’s brain imaged. The data are marked
with 25–30 anatomically defined regions referred to as “Regions of Interest”
(ROIs). There are n = 2800 images, featuring 3 types of stimuli, and m = 18.
Please refer to Figure 9 for fMRI series plots of Subject 1 at 6 different voxels,
where the non-stationarity pattern is visually evident. Figure 10 compares the
active regions (in purple) identified by the “parametric OLS” method and the
proposed “semi-parametric data-driven” method W(Σ̂b̂;ĝ(b̂); b̂). As clearly ob-
served, the “semi-parametric data-driven” method outperforms the “parametric
OLS” method by effectively capturing significant regions, including the ROIs.
In contrast, the latter fails to detect a majority of the ROIs. Results from other
subjects are similar but omitted due to space limitations.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
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Fig 9. (Real fMRI data) Subject 1, the number of scanned voxels = 4949. Plots of fMRI time
series at 6 voxels.

Fig 10. (Real fMRI data) Subject 1, the number of scanned voxels = 4949. Left 8 slices:
detected active regions by the parametric OLS; right 8 slices: detected active regions by
W(Σ̂

b̂;ĝ(b̂); b̂).

8. Discussion

As high-throughput technology advances, statistical inference methods natu-
rally emerge from the analysis of large-scale structured datasets. These datasets
are characterized not only by high dimensionality but also by non-stationarity
and temporal dependence in various forms. The development of new tools for
stochastic modeling, computational algorithms, and statistical inference proce-
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dures applied to these large-scale data is highly desirable. These tools enable
scientists to efficiently analyze data with significantly increased flexibility and
accuracy.

This paper proposed a new method for performing semi-parametric inference
on large-scale imaging data, inspired by the analysis of fMRI data, where the
underlying noise process exhibits non-stationary, non-Gaussian behavior, and
temporal dependence. Our method departs from existing approaches that rely
on the assumption of noise process stationarity. We propose a semi-parametric
test statistic using a tapering-based estimator for the noise auto-covariance ma-
trix and illustrate its advantages over current methods. On the theoretical side,
our method relaxes the requirement for the noise covariance matrix estimator
to be consistent. On the numerical side, our method avoids the direct inver-
sion of the n × n covariance matrix, preserving efficiency. It can be applied
to both stationary and a broader range of non-stationary, non-Gaussian noise
processes, making it particularly effective in addressing challenges posed by
high-dimensional data.

In conclusion, we discuss potential directions for future research. First, the
class of noise processes in Section 2 did not cover all possible cases, such as
the stationary gn-dependent process [15] and the long-range dependent 1/f -like
non-stationary noise process [26], which were not part of our assumptions. In-
vestigating the feasibility of extensions on a case-by-case basis and addressing
associated technical details present interesting avenues for further study. Sec-
ond, our method for fitting the semi-parametric model estimates the parameter
vector without imposing any prior structural knowledge. It would be valuable
to explore how incorporating structural information, such as sparsity, grouping,
and constraints, impacts parameter learning and related statistical inference.
Third, conducting a comprehensive comparison between our proposed method
and conventional approaches, including parametric and semi-parametric models
from statistical, econometrics, and neuroimaging literature, would be beneficial
for assessing its effectiveness on fMRI data.

Appendix A: Proofs of main results

For Lemma 1 and Lemmas 2–6, which will be needed in the proofs of the main
results, we present their proofs below.

Proof of Lemma 1. For any i = 1, . . . , n,

ε(ti) =
∞∑
k=0

[E{ε(ti) | ei−k, . . . , ei+1} − E{ε(ti) | ei−k+1, . . . , ei+1}]. (A.1)

From (2.3),

E{ε(ti) | ei−k+1, . . . , ei+1} = E{G(ti;Fi) | ei−k+1, . . . , ei+1}
= E{G(ti;F ′

i;i−k) | ei−k+1, . . . , ei+1}.
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Then, for any k = 0, 1, . . . ,

E[|E{ε(ti) | ei−k, . . . , ei+1} − E{ε(ti) | ei−k+1, . . . , ei+1}|ω]
= E[|E{G(ti;Fi) | ei−k, . . . , ei+1} − E{G(ti;F ′

i;i−k) | ei−k+1, . . . , ei+1}|ω]
= E[|E{G(ti;Fi) | ei−k, . . . , ei+1} − E{G(ti;F ′

i;i−k) | ei−k, . . . , ei+1}|ω]
= E[|E{G(ti;Fi) −G(ti;F ′

i;i−k) | ei−k, . . . , ei+1}|ω]
≤ E[E{|G(ti;Fi) −G(ti;F ′

i;i−k)|ω | ei−k, . . . , ei+1}]
= E{|G(ti;Fi) −G(ti;F ′

i;i−k)|ω} ≤ Δω
k,ω. (A.2)

The first inequality in (A.2) is because of Jensen’s inequality. From (A.1),
Minkowski’s inequality and (A.2), it follows that

|||ε(ti)|||ω =
∣∣∣∣∣∣∣∣∣ ∞∑

k=0

[E{ε(ti) | ei−k, . . . , ei+1} − E{ε(ti) | ei−k+1, . . . , ei+1}]
∣∣∣∣∣∣∣∣∣
ω

≤
∞∑
k=0

|||E{ε(ti) | ei−k, . . . , ei+1} − E{ε(ti) | ei−k+1, . . . , ei+1}|||ω

≤
∞∑
k=0

Δk,ω = Θ0,ω.

Next, we will show supi=1,...,n−q |E{ε(ti+q)ε(ti)}| ≤ CΘq,ω for any q ∈
{1, . . . , n− 1}. From (A.1),

E{ε(ti+q)ε(ti)} = E
{( ∞∑

k=0

[E{ε(ti+q) | ei+q−k, . . . , ei+q+1}

− E{ε(ti+q) | ei+q−k+1, . . . , ei+q+1}]
)
ε(ti)

}
= E

{( q−1∑
k=0

[E{ε(ti+q) | ei+q−k, . . . , ei+q+1}

− E{ε(ti+q) | ei+q−k+1, . . . , ei+q+1}]
)
ε(ti)

}
+ E

{( ∞∑
k=q

[E{ε(ti+q) | ei+q−k, . . . , ei+q+1}

− E{ε(ti+q) | ei+q−k+1, . . . , ei+q+1}]
)
ε(ti)

}
= E

{( ∞∑
k=q

[E{ε(ti+q) | ei+q−k, . . . , ei+q+1}

− E{ε(ti+q) | ei+q−k+1, . . . , ei+q+1}]
)
ε(ti)

}
which, together with the Cauchy-Schwartz inequality, Liapounov’s inequality,
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Minkowski’s inequality, and (A.2), implies

|E{ε(ti+q)ε(ti)}| ≤
∣∣∣∣∣∣∣∣∣ ∞∑

k=q

[E{ε(ti+q) | ei+q−k, . . . , ei+q+1}

− E{ε(ti+q) | ei+q−k+1, . . . , ei+q+1}]
∣∣∣∣∣∣∣∣∣

2
|||ε(ti)|||2

≤
∣∣∣∣∣∣∣∣∣ ∞∑

k=q

[E{ε(ti+q) | ei+q−k, . . . , ei+q+1}

− E{ε(ti+q) | ei+q−k+1, . . . , ei+q+1}]
∣∣∣∣∣∣∣∣∣
ω
|||ε(ti)|||ω

≤ C

∞∑
k=q

|||E{ε(ti+q) | ei+q−k, . . . , ei+q+1}

− E{ε(ti+q) | ei+q−k+1, . . . , ei+q+1}|||ω

≤ C

∞∑
k=q

Δk,ω = CΘq,ω.

This completes the proof.

Lemma 2. For ε(ti) defined in (2.3) and Sb defined in (3.2), under Conditions
A2, A3, A5 and A6, then

sup
i∈{1,...,n}

E
{∣∣∣ n∑

j=1
ε(tj)Sb(i, j)

∣∣∣4} ≤ C/(nb)2.

Proof. By Lemma A1 of [45], for any i = 1, . . . , n,

E
{∣∣∣ n∑

j=1
ε(tj)Sb(i, j)

∣∣∣4} ≤ C
[ n∑
j=1

{Sb(i, j)}2
]2
.

Corollary A.1 of [46] indicates that nb|Sb(i, j)| ≤ C for any i, j = 1, . . . , n,
‖Sb‖1 ≤ C and ‖Sb‖∞ ≤ C. Then,

[ n∑
j=1

{Sb(i, j)}2
]2

≤
{ C

nb

n∑
j=1

|Sb(i, j)|
}2

≤ C/(nb)2.

The proof is finished.

Lemma 3. Assume Conditions A2, A4, A5 and A6 hold. Denote S̃i = (In −
Sb)Si for i = 1, . . . , �. Let A = {ai,j}ni,j=1 be an n× n matrix.

(i) If A is random (or deterministic) and independent of S and
max1≤i,j≤n E(a2

i,j) ≤ C, then, for any j1, j2 = 1, . . . , � and u1, u2 =
1, . . . ,m,

E{(n−1eTu1;mS̃T
j1AS̃j2eu2;m)2} = O(1);
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additionally, if maxnbL≤i≤n−nbL,1≤j≤n E(a2
i,j) = o(1), then

E{(n−1eTu1;mS̃T
j1AS̃j2eu2;m)2} = o(1).

(ii) If A is deterministic, max1≤i,j≤n |ai,j | ≤ C and ‖A‖∞ = o(n), then, for
any j1, j2 = 1, . . . , � and u1, u2 = 1, . . . ,m,

var(n−1eTu1;mS̃T
j1AS̃j2eu2;m) = o(1).

Proof. Let Ă = {ăi,j}ni,j=1 = (In − Sb)TA(In − Sb), and then

n−1eTu1;mS̃T
j1AS̃j2eu2;m = n−1eTu1;mST

j1ĂSj2eu2;m.

For notational simplicity, denote Q = {qi,j}ni,j=1 = In − Sb. Then, ăi,j =∑n
v1=1

∑n
v2=1 qv1,iav1,v2qv2,j . It follows that,

n−1eTu1;mS̃T
j1AS̃j2eu2;m = n−1eTu1;mST

j1ĂSj2eu2;m

= n−1
n∑

i=u1

n∑
k=u2

sj1(ti−u1)sj2(tk−u2)ăi,k

= n−1
n∑

i=u1

n∑
k=u2

{sj1(ti−u1) − pj1}{sj2(tk−u2) − pj2}ăi,k

+ n−1
n∑

i=u1

n∑
k=u2

pj1pj2 ăi,k

+ n−1
n∑

i=u1

n∑
k=u2

pj1{sj2(tk−u2) − pj2}ăi,k

+ n−1
n∑

i=u1

n∑
k=u2

{sj1(ti−u1) − pj1}pj2 ăi,k

= I + II + III + IV. (A.3)

For part (i), we will demonstrate E(II2) = o(1), E(III2) = o(1), E(IV2) = o(1)
and E(I2) = O(1) under condition max1≤i,j≤n E(a2

i,j) ≤ C.
Note that C is a finite constant which may vary from place to place. For term

II, under condition max1≤i,j≤n E(a2
i,j) ≤ C, with proper rearrangement of the

embedded sums, we have,

E(II2)

= n−2p2
j1p

2
j2

n∑
i=u1

n∑
k=u2

n∑
i′=u1

n∑
k′=u2

E(ăi,kăi′,k′)

= n−2C

n∑
i=u1

n∑
k=u2

n∑
i′=u1

n∑
k′=u2

n∑
v1=1

n∑
v2=1

n∑
v3=1

n∑
v4=1
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E(qv1,iav1,v2qv2,kqv3,i′av3,v4qv4,k′)

= n−2C

n∑
v1=1

n∑
v2=1

n∑
v3=1

n∑
v4=1

{( n∑
i=u1

qv1,i

)( n∑
k=u2

qv2,k

)( n∑
i′=u1

qv3,i′

)
( n∑

k′=u2

qv4,k′

)
E(av1,v2av3,v4)

}
≤ n−2C

n∑
v1=1

n∑
v2=1

n∑
v3=1

n∑
v4=1

(∣∣∣ n∑
i=u1

qv1,i

∣∣∣∣∣∣ n∑
k=u2

qv2,k

∣∣∣∣∣∣
n∑

i′=u1

qv3,i′

∣∣∣∣∣∣ n∑
k′=u2

qv4,k′

∣∣∣) max
1≤i,j≤n

E(a2
i,j)

≤ n−2C
( n∑

v1=1

∣∣∣ n∑
i=u1

qv1,i

∣∣∣)( n∑
v2=1

∣∣∣ n∑
k=u2

qv2,k

∣∣∣)
( n∑

v3=1

∣∣∣ n∑
i′=u1

qv3,i′

∣∣∣)( n∑
v4=1

∣∣∣ n∑
k′=u2

qv4,k′

∣∣∣)
= n−2C‖(In − Sb)(0T

u1−1,1T
n−u1+1)T ‖2

1

‖(In − Sb)(0T
u2−1,1T

n−u2+1)T ‖2
1. (A.4)

The first inequality above is because of the triangular inequality and Cauchy-
Schwartz inequality. The last step is due to (

∑n
i=u1

q1,i, . . . ,
∑n

i=u1
qn,i)T =

(In−Sb)(0T
u1−1,1T

n−u1+1)T , from the definition {qj,i}nj,i=1 = In−Sb. From (3.2),
n∑

j=1
Sb(i, j) = (1, 0){X(ti)TW(ti)X(ti)}−1X(ti)TW(ti)1n

= (1, 0){X(ti)TW(ti)X(ti)}−1X(ti)TW(ti)X(ti)(1, 0)T = 1.

Therefore, (In − Sb)1n = 0n. Since ‖In − Sb‖1 ≤ C (see Corollary A.1 of [46]),
‖(In−Sb)(0T

u1−1,1T
n−u1+1)T ‖1 = ‖(In−Sb)(1T

u1−1,0T
n−u1+1)T ‖1 ≤ (u1−1)‖In−

Sb‖1 ≤ C. Similarly, ‖(In − Sb)(0T
u2−1,1T

n−u2+1)T ‖1 ≤ C. From (A.4), we have
E(II2) = O(n−2).

For term III, noting that E[{sj2(tk−u2) − pj2}{sj2(tk′−u2) − pj2}] 
= 0 if and
only if k = k′, we have

E(III2)

= n−2p2
j1

n∑
i=u1

n∑
k=u2

n∑
i′=u1

n∑
k′=u2

E[{sj2(tk−u2) − pj2}{sj2(tk′−u2) − pj2}]E(ăi,kăi′,k′)

= n−2p2
j1E[{sj2(t1) − pj2}2]

n∑
i=u1

n∑
k=u2

n∑
i′=u1

E(ăi,kăi′,k)

= n−2C

n∑
i=u1

n∑
k=u2

n∑
i′=u1

n∑
v1=1

n∑
v2=1

n∑
v3=1

n∑
v4=1

E(qv1,iav1,v2qv2,kqv3,i′av3,v4qv4,k)
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= n−2C

n∑
k=u2

n∑
v1=1

n∑
v3=1

[( n∑
i=u1

qv1,i

)( n∑
i′=u1

qv3,i′

)
{ n∑

v2=1

n∑
v4=1

qv2,kqv4,kE(av1,v2av3,v4)
}]

≤ n−2C

n∑
k=u2

n∑
v1=1

n∑
v3=1

(∣∣∣ n∑
i=u1

qv1,i

∣∣∣∣∣∣ n∑
i′=u1

qv3,i′

∣∣∣ n∑
v2=1

|qv2,k|
n∑

v4=1
|qv4,k|

)
· max
1≤i,j≤n

E(a2
i,j)

≤ n−2C

n∑
k=u2

{( n∑
v1=1

∣∣∣ n∑
i=u1

qv1,i

∣∣∣)( n∑
v3=1

∣∣∣ n∑
i′=u1

qv3,i′

∣∣∣)}
≤ n−2C

n∑
k=u2

‖(In − Sb)(0T
u1−1,1T

n−u1+1)T ‖2
1 = O(n−1). (A.5)

Similar arguments imply that E(IV2) = O(n−1).
Next, we will prove E(I2) = O(1). Note

E(I2) = n−2
n∑

i=u1

n∑
k=u2

n∑
i′=u1

n∑
k′=u2

E[{sj1(ti−u1) − pj1}{sj2(tk−u2) − pj2}

{sj1(ti′−u1) − pj1}{sj2(tk′−u2) − pj2}]E(ăi,kăi′,k′).

Under Condition A4, the term expressed as E[{sj1(ti−u1) − pj1}{sj2(tk−u2) −
pj2}{sj1(ti′−u1)− pj1}{sj2(tk′−u2)− pj2}] is nonzero in the following four cases:

I1 : i− u1 = k − u2 = i′ − u1 = k′ − u2;
I2 : {i− u1 = k − u2} 
= {i′ − u1 = k′ − u2};
I3 : {i− u1 = i′ − u1} 
= {k − u2 = k′ − u2};
I4 : {i− u1 = k′ − u2} 
= {k − u2 = i′ − u1}.

Hence,
E(I2) = EI1 + EI2 + EI3 + EI4 , (A.6)

where

EI1 = n−2
n∑

i=u1

E[{sj1(ti−u1) − pj1}2{sj2(ti−u1) − pj2}2]E(ă2
i,i−u1+u2

),

EI2 = n−2
n∑

i=u1

n∑
i′=u1,i′ �=i

E[{sj1(ti−u1) − pj1}{sj2(ti−u1) − pj2}

{sj1(ti′−u1) − pj1}{sj2(ti′−u1) − pj2}]E(ăi,i−u1+u2 ăi′,i′−u1+u2),

EI3 = n−2
n∑

i=u1

n∑
k=u2,k �=i−u1+u2

E[{sj1(ti−u1) − pj1}2{sj2(tk−u2) − pj2}2]E(ă2
i,k),
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EI4 = n−2
n∑

i=u1

n∑
k=u2,k �=i−u1+u2

E[{sj1(ti−u1) − pj1}{sj2(tk−u2) − pj2}

{sj1(tk−u2) − pj1}{sj2(ti−u1) − pj2}]E(ăi,kăk−u2+u1,i−u1+u2).
For EI2 ,

|EI2 |

≤ Cn−2
n∑

i=u1

n∑
i′=u1

E(|ăi,i−u1+u2 ăi′,i′−u1+u2 |)

= Cn−2
n∑

i=u1

n∑
i′=u1

E
(∣∣∣ n∑

v1=1

n∑
v2=1

n∑
v3=1

n∑
v4=1

qv1,iav1,v2qv2,i−u1+u2qv3,i′

av3,v4qv4,i′−u1+u2

∣∣∣)
≤ Cn−2

n∑
i=u1

n∑
i′=u1

n∑
v1=1

n∑
v2=1

n∑
v3=1

n∑
v4=1

|qv1,iqv2,i−u1+u2qv3,i′qv4,i′−u1+u2 |

· max
1≤i,j≤n

E(a2
i,j)

≤ Cn−2
n∑

i=u1

n∑
i′=u1

{( n∑
v1=1

|qv1,i|
)( n∑

v2=1
|qv2,i−u1+u2 |

)
( n∑

v3=1
|qv3,i′ |

)( n∑
v4=1

|qv4,i′−u1+u2 |
)}

≤ Cn−2
n∑

i=u1

n∑
i′=u1

C = O(1).

Similarly, we can show that EI1 = O(1), EI3 = O(1), and EI4 = O(1). Conse-
quently, E(I2) = O(1). Hence, from (A.3), we conclude the proof for
E{(n−1eTu1;mS̃T

j1
AS̃j2eu2;m)2} = O(1).

Additionally, if maxnbL≤i≤n−nbL,1≤j≤n E(a2
i,j) = o(1), then we will show that

E(I2) = o(1). From (A.6),
|EI2 |

≤ n−2C

n∑
i=u1

n∑
i′=u1

n∑
v1=1

n∑
v2=1

n∑
v3=1

n∑
v4=1

|qv1,iqv2,i−u1+u2qv3,i′qv4,i′−u1+u2 |

|E(av1,v2av3,v4)|

≤ n−2C

n∑
i=u1

n∑
i′=u1

∑
v1∈M

n∑
v2=1

n∑
v3=1

n∑
v4=1

|qv1,iqv2,i−u1+u2qv3,i′qv4,i′−u1+u2 |

{E(a2
v1,v2

)E(a2
v3,v4

)}1/2

+ n−2C

n∑
i=u1

n∑
i′=u1

∑
v1∈M

n∑
v2=1

n∑
v3=1

n∑
v4=1

|qv1,iqv2,i−u1+u2qv3,i′qv4,i′−u1+u2 |
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{E(a2
v1,v2

)E(a2
v3,v4

)}1/2

≤ n−2C max
v1∈M,v2∈{1,...,n}

{E(a2
v1,v2

)}1/2
n∑

i=u1

n∑
i′=u1

C + n−2C

n∑
i′=u1

∑
v1∈M

C

≤ o(1) + Cb = o(1),

where M = [nbL, n − nbL] and M = [1, nbL) ∪ (n − nbL, n]. Similarly, we can
show EI1 = o(1), EI3 = o(1) and EI4 = o(1) and thus E(I2) = o(1), which
together with (A.3) completes the proof of part (i).

For part (ii), from (A.3),

E(I) = n−1
n∑

i=u1

n∑
k=u2

E[{sj1(ti−u1) − pj1}{sj2(tk−u2) − pj2}]ăi,k

= n−1
n∑

i=u1

E[{sj1(ti−u1) − pj1}{sj2(ti−u1) − pj2}]ăi,i−u1+u2 .

Then, {E(I)}2 = EI2 + n−2 ∑n
i=u1

(E[{sj1(ti−u1) − pj1}{sj2(ti−u1) − pj2}])2 ×
ă2
i,i−u1+u2

= EI2 +EΔ, and hence, var(I) = EI1 +EI3 +EI4 −EΔ following (A.6).
Next, we will show EI1 , EI3 , EI4 and EΔ are all o(1). For EI1 ,

EI1

≤ n−2C

n∑
i=u1

n∑
v1=1

n∑
v2=1

n∑
v3=1

n∑
v4=1

|qv1,iqv2,i−u1+u2qv3,iqv4,i−u1+u2av1,v2av3,v4 |

≤ n−2C

n∑
i=u1

n∑
v1=1

n∑
v2=1

n∑
v3=1

n∑
v4=1

|qv1,iqv2,i−u1+u2qv3,iqv4,i−u1+u2 |

≤ n−2C

n∑
i=u1

C = O(n−1).

We can show EΔ = o(1) by similar arguments. For EI3 , assumption ‖A‖∞ = o(n)
implies that

EI3

≤ n−2C

n∑
i=u1

n∑
k=u2

ă2
i,k

≤ n−2C
n∑

i=u1

n∑
k=u2

n∑
v1=1

n∑
v2=1

n∑
v3=1

n∑
v4=1

|qv1,iqv2,kqv3,iqv4,kav1,v2av3,v4 |

≤ n−2C

n∑
i=u1

n∑
v1=1

|qv1,i|
n∑

v3=1
|qv3,i|

n∑
v2=1

|av1,v2 |
n∑

k=u2

|qv2,k|
n∑

v4=1
|qv4,kav3,v4 |

≤ n−2C

n∑
i=u1

Co(n) = o(1).
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Similar arguments imply that EI4 = o(1). Hence, var(I) = o(1). Following (A.4)
and (A.5), we can show that E(II2), E(III2) and E(IV2) are o(1). We finish the
proof from (A.3). This completes the proof.

Lemma 4. Let A = {ai,j}ni,j=1 be an n× n random matrix independent of ε. As-
sume Bn = max(max1≤i≤n |||

∑n
j=1 a

2
i,j |||

1/2
ω/2, max1≤j≤n |||

∑n
i=1 a

2
i,j |||

1/2
ω/2) < ∞.

Under Condition A3, it follows that∣∣∣∣∣∣∣∣∣ n∑
i=1

n∑
j=1

[ai,jε(ti)ε(tj) − ai,jE{ε(ti)ε(tj)}]
∣∣∣∣∣∣∣∣∣
ω/2

≤ CΘ2
0,ωBn

√
n.

Proof. Let Ln =
∑n

i=1
∑n

j=1 ai,jε(ti)ε(tj) and Zi =
∑n

j=1 ai,jε(tj). Then, Ln =∑n
i=1 ε(ti)Zi and Ln − E(Ln | A) =

∑n
k=−∞ Pk(Ln), where Pk(·) = E(· |

A,Fk) − E(· | A,Fk−1). Let ε′(ti; k) = G(ti;F ′
i;k) and Z ′

i;k =
∑n

j=1 ai,jε
′(tj ; k).

Noting that E{ε(ti)Zi | A,Fk−1} = E{ε′(ti; k)Z ′
i;k | A,Fk−1} = E{ε′(ti; k)Z ′

i;k |
A,Fk}, we have

|||Pk(Ln)|||ω/2

=
∣∣∣∣∣∣∣∣∣ n∑

i=1
[E{ε(ti)Zi | A,Fk} − E{ε(ti)Zi | A,Fk−1}]

∣∣∣∣∣∣∣∣∣
ω/2

=
∣∣∣∣∣∣∣∣∣ n∑

i=1
E{ε(ti)Zi − ε′(ti; k)Z ′

i;k | A,Fk}
∣∣∣∣∣∣∣∣∣
ω/2

=
∣∣∣∣∣∣∣∣∣E[ n∑

i=1
{ε(ti)Zi − ε′(ti; k)Z ′

i;k}
∣∣∣A,Fk

]∣∣∣∣∣∣∣∣∣
ω/2

≤
{

E
(
E
[∣∣∣ n∑

i=1
{ε(ti)Zi − ε′(ti; k)Z ′

i;k}
∣∣∣ω/2 ∣∣∣A,Fk

])}2/ω

=
∣∣∣∣∣∣∣∣∣ n∑

i=1
{ε(ti)Zi − ε′(ti; k)Z ′

i;k}
∣∣∣∣∣∣∣∣∣
ω/2

=
∣∣∣∣∣∣∣∣∣ n∑

i=1
{ε(ti)Zi − ε(ti)Z ′

i;k + ε(ti)Z ′
i;k − ε′(ti; k)Z ′

i;k}
∣∣∣∣∣∣∣∣∣
ω/2

≤
∣∣∣∣∣∣∣∣∣ n∑

i=1
ε(ti)(Zi − Z ′

i;k)
∣∣∣∣∣∣∣∣∣
ω/2

+
∣∣∣∣∣∣∣∣∣ n∑

i=1
{ε(ti) − ε′(ti; k)}Z ′

i;k

∣∣∣∣∣∣∣∣∣
ω/2

=
∣∣∣∣∣∣∣∣∣ n∑

j=1

[
{ε(tj) − ε′(tj ; k)}

n∑
i=1

ai,jε(ti)
]∣∣∣∣∣∣∣∣∣

ω/2

+
∣∣∣∣∣∣∣∣∣ n∑

i=1
{ε(ti) − ε′(ti; k)}Z ′

i;k

∣∣∣∣∣∣∣∣∣
ω/2

≤
n∑

j=1

∣∣∣∣∣∣∣∣∣{ε(tj) − ε′(tj ; k)}
n∑

i=1
ai,jε(ti)

∣∣∣∣∣∣∣∣∣
ω/2
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+
n∑

i=1
|||{ε(ti) − ε′(ti; k)}Z ′

i;k|||ω/2

≤

n∑
j=1

|||ε(tj) − ε′(tj ; k)|||ω
∣∣∣∣∣∣∣∣∣ n∑

i=1
ai,jε(ti)

∣∣∣∣∣∣∣∣∣
ω

+
n∑

i=1
|||ε(ti) − ε′(ti; k)|||ω|||Z ′

i;k|||ω,
(A.7)

where the first inequality comes from Jensen’s inequality. Lemma A1 in [45] im-
plies that |||Zi|||ω = [E{E(|Zi|ω | A)}]1/ω ≤ C|||

∑n
j=1 a

2
i,j |||

1/2
ω/2Θ0,ω ≤ CΘ0,ωBn.

Similar arguments imply that |||
∑n

i=1 ai,jε(ti)|||ω ≤ CΘ0,ωBn and |||Z ′
i;k|||ω ≤

CΘ0,ωBn. Hence,

|||Ln − E(Ln | A)|||2ω/2

=
∣∣∣∣∣∣∣∣∣ n∑

k=−∞
Pk(Ln)

∣∣∣∣∣∣∣∣∣2
ω/2

=
[
E
{

lim
h→−∞

∣∣∣ n∑
k=h

Pk(Ln)
∣∣∣ω/2}]4/ω

≤ lim
h→−∞

∣∣∣∣∣∣∣∣∣ n∑
k=h

Pk(Ln)
∣∣∣∣∣∣∣∣∣2
ω/2

≤ C lim
h→−∞

n∑
k=h

|||Pk(Ln)|||2ω/2 = C
n∑

k=−∞
|||Pk(Ln)|||2ω/2

≤ C

n∑
k=−∞

{ n∑
j=1

|||ε(tj) − ε′(tj ; k)|||ω
∣∣∣∣∣∣∣∣∣ n∑

i=1
ai,jε(ti)

∣∣∣∣∣∣∣∣∣
ω

}2

+ C

n∑
k=−∞

{ n∑
i=1

|||ε(ti) − ε′(ti; k)|||ω|||Z ′
i;k|||ω

}2

≤ CΘ2
0,ωB

2
n

n∑
k=−∞

( n∑
j=max(1,k)

Δj−k,ω

)2

≤ CΘ3
0,ωB

2
n

n∑
k=−∞

n∑
j=max(1,k)

Δj−k,ω

= CΘ3
0,ωB

2
n

n∑
j=1

j∑
k=−∞

Δj−k,ω ≤ CΘ4
0,ωB

2
nn,

where the first inequality comes from Fatou’s lemma, the second inequality is
due to Lemma 7 of [43] and the third inequality is from (A.7). This completes
the proof.

Lemma 5. Under Conditions A1–A6 and A8, if n−1S̃T S̃ P→ M1 � 0 and
n−1S̃TΣnS̃

P→ M2 � 0, then n1/2(ĥ− h) D→ N(0,M−1
1 M2M

−1
1 ).
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Proof. Using expressions ĥ = (S̃T S̃)−1S̃T Ỹ = (S̃T S̃)−1S̃T (S̃h + d̃ + ε̃) =
h + (S̃T S̃)−1S̃T (d̃ + ε̃), we have

n1/2(ĥ− h) = (n−1S̃T S̃)−1{n−1/2S̃T (d̃ + ε̃)}
= (n−1S̃T S̃)−1(n−1/2S̃T d̃ + n−1/2S̃Tε− n−1/2S̃TSbε).

To complete the proof, we will show that

n−1/2S̃T d̃ = oP(1), n−1/2S̃Tε
D→ N(0�m,M2), and n−1/2S̃TSbε = oP(1).

By part (i) of Lemma 3, we can show n−1/2S̃T d̃ = oP(1) and n−1/2S̃TSbε =
oP(1) using (A.15) of [46] and Lemma 2, respectively. Next, we only need to
prove n−1/2S̃Tε

D→ N(0�m,M2).
Let ln = log(n)�, an = n1/2−α�, and wn = n/ln − an�, where α ∈

(0, 1/2) is a constant. Define ε∗ = (ε∗(t1), . . . , ε∗(tn))T with ε∗(ti) = E{ε(ti) |
ei−an , . . . , ei}. Then, to show n−1/2S̃Tε

D→ N(0�m,M2) is equivalent to showing
n−1/2S̃Tε∗

D→ N(0�m,M2) because

var{n−1/2eTi;�mS̃T (ε− ε∗)}≤CE(‖n−1/2eTi;�mS̃T ‖2
2)Θ2

an+1,2 ≤ CΘ2
an+1,2 = o(1)

for any i = 1, . . . , �m, by Lemma A1 in [45].
To demonstrate n−1/2S̃Tε∗

D→ N(0�m,M2), it suffices to prove the result
as follows: n−1/2(n−1S̃TΣnS̃)−1/2S̃Tε∗

D→ N(0�m, I�m), which is equivalent
to showing n−1/2uT (n−1S̃TΣnS̃)−1/2S̃Tε∗

D→ N(0, 1) for any u ∈ R�m with
‖u‖2 = 1.

First, we will show that, given S = s, if ‖(n−1s̃TΣns̃)−1/2‖2 ≤ C < ∞ for n
large enough, where s̃ = (In − Sb)s, then

P{n−1/2uT (n−1s̃TΣns̃)−1/2s̃Tε∗ ≤ x} → Φ(x),

where Φ(x) is the C.D.F. of N(0, 1). Denote by v = (v1, . . . , vn) =
n−1/2uT (n−1s̃TΣns̃)−1/2s̃T . Define

Ξi =
(i−1)(wn+an)+wn∑
j=(i−1)(wn+an)+1

vjε
∗(tj), i = 1, . . . , ln,

Ξ′
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i(wn+an)∑
j=(i−1)(wn+an)+wn+1

vjε
∗(tj), i = 1, . . . , ln − 1,

n∑
j=(i−1)(wn+an)+wn+1

vjε
∗(tj), i = ln.

Therefore,
∑ln

i=1 Ξi +
∑ln

i=1 Ξ′
i = vε∗. For n large enough, {Ξi}lni=1 are indepen-

dent and {Ξ′
i}lni=1 are independent, since ε∗ is an-dependent.
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In the following, we will show
∑ln

i=1 Ξi
D→ N(0, 1) and

∑ln
i=1 Ξ′

i = oP(1). Since
‖In − Sb‖1 ≤ C, ‖In − Sb‖∞ ≤ C, ‖(n−1s̃TΣns̃)−1/2‖2 ≤ C, and
max1≤i≤n,1≤j≤�m |s(i, j)| ≤ C, we have maxj∈{1,...,n} |vj | = O(n−1/2). There-
fore, var(

∑ln
i=1 Ξ′

i) =
∑ln

i=1 var(Ξ′
i) = O(lna2

n/n) = o(1), which, together with
E(

∑ln
i=1 Ξ′

i) = 0 implies
∑ln

i=1 Ξ′
i = oP(1). By Lemma A1 in [45], var{v(ε −

ε∗)} ≤ C‖v‖2
2Θ2

an+1,2 ≤ CΘ2
an+1,2 = o(1). Then, limn→∞ var(

∑ln
i=1 Ξi +∑ln

i=1 Ξ′
i) = limn→∞ var(vε∗) = var(vε) = 1, implying that

limn→∞ var(
∑ln

i=1 Ξi) = 1, since var(
∑ln

i=1 Ξ′
i) = o(1). From Lemma A1 of [45],

the Liapounov condition follows

ln∑
i=1

E(|Ξi|2+c) ≤ C

ln∑
i=1

{ (i−1)(wn+an)+wn∑
j=(i−1)(wn+an)+1

v2
j

}1+c/2
Θ2+c

0,2+c

= O(lnw1+c/2
n /n1+c/2) = o(1)

for a small constant c > 0. Hence, by the central limit theorem,

P{n−1/2uT (n−1S̃TΣnS̃)−1/2S̃Tε∗ ≤ x | S = s}
= P{n−1/2uT (n−1s̃TΣns̃)−1/2s̃Tε∗ ≤ x} → Φ(x),

when ‖(n−1s̃TΣns̃)−1/2‖2 ≤ C for n large enough.
Since n−1S̃TΣnS̃

P→ M2 � 0, then for any subsequence {nl}∞l=1, there ex-
ists a further subsequence {nlj}∞j=1 such that n−1

lj
S̃TΣnlj

S̃ a.s.→ M2 as j → ∞.
Therefore, for almost sure S = s, there exists a constant C > 0 such that
‖(n−1

lj
s̃TΣnlj

s̃)−1/2‖2 ≤ C for nlj large enough. Then, as j → ∞,

P{n−1/2
lj

uT (n−1
lj

S̃TΣnlj
S̃)−1/2S̃Tε∗ ≤ x | S = s}

= P{n−1/2
lj

uT (n−1
lj

s̃TΣnlj
s̃)−1/2s̃Tε∗ ≤ x} → Φ(x),

which implies that

P{n−1/2
lj

uT (n−1
lj

S̃TΣnlj
S̃)−1/2S̃Tε∗ ≤ x}

= E[P{n−1/2
lj

uT (n−1
lj

S̃TΣnlj
S̃)−1/2S̃Tε∗ ≤ x | S}] → Φ(x)

by dominated convergence theorem.
Then, we conclude that

P{n−1/2uT (n−1S̃TΣnS̃)−1/2S̃Tε∗ ≤ x} → Φ(x) as n → ∞.

This completes the proof.

Lemma 6. Under Condition A, if n−1S̃T S̃ P→ M1 and n−1S̃TΣnS̃
P→ M2,

where M1 and M2 are (�m) × (�m) positive-definite matrices, then n−1S̃T Σ̂S̃−
n−1S̃TΣnS̃ = oP(1).
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Proof. Let

n−1S̃T Σ̂S̃ − n−1S̃TΣnS̃

= (n−1S̃T Σ̂S̃ − n−1S̃T Σ̂∗S̃) + {n−1S̃T Σ̂∗S̃ − n−1S̃T (Σn ◦ T)S̃}
+ {n−1S̃T (Σn ◦ T)S̃ − n−1S̃TΣnS̃}

= I + II + III,

where Σ̂∗ = {(Ỹ − S̃h)(Ỹ − S̃h)T } ◦ T. It suffices to show that I = oP(1),
II = oP(1) and III = oP(1).

First, for term I,

Σ̂ − Σ̂∗ − κn In = {(Ỹ − S̃ ĥ)(Ỹ − S̃ ĥ)T − (Ỹ − S̃h)(Ỹ − S̃h)T } ◦ T

= [{S̃(h− ĥ) + d̃ + ε̃}{S̃(h− ĥ) + d̃ + ε̃}T − (d̃ + ε̃)(d̃ + ε̃)T ] ◦ T

= {S̃(h− ĥ)(h− ĥ)T S̃T + S̃(h− ĥ)(d̃ + ε̃)T + (d̃ + ε̃)(h− ĥ)T S̃T } ◦ T,

which implies

I − κn/nS̃T S̃ = n−1S̃T (Σ̂ − Σ̂∗ − κn In)S̃

= n−1
n∑

i=1

n∑
j=1

(eTi;nS̃)T (eTj;nS̃){eTi;nS̃(h− ĥ)(h− ĥ)T S̃Tej;n

+ eTi;nS̃(h− ĥ)(d̃ + ε̃)Tej;n + eTi;n(d̃ + ε̃)(h− ĥ)T S̃Tej;n}T(i, j)

= n−1
n∑

i=1

n∑
j=1

(eTi;nS̃)T (eTj;nS̃){(h− ĥ)T S̃Tej;ne
T
i;nS̃

+ (d̃ + ε̃)Tej;neTi;nS̃ + (d̃ + ε̃)Tei;neTj;nS̃}T(i, j)(h− ĥ).

Since n−1S̃T S̃ P→ M1 and κn = o(1), we have κn/nS̃T S̃ = oP(1). From Lemma 5,
we have h − ĥ = OP(n−1/2). Since ‖eTi;nS̃‖2 ≤ C almost surely, and E{|(d̃ +
ε̃)Tei;n|} ≤ C, we have E{‖(h − ĥ)T S̃Tej;ne

T
i;nS̃ + (d̃ + ε̃)Tej;neTi;nS̃ + (d̃ +

ε̃)Tei;neTj;nS̃‖2} ≤ C for any i, j = 1, . . . , n. Hence, I = OP(rn/n1/2), where
rn = n−1 ∑n

i=1
∑n

j=1 |T(i, j)| ≤ ‖T‖1 = o(n1/2) from Condition A9.
Second, for the term II,

II = n−1S̃T [{(d̃ + ε̃)(d̃ + ε̃)T } ◦ T]S̃ − n−1S̃T (Σn ◦ T)S̃

= n−1S̃T [{(d̃− Sbε)(d̃− Sbε)T + (d̃− Sbε)εT + ε(d̃− Sbε)T } ◦ T]S̃

+ n−1S̃T [{εεT − E(εεT )} ◦ T]S̃

= n−1S̃T [{(d̃− Sbε)(d̃− Sbε)T } ◦ T]S̃ + n−1S̃T [{(d̃− Sbε)εT } ◦ T]S̃

+ n−1S̃T [{ε(d̃− Sbε)T } ◦ T]S̃

+ n−1
n∑

i=1

n∑
j=1

(eTi;nS̃)T (eTj;nS̃)[ε(ti)ε(tj) − E{ε(ti)ε(tj)}]T(i, j)
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= II1 + II2 + II3 + II4.

From (A.15) of [46], we know that supnbL≤i≤n−nbL |eTi;nd̃| = o(1) and
sup1≤i≤n |eTi;nd̃| ≤ C, which, together with sup1≤i≤n E{(eTi;nSbε)4} = o(1) (by
Lemma 2), implies

sup
nbL≤i≤n−nbL,1≤j≤n

E[{eTi;n(d̃− Sbε)(d̃− Sbε)Tej;nT(i, j)}2] = o(1),

sup
nbL≤i≤n−nbL,1≤j≤n

E[{eTi;n(d̃− Sbε)εTej;nT(i, j)}2] = o(1).

Part (i) of Lemma 3 implies II1, II2 = oP(1). Since II3 = IIT2 , we have II3 =
oP(1). From Lemma 4 and the fact that ‖eTi;nS̃‖2 ≤ C almost surely, we know
II4 = OP(Bn/n

1/2), where Bn = max(max1≤j≤n[
∑n

i=1{T(i, j)}2]1/2,
max1≤i≤n[

∑n
j=1{T(i, j)}2]1/2). From Condition A9,

∑n
i=1{T(i, j)}2 ≤∑n

i=1 |T(i, j)| ≤ ‖T‖1 = o(n1/2) for any j = 1, . . . , n. Since T is symmetric,
Bn = o(n1/4). Hence, II4 = oP(1).

Finally, III = o(1) due to part (i) of Lemma 3 and the fact that
max1≤i,j≤n |eTi;n(Σn◦T−Σn)ej;n| = o(1) following Condition A9 and Lemma 1.
This completes the proof.

Proof of Theorem 1. From Condition A8, we have ‖Σn‖1 =‖Σn‖∞ ≤ n1/2‖Σn‖2
=n1/2λmax(Σn)=O(n1/2)=o(n). Lemma 3 implies n−1S̃TΣnS̃−E(n−1S̃TΣnS̃)
= oP(1), n−1 S̃T S̃ − E(n−1S̃T S̃) = oP(1), ‖E(n−1S̃TΣnS̃)‖2 ≤ C, and
‖E(n−1S̃T S̃)‖2 ≤ C. Hence, for any subsequence {nl}∞l=1, there is a further
subsequence {nlj}∞j=1 such that n−1

lj
S̃T S̃ P→ M∗

1 and n−1
lj

S̃TΣnlj
S̃ P→ M∗

2 as
j → ∞. From the proof of Lemma A.6 of [46] and Condition A10, we can
show that M∗

1 and M∗
2 are positive definite. From Lemma 5, n1/2

lj
(ĥ − h) D→

N(0,M∗−1
1 M∗

2M
∗−1
1 ), which implies {A(S̃T S̃)−1S̃TΣnlj

S̃(S̃T S̃)−1AT }−1/2(Aĥ−
Ah) D→ N(0k, Ik) as j → ∞. Hence, as n → ∞:

{A(S̃T S̃)−1S̃TΣnS̃(S̃T S̃)−1AT }−1/2(Aĥ− Ah) D→ N(0k, Ik)

and W(Σn; b) D→ χ2
k.

From Lemma 6, n−1
lj

S̃T Σ̂S̃ − n−1
lj

S̃TΣnlj
S̃ = oP(1). Then, n−1

lj
S̃T Σ̂S̃ P→ M∗

2

and thus, {A(S̃T S̃)−1S̃T Σ̂S̃(S̃T S̃)−1AT }−1/2(Aĥ−Ah) D→ N(0k, Ik) as j → ∞,
which implies that as n → ∞,

{A(S̃T S̃)−1S̃T Σ̂S̃(S̃T S̃)−1AT }−1/2(Aĥ− Ah) D→ N(0k, Ik) and W(Σ̂; b) D→ χ2
k.

This completes the proof.

Proof of Theorem 2. Note that

W(Σn; b) = (Aĥ− Ah)T {A(S̃T S̃)−1S̃TΣnS̃(S̃T S̃)−1AT }−1(Aĥ− Ah)
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+ 2(Ah)T {A(S̃T S̃)−1S̃TΣnS̃(S̃T S̃)−1AT }−1(Aĥ− Ah)

+ (Ah)T {A(S̃T S̃)−1S̃TΣnS̃(S̃T S̃)−1AT }−1(Ah)
= I + II + III.

From the proof of Theorem 1 and assumptions n−1S̃T S̃ P→M1 and n−1S̃TΣnS̃
P→

M2, it follows that n−1I = OP(n−1), n−1II = OP(n−1/2), and n−1III P→
(Ah)T (AM−1

1 M2M
−1
1 AT )−1(Ah). Similar arguments and Lemma 6 imply

n−1W(Σ̂; b) P→ (Ah)T (AM−1
1 M2M

−1
1 AT )−1(Ah). This completes the proof.

Proof of Corollary 1. As in the proof of Theorem 1, for any subsequence {nl}∞l=1,
there is a further subsequence {nlj}∞j=1 such that n−1

lj
S̃T S̃ P→ M∗

1 , and

n−1
lj

S̃TΣnlj
S̃ P→ M∗

2 as j → ∞, where M∗
1 and M∗

2 are positive definite matrices.

From the proof of Theorem 2, n−1
lj

W(Σnlj
; b) P→ (Ah)T (AM∗−1

1 M∗
2M

∗−1
1 AT )−1

(Ah). Therefore, for any subsequence {nl}∞l=1, there is a further subsequence
{nlj}∞j=1 such that W(Σnlj

; b) P→ ∞ as j → ∞. Hence, W(Σn; b) P→ ∞ as

n → ∞. Similarly, we can show W(Σ̂; b) P→ ∞ as n → ∞ by Lemma 6. This
completes the proof.

Proof of Theorem 3. Following the proof of Theorem 1, we have

{A(S̃T S̃)−1S̃TΣnS̃(S̃T S̃)−1AT }−1/2(Aĥ− Ah) D→ N(0k, Ik), as n → ∞.

Since n−1S̃T S̃ P→ M1 and n−1S̃TΣnS̃
P→ M2, it follows that

{A(S̃T S̃)−1S̃TΣnS̃(S̃T S̃)−1AT }−1/2(Ah) P→ (AM−1
1 M2M

−1
1 AT )−1/2c.

Therefore,

{A(S̃T S̃)−1S̃TΣnS̃(S̃T S̃)−1AT }−1/2(Aĥ) D→ N((AM−1
1 M2M

−1
1 AT )−1/2c, Ik),

which implies that W(Σn; b) D→ χ2
k(τ2). The result for W(Σ̂; b) follows from

Lemma 6. This completes the proof.

Proof of Proposition 1. From (5.4), Tgn is symmetric, Toeplitz and satisfies 1 =
Tgn(1, 1) ≥ Tgn(2, 1) ≥ · · · ≥ Tgn(n, 1) ≥ 0. Since gn = o(n1/2), we have

‖Tgn‖1 ≤ 2
gn∑
i=1

{1 − (i− 1)/gn} = O(gn) = o(n1/2).

Let xn = g1/2
n �. Since limn→∞ gn = ∞, it follows that limn→∞ xn = ∞ and

Tgn(xn, 1) = 1 − (xn − 1)/gn = 1 − (g1/2
n � − 1)/gn → 1 as n → ∞.

It remains to show that Tgn is positive semidefinite. Consider an MA(gn−1)
process {ζi}ni=1 defined as ζi = zi + zi−1 + · · · + zi−(gn−1), where {zi} are i.i.d.
white noise terms with E(zi) = 0 and var(zi) = 1. The auto-covariance matrix
of {ζi}ni=1 is gnTgn which indicates that Tgn � 0. This completes the proof.
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