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Abstract: The classical quadratic loss for the partially linear model (PLM) and the likelihood
function for the generalized PLM are not resistant to outliers. This inspires us to propose a class of
“robust-Bregman divergence (BD)” estimators of both the parametric and nonparametric components
in the general partially linear model (GPLM), which allows the distribution of the response variable
to be partially specified, without being fully known. Using the local-polynomial function estimation
method, we propose a computationally-efficient procedure for obtaining “robust-BD” estimators and
establish the consistency and asymptotic normality of the “robust-BD” estimator of the parametric
component βo. For inference procedures of βo in the GPLM, we show that the Wald-type test
statistic Wn constructed from the “robust-BD” estimators is asymptotically distribution free under
the null, whereas the likelihood ratio-type test statistic Λn is not. This provides an insight into the
distinction from the asymptotic equivalence (Fan and Huang 2005) between Wn and Λn in the PLM
constructed from profile least-squares estimators using the non-robust quadratic loss. Numerical
examples illustrate the computational effectiveness of the proposed “robust-BD” estimators and
robust Wald-type test in the appearance of outlying observations.

Keywords: Bregman divergence; generalized linear model; local-polynomial regression; model check;
nonparametric test; quasi-likelihood; semiparametric model; Wald statistic

1. Introduction

Semiparametric models, such as the partially linear model (PLM) and generalized PLM, play an
important role in statistics, biostatistics, economics and engineering studies [1–5]. For the response
variable Y and covariates (X, T), where X = (X1, . . . , Xd)

T ∈ Rd and T ∈ T ⊆ RD, the PLM, which is
widely used for continuous responses Y, describes the model structure according to:

Y = XT βo + ηo(T) + ε, E(ε | X, T) = 0, (1)

where βo = (β1;o, . . . , βd;o)
T is a vector of unknown parameters and ηo(·) is an unknown smooth

function; the generalized PLM, which is more suited to discrete responses Y and extends the
generalized linear model [6], assumes:

m(x, t) = E(Y | X = x, T = t) = F−1(xT βo + ηo(t)), (2)

Y | (X, T) ∼ exponential family of distributions, (3)

where F is a known link function. Typically, the parametric component βo is of primary interest,
while the nonparametric component ηo(·) serves as a nuisance function. For illustration clarity,
this paper focuses on D = 1. An important application of PLM to brain fMRI data was given in [7] for
detecting activated brain voxels in response to external stimuli. There, βo corresponds to the part of
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hemodynamic response values, which is the object of primary interest to neuroscientists; ηo(·) is the
slowly drifting baseline of time. Determining whether a voxel is activated or not can be formulated as
testing for the linear form of hypotheses,

H0 : Aβo = g0 versus H1 : Aβo 6= g0, (4)

where A is a given k× d full row rank matrix and g0 is a known k× 1 vector.
Estimation of the parametric and nonparametric components of PLM and generalized PLM has

received much attention in the literature. On the other hand, the existing work has some limitations:
(i) The generalized PLM assumes that Y | (X, T) follows the distribution in (3), so that the likelihood
function is fully available. From the practical viewpoint, results from the generalized PLM are not
applicable to situations where the distribution of Y | (X, T) either departs from (3) or is incompletely
known. (ii) Some commonly-used error measures, such as the quadratic loss in PLM for Gaussian-type
responses (see for example [7,8]) and the (negative) likelihood function used in the generalized PLM,
are not resistant to outliers. The work in [9] studied robust inference based on the kernel regression
method for the generalized PLM with a canonical link, based on either the (negative) likelihood
or (negative) quasi-likelihood as the error measure, and illustrated numerical examples with the
dimension d = 1. However, the quasi-likelihood is not suitable for the exponential loss function
(defined in Section 2.1), commonly used in machine learning and data mining. (iii) The work in
[8] developed the inference of (4) for PLM, via the classical quadratic loss as the error measure,
and demonstrated that the asymptotic distributions of the likelihood ratio-type statistic and Wald
statistic under the null of (4) are both χ2

k. It remains unknown whether this conclusion holds when the
tests are constructed based on robust estimators.

Without completely specifying the distribution of Y | (X, T), we assume:

var(Y | X = x, T = t) = V(m(x, t)), (5)

with a known functional form of V(·). We refer to a model specified by (2) and (5) as the “general
partially linear model” (GPLM). This paper aims to develop robust estimation of GPLM and robust
inference of βo, allowing the distribution of Y | (X, T) to be partially specified. To introduce robust
estimation, we adopt a broader class of robust error measures, called “robust-Bregman divergence (BD)”
developed in [10], for a GLM, in which BD includes the quadratic loss, the (negative) quasi-likelihood,
the exponential loss and many other commonly-used error measures as special cases. We propose
the “robust-BD estimators” for both the parametric and nonparametric components of the GPLM.
Distinct from the explicit-form estimators for PLM using the classical quadratic loss (see [8]), the
“robust-BD estimators” for GPLM do not have closed-form expressions, which makes the theoretical
derivation challenging. Moreover, the robust-BD estimators, as numerical solutions to non-linear
optimization problems, pose key implementation challenges. Our major contributions are given below.

• The robust fitting of the nonparametric component ηo(·) is formulated using the local-polynomial
regression technique [11]. See Section 2.3.

• We develop a coordinate descent algorithm for the robust-BD estimator of βo, which is
computationally efficient particularly when the dimension d is large. See Section 3.

• Theorems 1 and 2 demonstrate that under the GPLM, the consistency and asymptotic normality
of the proposed robust-BD estimator for βo are achieved. See Section 4.

• For robust inference of βo, we propose a robust version of the Wald-type test statistic Wn, based on
the robust-BD estimators, and justify its validity in Theorems 3–5. It is shown to be asymptotically
χ2 (central) under the null, thus distribution free, and χ2 (noncentral) under the contiguous
alternatives. Hence, this result, when applied to the exponential loss, as well as other loss
functions in the wider class of BD, is practically feasible. See Section 5.1.
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• For robust inference of βo, we re-examine the likelihood ratio-type test statistic Λn, constructed
by replacing the negative log-likelihood with the robust-BD. Our Theorem 6 reveals that the
asymptotic null distribution of Λn is generally not χ2, but a linear combination of independent
χ2 variables, with weights relying on unknown quantities. Even in the particular case of using
the classical-BD, the limit distribution is not invariant with re-scaling the generating function of
the BD. Moreover, the limit null distribution of Λn (in either the non-robust or robust version)
using the exponential loss, which does not belong to the (negative) quasi-likelihood, but falls in
BD, is always a weighted χ2, thus limiting its use in practical applications. See Section 5.2.

Simulation studies in Section 6 demonstrate that the proposed class of robust-BD estimators
and robust Wald-type test either compare well with or perform better than the classical non-robust
counterparts: the former is less sensitive to outliers than the latter, and both perform comparably well
for non-contaminated cases. Section 7 illustrates some real data applications. Section 8 ends the paper
with brief discussions. Details of technical derivations are relegated to Appendix A.

2. Robust-BD and Robust-BD Estimators

This section starts with a brief review of BD in Section 2.1 and “robust-BD” in Section 2.2, followed
by the proposed “robust-BD” estimators of ηo(·) and βo in Sections 2.3 and 2.4.

2.1. Classical-BD

To broaden the scope of robust estimation and inference, we consider a class of error measures
motivated from the Bregman divergence (BD). For a given concave q-function, [12] defined a
bivariate function,

Qq(ν, µ) = −q(ν) + q(µ) + (ν− µ)q′(µ). (6)

We call Qq the BD and call q the generating q-function of the BD. For example, a function
q(µ) = aµ−µ2 for some constant a yields the quadratic loss Qq(Y, µ) = (Y−µ)2. For a binary response
variable Y, q(µ) = min{µ, (1− µ)} gives the misclassification loss Qq(Y, µ) = I{Y 6= I(µ > 1/2)},
where I(·) is an indicator function; q(µ) = −2{µ log(µ) + (1− µ) log(1− µ)} gives the Bernoulli
deviance loss log-likelihood Qq(Y, µ) = −2{Y log(µ) + (1−Y) log(1− µ)}; q(µ) = 2 min{µ, (1− µ)}
results in the hinge loss Qq(Y, µ) = max{1− (2Y− 1) sign(µ− .5), 0} of the support vector machine;
q(µ) = 2{µ(1− µ)}1/2 yields the exponential loss Qq(Y, µ) = exp[−(Y− .5) log{µ/(1− µ)}] used in
AdaBoost [13]. Moreover, [14] showed that if:

q(µ) =
∫ µ

a

s− µ

V(s)
ds, (7)

with a finite constant a such that the integral is well defined, then Qq(y, µ) matches the “classical
(negative) quasi-likelihood” function.

2.2. Robust-BD ρq(y, µ)

Let r(y, µ) = (y− µ)/
√

V(µ) denote the Pearson residual, which reduces to the standardized
residual for linear models. In contrast to the “classical-BD”, denoted by Qq in (6), the “robust-BD”
developed in [10] for a GLM [6], is formed by:

ρq(y, µ) =
∫ µ

y
ψ(r(y, s)){q′′(s)

√
V(s)}ds− G(µ), (8)
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where ψ(r) is chosen to be a bounded, odd function, such as the Huber ψ-function [15],
ψ(r) = r min(1, c/|r|), and the bias-correction term, G(µ), entails the Fisher consistency of the
parameter estimator and satisfies:

G′(µ) = G′1(µ){q′′(µ)
√

V(µ)},

with
G′1(m(x, t)) = E{ψ(r(Y, m(x, t))) | X = x, T = t}. (9)

We make the following discussions regarding features of the “robust-BD”. To facilitate the
discussion, we first introduce some necessary notation. Assume that the quantities:

pj(y; θ) =
∂j

∂θ j ρq(y, F−1(θ)), j = 0, 1, . . . , (10)

exist finitely up to any order required. Then, we have the following expressions,

p1(y; θ) = {ψ(r(y, µ))− G′1(µ)}{q′′(µ)
√

V(µ)}/F′(µ),

p2(y; θ) = A0(y, µ) + {ψ(r(y, µ))− G′1(µ)}A1(µ), (11)

p3(y; θ) = A2(y, µ) + {ψ(r(y, µ))− G′1(µ)}A′1(µ)/F′(µ),

where µ = F−1(θ),

A0(y, µ) = −
[
ψ′(r(y, µ))

{
1 +

y− µ√
V(µ)

× V′(µ)
2
√

V(µ)

}
+ G′′1 (µ)

√
V(µ)

] q′′(µ)
{F′(µ)}2 ,

A1(µ) = [{q(3)(µ)
√

V(µ) + 2−1q′′(µ)V′(µ)/
√

V(µ)}F′(µ) − q′′(µ)
√

V(µ)F′′(µ)]/{F′(µ)}3 and
A2(y, µ) = [∂A0(y, µ)/∂µ + ∂{ψ(r(y, µ))− G′1(µ)}/∂µ A1(µ)]/F′(µ). Particularly, p1(y; θ) contains
ψ(r); p2(y; θ) contains ψ(r), ψ′(r) and ψ′(r)r; p3(y; θ) contains ψ(r), ψ′(r), ψ′(r)r, ψ′′(r), ψ′′(r)r,
and ψ′′(r)r2, where r = r(y, µ) = (y− µ)/

√
V(µ) denotes the Pearson residual. Accordingly,

{pj(y; θ) : j = 1, 2, 3} depend on y through ψ(r) and its derivatives coupled with r. Then, we
observe from (9) and (11) that:

E{p1(Y; XT βo + ηo(T)) | X, T} = 0. (12)

In the particular choice of ψ(r) = r, it is clearly noticed from (9) that G′1(·) = 0, and thus, G′(·) = 0.
In such a case, the proposed “robust-BD” ρq(y, µ) reduces to the “classical-BD” Qq(y, µ).

2.3. Local-Polynomial Robust-BD Estimator of ηo(·)

Let {(Yi, X i, Ti)}n
i=1 be i.i.d. observations of (Y, X, T) captured by the GPLM in (2) and (5), where

the dimension d ≥ 1 is a finite integer. From (2), it is directly observed that if the true value of βo is
known, then estimating ηo(·) becomes estimating a nonparametric function; conversely, if the actual
form of ηo(·) is available, then estimating βo amounts to estimating a vector parameter.

To motivate the estimation of ηo(·) at a fitting point t, a proper way to characterize ηo(t) is desired.
For any given value of β, define:

S(a; t, β) = E{ρq(Y, F−1(XT β + a))w1(X) | T = t}, (13)

where a is a scalar, ρq(y, µ) is the “robust-BD” defined in (8), which aims to guard against outlying
observations in the response space of Y, and w1(·) ≥ 0 is a given bounded weight function that
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downweights high leverage points in the covariate space of X. See Sections 6 and 7 for an example of
w1(x). Set:

η
β
(t) = arg min

a∈R1
S(a; t, β). (14)

Theoretically, ηo(t) = η
βo
(t) will be assumed (in Condition A3) for obtaining asymptotically

unbiased estimators of ηo(·). Such property indeed holds, for example, when a classical quadratic loss
combined with an identity link is used in (14). Thus, we call η

β
(·) the “surrogate function” for ηo(·).

The characterization of the surrogate function η
β
(t) in (14) enables us to develop

its robust-BD estimator η̂
β
(t) based on nonparametric function estimation. Assume that

ηo(·) is (p + 1)-times continuously differentiable at the fitting point t. Denote by
ao(t) = (ηo(t), (ηo)(1)(t), . . . , (ηo)(p)(t)/p!)T ∈ Rp+1 the vector consisting of ηo(t) along with its
(re-scaled) derivatives. For observed covariates Ti close to the point t, the Taylor expansion implies that:

ηo(Ti) ≈ ηo(t) + (Ti − t)(ηo)(1)(t) + · · ·+ (Ti − t)p(ηo)(p)(t)/p!

= ti(t)Tao(t),
(15)

where ti(t) = (1, (Ti − t), . . . , (Ti − t)p)T . For any given value of β, let â(t; β) =

(â0(t; β), â1(t; β), . . . , âp(t; β))T be the minimizer of the criterion function,

Sn(a; t, β) =
1
n

n

∑
i=1

ρq(Yi, F−1(XT
i β + ti(t)Ta))w1(X i)Kh(Ti − t), (16)

with respect to a ∈ Rp+1, where Kh(·) = K(·/h)/h is re-scaled from a kernel function K and h > 0
is termed a bandwidth parameter. The first entry of â(t; β) supplies the local-polynomial robust-BD
estimator η̂

β
(t) of η

β
(t), i.e.,

η̂
β
(t) = eT

1,p+1

{
arg min

a∈Rp+1
Sn(a; t, β)

}
, (17)

where ej,p+1 denotes the j-th column of a (p + 1)× (p + 1) identity matrix.
It is noted that the reliance of η̂

β
(t) on β does not guarantee its consistency to ηo(t). Nonetheless,

it is anticipated from the uniform consistency of η̂
β̂

in Lemma 1 that η̂
β̂
(t) will offer a valid estimator

of ηo(t), provided that β̂ consistently estimates βo. Section 2.4 will discuss our proposed robust-BD
estimator β̂. Furthermore, Lemma 1 will assume (in Condition A1) that η

β
(t) is the unique minimizer

of S(a; t, β) with respect to a.

Remark 1. The case of using the “kernel estimation”, or locally-constant estimation, corresponds to the choice
of degree p = 0 in (15). In that case, the criterion function in (16) and the estimator in (17) reduce to:

Sn(a; t, β) =
1
n

n

∑
i=1

ρq(Yi, F−1(XT
i β + a))w1(X i)Kh(Ti − t), (18)

η̂
β
(t) = arg min

a∈R1
Sn(a; t, β), (19)

respectively.

2.4. Robust-BD Estimator of βo

For any given value of β, define:

J(β, η
β
) = E{ρq(Y, F−1(XT β + η

β
(T)))w2(X)}, (20)
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where η
β
(·) is as defined in (14) and w2(·) plays the same role as w1(·) in (13). Theoretically, it is

anticipated that:
βo = arg min

β∈Rd
J(β, η

β
), (21)

which holds for example in the case where a classical quadratic loss combined with an identity link is
used. To estimate βo, it is natural to replace (20) by its sample-based criterion,

Jn(β, η̂
β
) =

1
n

n

∑
i=1

ρq(Yi, F−1(XT
i β + η̂

β
(Ti)))w2(X i), (22)

where η̂
β
(·) is as defined in (17). Hence, a parametric estimator of βo is provided by:

β̂ = arg min
β∈Rd

Jn(β, η̂
β
). (23)

Finally, the estimator of ηo(·) is given by:

η̂(·) = η̂
β̂
(·).

To achieve asymptotic normality of β̂, Theorem 2 assumes (in Condition A2) that βo is the unique
minimizer in (21), a standard condition for consistent M-estimators [16].

As a comparison, it is seen that w1(·) in (16) is used to robustify covariates X i in estimating ηo(·),
w2(·) in (22) is used to robustify covariates X i in estimating βo and ρq(·, ·) serves to robustify the
responses Yi in both estimating procedures.

3. Two-Step Iterative Algorithm for Robust-BD Estimation

In a special case of using the classical quadratic loss combined with an identity link function, the
robust-BD estimators for parametric and nonparametric components have explicit expressions,

β̂ = (X̃Tw2X̃)−1(X̃Tw2ỹ), (η̂(T1), . . . , η̂(Tn))
T = Sh(y− Xβ̂), (24)

where w2 = diag(w2(X1), . . . , w2(Xn)), ỹ = (I− Sh)y, X̃ = (I− Sh)X, with I being an identity matrix,
y = (Y1, . . . , Yn)T , X = (X1, . . . , Xn)T the design matrix,

Sh =


eT

1,p+1[{T(T1)}TWw1 ;K(T1)T(T1)]
−1{T(T1)}TWw1 ;K(T1)

...
eT

1,p+1[{T(Tn)}TWw1 ;K(Tn)T(Tn)]−1{T(Tn)}TWw1 ;K(Tn)

 ,

and:
T(t) = (t1(t), . . . , tn(t))T , Ww1 ;K(t) = diag{w1(X i)Kh(Ti − t) : i = 1, . . . , n}.

When w1(x) = w2(x) ≡ 1, (24) reduces to the “profile least-squares estimators” of [8].
In other cases, robust-BD estimators from (17) and (23) do not have closed-form expressions and

need to be solved numerically, which are computationally challenging and intensive. We now discuss a

two-step robust proposal for iteratively estimating βo and ηo(·). Let β̂
[k−1]

and {η̂[k−1](Ti)}n
i=1 denote

the estimates in the (k− 1)-th iteration, where η̂[k−1](·) = η̂
β̂
[k−1] (·). The k-th iteration consists of two

steps below.

Step 1: Instead of solving (23) directly, we propose to solve a surrogate optimization problem,

β̂
[k]

= arg minβ∈Rd Jn(β, η̂[k−1]). This minimizer approximates β̂.
Step 2: Obtain η̂[k](Ti) = η̂

β̂
[k] (Ti), i = 1, . . . , n, where η̂

β
(t) is defined in (17).
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The algorithm terminates provided that ‖β̂[k] − β̂
[k−1]‖ is below some pre-specified threshold

value, and all {η̂[k](Ti)}n
i=1 stabilize.

3.1. Step 1

For the above two-step algorithm, we first elaborate on the procedure of acquiring β̂
[k]

in Step 1,
by extending the coordinate descent (CD) iterative algorithm [17] designed for penalized estimation
to our current robust-BD estimation, which is computationally efficient. For any given value of η,

by Taylor expansion, around some initial estimate β∗ (for example, β̂
[k−1]

), we obtain the weighted
quadratic approximation,

ρq(Yi, F−1(XT
i β + η)) ≈ 1

2
sI

i(ZI
i − XT

i β)2 + Ci,

where Ci is a constant not depending on β,

sI
i = p2(Yi; XT

i β∗ + η),
ZI

i = XT
i β∗ − p1(Yi; XT

i β∗ + η)/p2(Yi; XT
i β∗ + η),

with pj(y; θ) defined in (10). Hence,

Jn(β, η) =
1
n

n

∑
i=1

ρq(Yi, F−1(XT
i β + η))w2(X i)

≈ 1
2

n

∑
i=1

{
n−1sI

i w2(X i)
}
(ZI

i − XT
i β)2 + constant.

Thus it suffices to conduct minimization of ∑n
i=1 sI

i w2(X i)(ZI
i − XT

i β)2 with respect to β,
using a coordinate descent (CD) updating procedure. Suppose that the current estimate is

β̂
old

= (β̂old
1 , . . . , β̂old

d )T , with the current residual vector r̂old = (r̂old
1 , . . . , r̂old

n ) = zI − Xβ̂
old

,
where zI = (ZI

1, . . . , ZI
n)

T is the vector of pseudo responses. Adopting the Newton–Raphson algorithm,
the estimate of the j-th coordinate based on the previous estimate β̂old

j is updated to:

β̂new
j = β̂old

j +
∑n

i=1{sI
i w2(X i)}r̂old

i Xi,j

∑n
i=1{sI

i w2(X i)}X2
i,j

.

As a result, the residuals due to such an update are updated to:

r̂new
i = r̂old

i − Xi,j(β̂new
j − β̂old

j ), i = 1, . . . , n.

Cycling through j = 1, . . . , d, we obtain the estimate β̂
new

= (β̂new
1 , . . . , β̂new

d )T . Now, we set

η = η̂[k−1] and β∗ = β̂
[k−1]

. Iterate the process of weighted quadratic approximation followed by the

CD updating, for a number of times, until the estimate β̂
new

stabilizes to the solution β̂
[k]

.

The validity of β̂
[k]

in Step 1 converging to the true parameter βo is justified as follows.
(i) Standard results for M-estimation [16] indicate that the minimizer of Jn(β, η

βo
) is consistent with

βo. (ii) According to our Theorem 1 (ii) in Section 4.1, supt∈T |η̂β̂
(t)− η

βo
(t)| P−→ 0 for a compact

set T , where P−→ stands for convergence in probability. Using derivations similar to those of (A4)

gives supβ∈K |Jn(β, η̂
β̂
) − Jn(β, η

βo
)| P−→ 0 for any compact set K. Thus, minimizing Jn(β, η̂

β̂
) is

asymptotically equivalent to minimizing Jn(β, η
βo
). (iii) Similarly, provided that β̂

[k−1]
is close to β̂,
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minimizing Jn(β, η̂
β̂
[k−1] ) is asymptotically equivalent to minimizing Jn(β, η̂

β̂
). Assembling these three

results with the definition of β̂
[k]

yields:

β̂
[k]

= arg min
β

Jn(β, η̂
β̂
[k−1] )

= arg min
β

Jn(β, η̂
β̂
) + oP(1)

= arg min
β

Jn(β, η
βo
) + oP(1)

= βo + oP(1).

3.2. Step 2

In Step 2, obtaining η̂
β
(t) for any given values of β and t is equivalent to minimizing Sn(a; t, β)

in (16). Notice that the dimension (p + 1) of a is typically low, with degrees p = 0 or p = 1 being
the most commonly used in practice. Hence, the minimizer of Sn(a; t, β) can be obtained by directly
applying the Newton–Raphson iteration: for k = 0, 1, . . .,

a[k+1](t; β) = a[k](t; β)−
{∂2Sn(a; t, β)

∂a∂aT

∣∣∣
a=a[k](t;β)

}−1 ∂Sn(a; t, β)

∂a

∣∣∣
a=a[k](t;β)

,

where a[k](t; β) denotes the estimate in the k-th iteration, and:

∂Sn(a; t, β)

∂a
=

1
n

n

∑
i=1

p1(Yi; XT
i β + ti(t)Ta) ti(t)w1(X i)Kh(Ti − t),

∂2Sn(a; t, β)

∂a∂aT =
1
n

n

∑
i=1

p2(Yi; XT
i β + ti(t)Ta) ti(t)ti(t)T w1(X i)Kh(Ti − t).

The iterations terminate until the estimate η̂[k+1](t) = eT
1,p+1a[k+1](t; β) stabilizes.

Our numerical studies of the robust-BD estimation indicate that (i) the kernel regression method
can be both faster and stabler than the local-linear method; (ii) to estimate the nonparametric
component ηo(·), the local-linear method outperforms the kernel method, especially at the edges
of points {Ti}n

i=1; (iii) for the performance of the robust estimation of βo, which is of major interest,
there is a relatively negligible difference between choices of using the kernel and local-linear methods
in estimating nonparametric components.

4. Asymptotic Property of the Robust-BD Estimators

This section investigates the asymptotic behavior of robust-BD estimators β̂ and η̂
β̂
, under

regularity conditions. The consistency of β̂ to βo and uniform consistency of η̂
β̂

to ηo are

given in Theorem 1; the asymptotic normality of β̂ is obtained in Theorem 2. For the sake of
exposition, the asymptotic results will be derived using local-linear estimation with degree p = 1.
Analogous results can be obtained for local-polynomial methods with lengthier technical details and
are omitted.

We assume that T ∈ T , and let T0 ⊆ T be a compact set. For any continuous function v :
T 7→ R, define ‖v‖∞ = supt∈T |v(t)| and ‖v‖T0 ;∞ = supt∈T0

|v(t)|. For a matrix M, the smallest
and largest eigenvalues are denoted by λj(M), λmin(M) and λmax(M), respectively. Let ‖M‖ =

sup‖x‖=1 ‖Mx‖ = {λmax(MT M)}1/2 be the matrix L2 norm. Denote by P−→ convergence in probability

and D−→ convergence in distribution.
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4.1. Consistency

We first present Lemma 1, which states the uniform consistency of η̂
β
(·) to the surrogate function

η
β
(·). Theorem 1 gives the consistency of β̂ and η̂

β̂
.

Lemma 1 (For the non-parametric surrogate η
β
(·)). Let K ⊆ Rd and T0 ⊆ T be compact sets.

Assume Condition A1 and Condition B in the Appendix. If n → ∞, h → 0, nh → ∞, log(1/h)/(nh) → 0,

then supβ∈K ‖η̂β
− η

β
‖T0 ;∞

P−→ 0.

Theorem 1 (For βo and ηo(·)). Assume conditions in Lemma 1.

(i) If there exists a compact setK1 such that limn→∞ P(β̂ ∈ K1) = 1 and Condition A2 holds, then β̂
P−→ βo.

(ii) Moreover, if Condition A3 holds, then ‖η̂
β̂
− ηo‖T0 ;∞

P−→ 0.

4.2. Asymptotic Normality

The asymptotic normality of β̂ is provided in Theorem 2.

Theorem 2 (For the parametric part βo). Assume Conditions A and Condition B in the Appendix. If n→ ∞,
nh4 → 0 and log(1/h)/(nh2)→ 0, then:

√
n(β̂− βo)

D−→ N(0, H−1
0 Ω∗0H−1

0 ),

where:

H0 = E
[
p2(Y; XT βo + ηo(T))

{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}T
w2(X)

]
, (25)

and:

Ω∗0 = E
(

p2
1
(Y; XT βo + ηo(T))

[{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}
w2(X)− γ(T)

g2(T; T, β
o
)

w1(X)
]

×
[{

X +
∂η

β
(T)

∂β

∣∣∣
β=βo

}
w2(X)− γ(T)

g2(T; T, β
o
)

w1(X)
]T) (26)

with:

γ(t) = E
[
p2(Y; XT βo + ηo(t))

{
X +

∂η
β
(t)

∂β

∣∣∣
β=βo

}
w2(X)

∣∣∣T = t
]
,

g2(t; t, β) = E{p2(Y; XT β + η
β
(t))w1(X) | T = t}.

From Condition A1, (13) and (14), we can show that if w1(·) ≡ Cw2(·) for some constant
C ∈ (0, ∞), then γ(t) = 0. In that case, Ω∗0 = Ω0, where:

Ω0 = E
[
p2

1
(Y; XT βo + ηo(T))

{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}T
w2

2
(X)

]
. (27)

Consider the conventional PLM in (1), estimated using the classical quadratic loss, identity link
and w1(·) = w2(·) ≡ 1. If var(ε | X, T) ≡ σ2, then H−1

0 Ω0H−1
0 = σ2[E{var(X | T)}]−1, and thus,

the result of Theorem 2 agrees with that in [18].

Remark 2. Theorem 2 implies the root-n convergence rate of β̂. This differs from η̂
β̂
(t), which converges at

some rate incorporating both the sample size n and the bandwidth h, as seen in the proofs of Lemma 1 and
Theorem 2.
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5. Robust Inference for βo Based on BD

In many statistical applications, we will check whether or not a subset of explanatory variables
used is statistically significant. Specific examples include:

H0 : β j;o = 0, for j = j0,
H0 : β j;o = 0, for j = j1, . . . , j2.

These forms of linear hypotheses for βo can be more generally formulated as: (4).

5.1. Wald-Type Test Wn

We propose a robust version of the Wald-type test statistic,

Wn = n(Aβ̂− g0)
T(AĤ−1

0 Ω̂∗0Ĥ−1
0 AT)−1(Aβ̂− g0), (28)

based on the robust-BD estimator β̂ proposed in Section 2.4, where Ω̂∗0 and Ĥ0 are estimates of Ω∗0 and

H0 satisfying Ĥ−1
0 Ω̂∗0Ĥ−1

0
P−→ H−1

0 Ω∗0H−1
0 . For example,

Ĥ0 =
1
n

n

∑
i=1

p2(Yi; XT
i β̂ + η̂

β̂
(Ti))

{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=β̂

}{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=β̂

}T
w2(X i),

and:

Ω̂∗0 =
1
n

n

∑
i=1

p2
1
(Yi; XT

i β̂ + η̂
β̂
(Ti))

[{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=β̂

}
w2(X i)−

γ̂(Ti)

ĝ2(Ti; Ti, β̂)
w1(X i)

]
×
[{

X i +
∂η̂

β
(Ti)

∂β

∣∣∣
β=β̂

}
w2(X i)−

γ̂(Ti)

ĝ2(Ti; Ti, β̂)
w1(X i)

]T
,

fulfill the requirement, where:

∂η̂
β
(t)

∂β
= −

∑n
k=1 p2(Yk; XT

k β + η̂
β
(t))Xk w1(Xk)Kh(Tk − t)

∑n
k=1 p2(Yk; XT

k β + η̂
β
(t))w1(Xk)Kh(Tk − t)

,

γ̂(t) =
1
n

n

∑
k=1

p2(Yk; XT
k β̂ + η̂

β̂
(t))

{
Xk +

∂η̂
β
(t)

∂β

∣∣∣
β=β̂

}
w2(Xk)Kh(Tk − t),

ĝ2(t; t, β) =
1
n

n

∑
k=1

p2(Yk; XT
k β + η̂

β
(t))w1(Xk)Kh(Tk − t).

Again, we can verify that if w1(·) ≡ Cw2(·) for some constant C ∈ (0, ∞) and η̂
β
(t) is obtained

from kernel estimation method, then γ̂(t) = 0, and hence, Ω̂∗0 = Ω̂0, where:

Ω̂0 =
1
n

n

∑
i=1

p2
1
(Yi; XT

i β̂ + η̂
β̂
(Ti))

{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=β̂

}{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=β̂

}T
w2

2
(X i).

Theorem 3 justifies that under the null, Wn would for large n be distributed as χ2
k, thus

asymptotically distribution-free.

Theorem 3 (Wald-type test based on robust-BD under H0). Assume conditions in Theorem 2,

and Ĥ−1
0 Ω̂∗0Ĥ−1

0
P−→ H−1

0 Ω∗0H−1
0 in (28). Then, under H0 in (4), we have that:

Wn
D−→ χ2

k.
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Theorem 4 indicates that Wn has a non-trivial local power detecting contiguous alternatives
approaching the null at the rate n−1/2:

H1n : Aβo − g0 = c/
√

n {1 + o(1)}, (29)

where c = (c1, . . . , ck)
T 6= 0.

Theorem 4 (Wald-type test based on robust-BD under H1n). Assume conditions in Theorem 2,

and Ĥ−1
0 Ω̂∗0Ĥ−1

0
P−→ H−1

0 Ω∗0H−1
0 in (28). Then, under H1n in (29), Wn

D−→ χ2
k(τ

2), where
τ2 = cT(AH−1

0 Ω∗0H−1
0 AT)−1c > 0.

To appreciate the discriminating power of Wn in assessing the significance, the asymptotic power

is analyzed. Theorem 5 manifests that under the fixed alternative H1, Wn
P−→ +∞ at the rate n. Thus,

Wn has the power approaching to one against fixed alternatives.

Theorem 5 (Wald-type test based on robust-BD under H1). Assume conditions in Theorem

2, and Ĥ−1
0 Ω̂∗0Ĥ−1

0
P−→ H−1

0 Ω∗0H−1
0 in (28). Then, under H1 in (4), n−1Wn ≥

λ−1
max(AH−1

0 Ω∗0H−1
0 AT)‖Aβo − g0‖2 + oP(1).

For the conventional PLM in (1) estimated using the non-robust quadratic loss, [8] showed the
asymptotic equivalence between the Wald-type test and likelihood ratio-type test. Our results in the
next Section 5.2 reveal that such equivalence is violated when estimators are obtained using the robust
loss functions.

5.2. Likelihood Ratio-Type Test Λn

This section explores the degree to which the likelihood ratio-type test is extended to the
“robust-BD” for testing the null hypothesis in (4) for the GPLM. The robust-BD test statistic is:

Λn = 2n
{

min
β∈Rd :Aβ=g0

Jn(β, η̂
β
)− Jn(β̂, η̂

β̂
)
}

, (30)

where β̂ is the robust-BD estimator for βo developed in Section 2.4.
Theorem 6 indicates that the limit distribution of Λn under H0 is a linear combination of

independent chi-squared variables, with weights relying on some unknown quantities, thus not
distribution free.

Theorem 6 (Likelihood ratio-type test based on robust-BD under H0). Assume conditions in Theorem 2.

(i) Under H0 in (4), we obtain:

Λn
D−→

k

∑
j=1

λj{(AH−1
0 AT)−1(AV0AT)}Z2

j ,

where V0 = H−1
0 Ω∗0H−1

0 and {Zj}kj=1
i.i.d.∼ N(0, 1).

(ii) Moreover, if ψ(r) = r, w1(x) = w2(x) ≡ 1, and the generating q-function of BD satisfies:

q′′(m(x, t)) = − C
V(m(x, t))

, for a constant C > 0, (31)

then under H0 in (4), we have that Λn/C D−→ χ2
k.
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Theorem 7 states that Λn has non-trivial local power for identifying contiguous alternatives

approaching the null at rate n−1/2 and that Λn
P−→ +∞ at the rate n under H1, thus having the power

approaching to one against fixed alternatives.

Theorem 7 (Likelihood ratio-type test based on robust-BD under H1n and H1). Assume conditions in
Theorem 2. Let V0 = H−1

0 Ω∗0H−1
0 and λj = λj{(AH−1

0 AT)−1(AV0AT)}, j = 1, . . . , k.

(i) Under H1n in (29), Λn
D−→ ∑k

j=1(
√

λjZj + eT
j,kSc)2, where {Zj}kj=1

i.i.d.∼ N(0, 1), and S is a matrix

satisfying STS = (AH−1
0 AT)−1 and S(AV0AT)ST = diag(λ1, . . . , λk).

(ii) Under H1 in (4), n−1Λn ≥ c‖Aβo − g0‖2 + oP(1) for a constant c > 0.

5.3. Comparison between Wn and Λn

In summary, the test Wn has some advantages over the test Λn. First, the asymptotic null
distribution of Wn is distribution-free, whereas the asymptotic null distribution of Λn in general
depends on unknown quantities. Second, Wn is invariant with re-scaling the generating q-function of
the BD, but Λn is not. Third, the computational expense of Wn is much more reduced than that of Λn,
partly because the integration operations for ρq are involved in Λn, but not in Wn, and partly because
Λn requires both unrestricted and restricted parameter estimates, while Wn is useful in cases where
restricted parameter estimates are difficult to compute. Thus, Wn will be focused on in numerical
studies of Section 6.

6. Simulation Study

We conduct simulation evaluations of the performance of robust-BD estimation methods for
general partially linear models. We use the Huber ψ-function ψ(·) with c = 1.345. The weight
functions are chosen to be w1(x) = w2(x) = 1/{1 + ∑d

j=1(
xj−mj

sj
)2}1/2, where x = (x1, . . . , xd)

T ,

mj and sj denote the sample median and sample median absolute deviation of {Xi,j : i = 1, . . . , n}
respectively, j = 1, . . . , d. As a comparison, the classical non-robust estimation counterparts correspond
to using ψ(r) = r and w1(x) = w2(x) ≡ 1. Throughout the numerical work, the Epanechnikov kernel
function K(t) = 0.75 max(1− t2, 0) is used. All these choices (among many others) are for feasibility;
the issues on the trade-off between robustness and efficiency are not pursued further in the paper.

The following setup is used in the simulation studies. The sample size is n = 200, and the number
of replications is 500. (Incorporating a nonparametric component in the GPLM desires a larger n
when the number of covariates increases for better numerical performance.) Local-linear robust-BD
estimation is illustrated with the bandwidth parameter h to be 20% of the interval length of the variable
T. Results using other data-driven choices of h are similar and are omitted.

6.1. Bernoulli Responses

We generate observations {(X i, Ti, Yi)}n
i=1 randomly from the model,

Y | (X, T) ∼ Bernoulli(m(X, T)), X ∼ N(0, Σ), T ∼ Uniform(0, 1),

where Σ = (σjk ) with σjk = 0.2|j−k|, and X is independent of T. The link function is logit{m(x, t)} =
xT βo + ηo(t), where βo = (2, 2, 0, 0)T and ηo(t) = 2 sin{π(1 + 2t)}. Both the deviance and
exponential loss functions are employed as the BD.

For each generated dataset from the true model, we create a contaminated dataset, where 10 data
points (Xi,j, Yi) are contaminated as follows: they are replaced by (X∗i,j, Y∗i ), where Y∗i = 1 − Yi,
i = 1, . . . , 5,

X∗1,2 = 5 sign(U1 − 0.5), X∗2,2 = 5 sign(U2 − 0.5), X∗3,2 = 5 sign(U3 − 0.5),
X∗4,4 = 5 sign(U4 − 0.5), X∗5,1 = 5 sign(U5 − 0.5), X∗6,2 = 5 sign(U6 − 0.5),
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X∗7,3 = 5 sign(U7 − 0.5), X∗8,4 = 5 sign(U8 − 0.5), X∗9,2 = 5 sign(U9 − 0.5),
X∗10,3 = 5 sign(U10 − 0.5),

with {Ui}
i.i.d.∼ Uniform(0, 1).

Figures 1 and 2 compare the boxplots of (β̂ j − β j;o), j = 1, . . . , d, based on the non-robust and
robust-BD estimates, where the deviance loss and exponential loss are used as the BD in the top and
bottom panels respectively. As seen from Figure 1 in the absence of contamination, both non-robust
and robust methods perform comparably well. Besides, the bias in non-robust methods using the
exponential loss (with p2(y; θ) unbounded) is larger than that of the deviance loss (with p2(y; θ)

bounded). In the presence of contamination, Figure 2 reveals that the robust method is more effective
in decreasing the estimation bias without excessively increasing the estimation variance.
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Figure 1. Simulated Bernoulli response data without contamination. Boxplots of (β̂ j − β j;o),
j = 1, . . . , d (from left to right). (Left panels): non-robust method; (right panels): robust method.
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Figure 2. Simulated Bernoulli response data with contamination. The captions are identical to those in
Figure 1.
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For each replication, we calculate MSE(η̂) = n−1 ∑n
i=1{η̂β̂

(ti)− ηo(ti)}2. Figures 3 and 4 compare
the plots of η̂

β̂
(t) from typical samples, using non-robust and robust-BD estimates, where the

deviance loss and exponential loss are used as the BD in the top and bottom panels, respectively.
There, the typical sample in each panel is selected in a way such that its MSE value corresponds to
the 50-th percentile among the MSE-ranked values from 500 replications. These fitted curves reveal
little difference between using the robust and non-robust methods, in the absence of contamination.
For contaminated cases, robust estimates perform slightly better than non-robust estimates. Moreover,
the boundary bias issue arising from the curve estimates at the edges using the local constant method
can be ameliorated by using the local-linear method.
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0 0.5 1
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0 0.5 1
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Figure 3. Simulated Bernoulli response data without contamination. Plots of ηo(t) and η̂
β̂
(t).

(Left panels): non-robust method; (right panels): robust method.
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Figure 4. Simulated Bernoulli response data with contamination. Plots of ηo(t) and η̂
β̂
(t). (Left panels):

non-robust method; (right panels): robust method.
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6.2. Gaussian Responses

We generate independent observations {(X i, Ti, Yi)}n
i=1 from (X, T, Y) satisfying:

Y | (X, T) ∼ N(m(X, T), σ2), (X, Φ−1(T)) ∼ N(0, Σ),

where σ = 1, Σ = (σjk ) with σjk = 0.2|j−k|, Φ denotes the CDF of the standard normal distribution.
The link function is m(x, t) = xT βo + ηo(t), where βo = (2, −2, 1, −1, 0, 0)T and ηo(t) = 2 sin{π(1 +
2t)}. The quadratic loss is utilized as the BD.

For each dataset simulated from the true model, a contaminated data-set is created, where 10 data
points (Xi,j, Yi) are subject to contamination. They are replaced by (X∗i,j, Y∗i ), where Y∗i = Yi I{|Yi −
m(X i, Ti)|/σ > 2}+ 15 I{|Yi −m(X i, Ti)|/σ ≤ 2}, i = 1, . . . , 10,

X∗1,2 = 5 sign(U1 − 0.5), X∗2,2 = 5 sign(U2 − 0.5), X∗3,2 = 5 sign(U3 − 0.5),
X∗4,4 = 5 sign(U4 − 0.5), X∗5,6 = 5 sign(U5 − 0.5), X∗6,1 = 5 sign(U6 − 0.5),
X∗7,2 = 5 sign(U7 − 0.5), X∗8,3 = 5 sign(U8 − 0.5), X∗9,4 = 5 sign(U9 − 0.5),
X∗10,5 = 5 sign(U10 − 0.5),

with {Ui}
i.i.d.∼ Uniform(0, 1).

Figures 5 and 6 compare the boxplots of (β̂ j − β j;o), j = 1, . . . , d, on the top panels, and plots
of η̂

β̂
(t) from typical samples, on the bottom panels, using the non-robust and robust-BD estimates.

The typical samples are selected similar to those in Section 6.1. The simulation results in Figure 5
indicate that the robust method performs, as well as the non-robust method for estimating both the
parameter vector and non-parametric curve in non-contaminated cases. Figure 6 reveals that the
robust estimates are less sensitive to outliers than the non-robust counterparts. Indeed, the non-robust
method yields a conceivable bias for parametric estimation, and non-parametric estimation is worse
than that of the robust method.
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Figure 5. Simulated Gaussian response data without contamination. Top panels: boxplots of (β̂ j − β j;o),
j = 1, . . . , d (from left to right). Bottom panels: plots of ηo(t) and η̂

β̂
(t). (Left panels): non-robust

method; (right panels): robust method.
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Figure 6. Simulated Gaussian response data with contamination. Top panels: boxplots of
(β̂ j − β j;o), j = 1, . . . , d (from left to right). Bottom panels: plots of ηo(t) and η̂

β̂
(t). (Left panels):

non-robust method; (right panels): robust method.

Figure 7 gives the QQ plots of the (first to 95-th) percentiles of the Wald-type statistic Wn versus
those of the χ2

2 distribution for testing the null hypothesis:

H0 : β2;o = −2 and β4;o = −1. (32)

The plots depict that in both clean and contaminated cases, the robust Wn (in right panels) closely
follows the χ2

2 distribution, lending support to Theorem 3. On the other hand, the non-robust Wn

agrees well with the χ2
2 distribution in clean data; the presence of a small number of outlying data

points severely distorts the sampling distribution of the non-robust Wn (in the bottom left panel) from
the χ2

2 distribution, yielding inaccurate levels of the test.
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Figure 7. Simulated Gaussian response data with contamination. Empirical quantiles (on the y-axis)
of the Wald-type statistics Wn versus quantiles (on the x-axis) of the χ2 distribution. Solid line: the
45 degree reference line. (Left panels): non-robust method; (right panels): robust method.
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To assess the stability of the power of the Wald-type test for testing the hypothesis (32), we evaluate
the power in a sequence of alternatives with parameters βo + ∆c for each given ∆, where c = βo +

(1, . . . , 1)T . Figure 8 plots the empirical rejection rates of the null model in the non-contaminated
case and the contaminated case. The price to pay for the robust Wn is a little loss of power in the
non-contaminated cases. However, under contamination, a very different behavior is observed.
The observed power curve of the robust Wn is close to those attained in the non-contaminated case.
On the contrary, the non-robust Wn is less informative, since its power curve is much lower than that
of the robust Wn against the alternative hypotheses with ∆ 6= 0, but higher than the nominal level at
the null hypothesis with ∆ = 0.

-0.4 -0.2 0 0.2 0.4
0

0.5

1

-0.4 -0.2 0 0.2 0.4
0

0.5

1

Figure 8. Observed power curves of tests for the Gaussian response data. The dashed line
corresponds to the non-robust Wald-type test Wn; the solid line corresponds to the robust Wn;
the dotted line indicates the 5% nominal level. (Left panels): non-contaminated case; (right panels):
contaminated case.

7. Real Data Analysis

Two real datasets are analyzed. In both cases, the quadratic loss is set to be the BD, and the
nonparametric function is fitted via local-linear regression method, where the bandwidth parameter is
chosen to be 25% of the interval length of the variable T. Choices of the Huber ψ-function and weight
functions are identical to those in Section 6.

7.1. Example 1

The dataset studied in [19] consists of 2447 observations on three variables, log(wage), age and
education, for women. It is of interest to learn how wages change with years of age and years of
education. It is anticipated to find an increasing regression function of Y = log(wage) in T = age as
well as in X1 = education. We fit a partially linear model Y = η(T) + β1X1 + ε. Profiles of the fitted
nonparametric functions η̂(·) in Figure 9 indeed exhibit the overall upward trend in age. The coefficient
estimate is β̂1 = 0.0809 with standard error 0.0042 using the non-robust method, and is β̂1 = 0.1334
with standard error 0.0046 by means of the robust method. It is seen that robust estimates are similar
to the non-robust counterparts. Our evaluation, based on both the non-robust and robust methods,
supports the predicted result in theoretical and empirical literature in socio-economical studies.
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Figure 9. The dataset in [19]. (Left panels): estimate of η(T) via the non-robust quadratic loss;
(right panels): estimate of η(T) via the robust quadratic loss.

7.2. Example 2

We analyze an employee dataset (Example 11.3 of [20]) of the Fifth National Bank of Springfield,
based on year 1995 data. The bank, whose name has been changed, was charged in court with that
its female employees received substantially smaller salaries than its male employees. For each of
its 208 employees, the dataset consists of seven variables, EducLev (education level), JobGrade (job
grade), YrHired (year that an employee was hired), YrBorn (year that an employee was born), Female
(indicator of being female), YrsPrior (years of work experience at another bank before working at the
Fifth National bank), and Salary (current annual salary in thousands of dollars).

To explain variation in salary, we fit a partial linear model, Y = η(T) + β1X1 + β2X2 + β3X3 +

β4X4 + β5X5 + ε, for Y = log(Salary), T = Age, X1 = Female, X2 = YrHired, X3 = EducLev,
X4 = JobGrade and X5 = YrsPrior, where Age = 95 − YrBorn is age. Table 1 presents parameter
estimates and their standard errors (given within brackets), along with p-values calculated from the
Wald-type test Wn. Figure 10 depicts the estimated nonparametric functions.

It is interesting to note that for this dataset, results from using the robust and non-robust methods
make a difference in drawing conclusions. For example, from Table 1, the non-robust method
gives the estimate of parameter β1 for gender to be below zero, which may be interpreted as the
evidence of discrimination against female employees in salary and lends support to the plaintiff.
In contrast, the robust method yields β̂1 > 0, which does not indicate that gender has an adverse
effect. (A similar conclusion made from penalized-likelihood was obtained in Section 4.1 of [21]).
Moreover, the estimated nonparametric functions η̂(·) obtained from non-robust and robust methods
are qualitatively different: the former method does not deliver a monotone increasing pattern with Age,
whereas the latter method does. Whether or not the difference was caused by outlying observations
will be an interesting issue to be investigated.

Table 1. Parameter estimates and p-values for partially linear model of the dataset in [20]

Variable
Classical-BD Estimation Robust-BD Estimation

Estimate (s.e.) p-Value of Wn Estimate (s.e.) p-Value of Wn

Female −0.0491 (0.0232) 0.0339 0.0530 (0.0323) 0.1010
YrHired −0.0093 (0.0026) 0.0005 0.0359 (0.0086) 0.0000
EducLev 0.0179 (0.0079) 0.0228 −0.0133 (0.0131) 0.3103
JobGrade 0.0899 (0.0075) 0.0000 0.1672 (0.0168) 0.0000
YrsPrior 0.0033 (0.0023) 0.1528 −0.0050 (0.0061) 0.4104
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Figure 10. The dataset in [20]. (Left panel): estimate of η(T) via the non-robust quadratic loss;
(right panel): estimate of η(T) via the robust quadratic loss.

8. Discussion

Over the past two decades, nonparametric inference procedures for testing hypotheses concerning
nonparametric regression functions have been developed extensively. See [22–26] and the references
therein. The work on the generalized likelihood ratio test [24] offers light into nonparametric inference,
based on function estimation under nonparametric models, using the quadratic loss function as the
error measure. These works do not directly deal with the robust procedure. Exploring the inference on
nonparametric functions, such as ηo(t) in GPLM associated with a scalar variable T and the additive
structure ∑D

d=1 ηo
d (td) as in [27] with a vector variable T = (T1, . . . , TD), estimated via the “robust-BD”

as the error measure, when there are possible outlying data points, will be the future work.
This paper utilizes the class BD of loss functions, the optimal choice of which depends on specific

settings and criteria. For e.g., regression and classification will utilize different loss functions, and thus
further study on optimality is desirable.

Some recent work on partially linear models in econometrics includes [28–30]. There, the nonparametric
function is approximated via linear expansions, with the number of coefficients diverging with n.
Developing inference procedures to be resistant to outliers could be of interest.
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Appendix A. Proofs of Main Results

Throughout the proof, C represents a generic finite constant. We impose some regularity
conditions, which may not be the weakest, but facilitate the technical derivations.

Notation:

For integers j ≥ 0, µj(K) =
∫

ujK(u)du; cp = (µp+1(K), . . . , µ2p+1(K))T ;
S = (µj+k−2(K))1≤j,k≤p+1. Define: η(x, t) = F(m(x, t)) = xT βo + ηo(t); ηi = η(X i, Ti).

Set ηi(t; β) = XT
i β + η

β
(t) + ∑

p
k=1(Ti − t)kη

(k)
β (t)/k!; g1(τ; t, β) = E{p1(Yi; ηi(t; β))w1(X i) | Ti = τ};

g2(τ; t, β) = E{p2(Yi; ηi(t; β))w1(X i) | Ti = τ}.

Condition A:

A1. η
β
(t) is the unique minimizer of S(a; t, β) with respect to a ∈ R1.

A2. βo ∈ Rd is the unique minimizer of J(β, η
β
) with respect to β, where d ≥ 1.

A3. ηo(·) = η
βo
(·).
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Condition B:

B1. The function ρq(y, µ) is continuous and bounded. The functions p1(y; θ), p2(y; θ), p3(y; θ), w1(·)
and w2(·) are bounded; p2(y; θ) is continuous in θ.

B2. The kernel function K is Lipschitz continuous, a symmetric probability density function with
bounded support. The matrix S is positive definite.

B3. The marginal density fT(t) of T is a continuous function, uniformly bounded away from zero
and ∞ for t ∈ T0 .

B4. The function S(a; t, β) is continuous and η
β
(t) is a continuous function of (t, β).

B5. Assume g2(τ; t, β) is continuous in τ; g2(t; t, β) is continuous in t ∈ T0 .
B6. Functions η

β
(t) and ηo(t) are (p + 1)-times continuously differentiable at t.

B7. The link function F(·) is monotone increasing and a bijection, F(3)(·) is continuous, and F(1)(·) >
0. The matrix var(X | T = t) is positive definite for a.e. t.

B8. The matrix H0 in (25) is invertible; Ω∗0 in (26) is positive-definite.
B9. η̂

β
(t) and η

β
(t) are continuously differentiable with respect to (t, β), and twice continuously

differentiable with respect to β such that for any 1 ≤ j, k ≤ d, ∂2

∂β j∂βk
η

β
(t)|β=βo

is bounded.

Furthermore, for any 1 ≤ j, k ≤ d, ∂2

∂β j∂βk
η

β
(t) satisfies the equicontinuity condition:

∀ε > 0, ∃ δε > 0 : ‖β1 − βo‖ < δε =⇒
∥∥∥ ∂2

∂β j∂βk
η

β

∣∣∣
β=β1

− ∂2

∂β j∂βk
η

β

∣∣∣
β=βo

∥∥∥
∞
< ε.

Note that Conditions A, B2–B5 and B8–B9 were similarly used in [9]. Conditions B1 and B7
follow [10]. Condition B6 is due to the local p-th-degree polynomial regression estimation.

Proof of Lemma 1: From Condition A1, we obtain E{p1(Y; XT β + η
β
(t))w1(X) | T = t} = 0 and

E{p2(Y; XT β + η
β
(t))w1(X) | T = t} > 0, i.e.,

g1(t; t, β) = E{p1(Y; XT β + η
β
(t))w1(X) | T = t} = 0, (A1)

g2(t; t, β) = E{p2(Y; XT β + η
β
(t))w1(X) | T = t} > 0. (A2)

Define by η(0,...,p)
β

(t) = (η
β
(t), η

(1)
β (t), . . . , η

(p)
β (t)/p!)T the vector of η

β
(t) along with re-scaled

derivatives with respect to t up to the order p. Note that:

ηi(t; β) = XT
i β +

p

∑
k=0

(Ti − t)k η
(k)
β (t)
k!

= XT
i β + ti(t)Tη(0,...,p)

β
(t)

= XT
i β + {H−1ti(t)}T Hη(0,...,p)

β
(t)

= XT
i β + t∗i (t)

T Hη(0,...,p)
β

(t),

where H = diag{(1, h, . . . , hp)} and t∗i (t) = H−1ti(t) = (1, (Ti − t)/h, . . . , (Ti − t)p/hp)T denotes the
re-scaled ti(t). Then:



Entropy 2017, 19, 625 21 of 30

XT
i β + ti(t)Ta

= XT
i β + t∗i (t)

T Ha
= XT

i β + t∗i (t)
T Hη(0,...,p)

β
(t) + t∗i (t)

T H{a− η(0,...,p)
β

(t)}
= ηi(t; β) + t∗i (t)

T H{a− η(0,...,p)
β

(t)}.

Hence, we rewrite (16) as:

Sn(a; t, β) =
1
n

n

∑
i=1

ρq(Yi, F−1(ηi(t; β) + t∗i (t)
T H{a− η(0,...,p)

β
(t)}))w1(X i)Kh(Ti − t).

Therefore, â(t, β) minimizing Sn(a; t, β) is equivalent to the one minimizing:

1
n

n

∑
i=1

{
ρq(Yi, F−1(ηi(t; β) + t∗i (t)

T H{a− η(0,...,p)
β

(t)}))

−ρq(Yi, F−1(ηi(t; β)))
}

w1(X i)Kh(Ti − t)

with respect to a. It follows that â∗(t, β), defined by â∗(t, β) =
√

nh H{â(t, β) − η(0,...,p)
β

(t)},
minimizes:

Gn(a∗; t, β) = nh
[

1
n

n

∑
i=1

{
ρq(Yi, F−1(ηi(t; β) + {ant∗i (t)

Ta∗}))− ρq(Yi, F−1(ηi(t; β)))
}

w1(X i)Kh(Ti − t)
]

with respect to a∗ ∈ Rp+1, where an = 1/
√

nh. Note that for any fixed a∗, |t∗i (t)Ta∗| ≤ C.
By Taylor expansion,

Gn(a∗; t, β) = nh
(

an

[
1
n

n

∑
i=1

p1(Yi; ηi(t; β)){t∗i (t)Ta∗}w1(X i)Kh(Ti − t)
]

+a2
n

1
2

[
1
n

n

∑
i=1

p2(Yi; ηi(t; β)){t∗i (t)Ta∗}2w1(X i)Kh(Ti − t)
]

+a3
n

1
6

[
1
n

n

∑
i=1

p3(Yi; η∗i (t; β)){t∗i (t)Ta∗}3w1(X i)Kh(Ti − t)
])

= In,1 + In,2 + In,3,

where η∗i (t; β) is located between ηi(t; β) and ηi(t; β) + {ant∗i (t)
Ta∗}. We notice that:

In,1 ≡
√

nh Wn(t, β)Ta∗,

where:

Wn(t, β) =
1
n

n

∑
i=1

p1(Yi; ηi(t; β))t∗i (t)w1(X i)Kh(Ti − t);

also, Lemma A1 implies:

In,2 = nha2
n

1
2

a∗T
[

1
n

n

∑
i=1

p2(Yi; ηi(t; β)){t∗i (t)t∗i (t)T}w1(X i)Kh(Ti − t)
]

a∗

=
1
2

a∗TS2(t, β)a∗ + oP(1),
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where:
S2(t, β) = g2(t; t, β) fT(t)S � 0

by (A2), Condition B2 and B5; and (by using Xn = OP(E(|Xn|))):

In,3 ≤ C OP(nha3
n) = OP(1/

√
nh) = oP(1).

Then:

Gn(a∗; t, β) =
√

nh Wn(t, β)Ta∗ +
1
2

a∗TS2(t, β)a∗ + oP(1),

where a∗TS2(t, β)a∗ = (a∗TSa∗)g2(t; t, β) fT(t) is continuous in t ∈ T0 by B3 and B5.
We now examine Wn(t, β). Note that:

var{Wn(t, β)} =
1
n

var{p1(Yi; ηi(t; β))t∗i (t)w1(X i)Kh(Ti − t)}

≤ 1
n

E
[
p2

1
(Yi; ηi(t; β)){t∗i (t)t∗i (t)T}w2

1
(X i) {Kh(Ti − t)}2

]
≤ C

n
E
[ 1

h2

{
K
(Ti − t

h

)}2]
=

C
nh

.

To evaluate E{Wn(t, β)}, it is easy to see that for each j ∈ {0, 1, . . . , p},

eT
j+1,p+1E{Wn(t, β)} = E{p1(Yi; ηi(t; β))eT

j+1,p+1t∗i (t)w1(X i)Kh(Ti − t)}

= E
{

p1(Yi; ηi(t; β))
(Ti − t

h

)j
w1(X i)Kh(Ti − t)

}
= E

[
E{p1(Yi; ηi(t; β))w1(X i) | Ti}

(Ti − t
h

)j
Kh(Ti − t)

]
= E

{
g1(Ti; t, β)

(Ti − t
h

)j
Kh(Ti − t)

}
=

∫
g1(y; t, β)

(y− t
h

)j 1
h

K
(y− t

h

)
fT(y)dy

=
∫

g1(t + hx; t, β)xjK(x) fT(t + hx)dx.

Note that by Taylor expansion,

η
β
(t + hx) =

p

∑
k=0

(hx)k η
(k)
β (t)
k!

+ (hx)p+1 η
(p+1)
β (t)
(p + 1)!

+ o(hp+1).

This combined with the facts (A1) and (A2) give that:

g1(t + hx; t, β)

= E
{

p1

(
Y; XT β +

p

∑
k=0

(hx)k η
(k)
β (t)
k!

)
w1(X)

∣∣∣ T = t + hx
}

= E
[

p1(Y; XT β + η
β
(t + hx))w1(X)

+p2(Y; XT β + η
β
(t + hx))

{ p

∑
k=0

(hx)k η
(k)
β (t)
k!

− η
β
(t + hx)

}
w1(X)

∣∣∣ T = t + hx
]

+o(hp+1)

= g1(t + hx; t + hx, β)− (hx)p+1 η
(p+1)
β (t)
(p + 1)!

g2(t + hx; t + hx, β) + o(hp+1)
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= −(hx)p+1 η
(p+1)
β (t)
(p + 1)!

g2(t + hx; t + hx, β) + o(hp+1).

Thus, using the continuity of g2(t; t, β) and fT(t) in t, we obtain:

E{Wn(t, β)} = −cp
η
(p+1)
β (t)
(p + 1)!

g2(t; t, β) fT(t)hp+1 + o(hp+1)

uniformly in (t, β). Thus, we conclude that
√

nh Wn(t, β) = OP(1) when nh2p+3 = O(1).
By Lemma A2,

sup
a∗∈Θ, t∈T0 , β∈K

∣∣∣Gn(a∗; t, β)−
√

nh Wn(t, β)Ta∗ − 1
2

a∗TS2(t, β)a∗
∣∣∣ = oP(1).

This along with Lemma A.1 of [18] yields:

sup
t∈T0 , β∈K

‖â∗(t, β) + {S2(t, β)}−1
√

nh Wn(t, β)‖ = oP(1),

the first entry of which satisfies:

sup
t∈T0 , β∈K

|
√

nh{η̂
β
(t)− η

β
(t)}+ eT

1,p+1{S2(t, β)}−1
√

nh Wn(t, β)| = oP(1),

namely, supt∈T0 , β∈K |η̂β
(t) − η

β
(t) + eT

1,p+1{S2(t, β)}−1Wn(t, β)| = oP(1/
√

nh). By [31],

supt∈T0 , β∈K ‖Wn(t, β)− E{Wn(t, β)}‖ = OP({
log(1/h)

nh }1/2). Furthermore,

{S2(t, β)}−1E{Wn(t, β)} = −S−1cp
η
(p+1)
β (t)
(p + 1)!

hp+1 + o(hp+1)

uniformly in (t, β). Therefore,

sup
t∈T0 , β∈K

∣∣∣η̂β
(t)− η

β
(t)− eT

1,p+1S−1cp
η
(p+1)
β (t)
(p + 1)!

hp+1
∣∣∣ = oP(1).

This yields:

sup
β∈K

sup
t∈T0

∣∣∣η̂β
(t)− η

β
(t)− eT

1,p+1S−1cp
η
(p+1)
β (t)
(p + 1)!

hp+1
∣∣∣

≤ sup
t∈T0 , β∈K

∣∣∣η̂β
(t)− η

β
(t)− eT

1,p+1S−1cp
η
(p+1)
β (t)
(p + 1)!

hp+1
∣∣∣ = oP(1).

Note that for p = 1, eT
1,p+1S−1cp = µ2(K). This completes the proof.

Lemma A1. Assume Condition B in the Appendix. If n→ ∞, h→ 0 and nh→ ∞, then for given t ∈ T0 an
β ∈ K,

1
n

n

∑
i=1

p2(Yi; ηi(t; β)){t∗i (t)t∗i (t)T}w1(X i)Kh(Ti − t) = S2(t, β) + oP(1),

where S2(t, β) = g2(t; t, β) fT(t)S , with S = (µj+k−2(K))1≤j,k≤p+1 and µj(K) =
∫

ujK(u)du,
j = 0, 1, . . . , 2p.



Entropy 2017, 19, 625 24 of 30

Proof. Recall the (p + 1) × (p + 1) matrix t∗i (t)t
∗
i (t)

T = (( Ti−t
h )j+k−2)1≤j,k≤p+1.

Set Xj =
1
n ∑n

i=1 p2(Yi; ηi(t; β))( Ti−t
h )jw1(X i)Kh(Ti − t) for j = 0, 1, . . . , 2p. We observe that:

E(Xj) =
1
n

n

∑
i=1

E
[
E{p2(Yi; ηi(t; β))w1(X i) | Ti}

(Ti − t
h

)j
Kh(Ti − t)

]
=

1
n

n

∑
i=1

E
{

g2(Ti; t, β)
(Ti − t

h

)j
Kh(Ti − t)

}
= E

{
g2(T; t, β)

(T − t
h

)j
Kh(T − t)

}
=

∫
g2(y; t, β)

(y− t
h

)j 1
h

K
(y− t

h

)
fT(y)dy

=
∫

g2(t + hx; t, β)xjK(x) fT(t + hx)dx

= g2(t; t, β) fT(t)µj(K) + o(1),

using the continuity of g2(τ; t, β) in τ and fT(t) in t. Similarly,

var(Xj) =
1
n2

n

∑
i=1

var
{

p2(Yi; ηi(t; β))
(Ti − t

h

)j
w1(X i)Kh(Ti − t)

}
≤ 1

n2

n

∑
i=1

E
[
p2

2
(Yi; ηi(t; β))

(Ti − t
h

)2j
w2

1
(X i) {Kh(Ti − t)}2

]
≤ C

nh
.

This completes the proof.

Lemma A2. Assume Condition B. If n → ∞, h → 0, nh → ∞, log(1/h)/(nh) → 0,
then supa∗∈Θ, t∈T0 , β∈K |Gn(a∗; t, β) −

√
nh Wn(t, β)Ta∗ − 2−1a∗TS2(t, β)a∗| = oP(1), with a compact

set Θ ⊆ Rp+1.

Proof. Let Dn(a∗; t, β) = Gn(a∗; t, β)−
√

nh Wn(t, β)Ta∗. Note that:

Dn(a∗; t, β)

= nh
[

1
n

n

∑
i=1

ρq(Yi, F−1(ηi(t; β) + {ant∗i (t)
Ta∗}))w1(X i)Kh(Ti − t)

− 1
n

n

∑
i=1

ρq(Yi, F−1(ηi(t; β)))w1(X i)Kh(Ti − t)

− 1
n

n

∑
i=1

p1(Yi; ηi(t; β)){ant∗i (t)
Ta∗}w1(X i)Kh(Ti − t)

]
=

1
2

a∗T
[

1
n

n

∑
i=1

p2(Yi; η̃i(t; β)){t∗i (t)t∗i (t)T}w1(X i)Kh(Ti − t)
]

a∗,

where an = 1/
√

nh and η̃i(t; β) is between ηi(t; β) and ηi(t; β) + {ant∗i (t)
Ta∗}. Then:

|Dn(a∗; t, β)− 2−1a∗TS2(t, β)a∗|

=
1
2

∣∣∣∣a∗T
[

1
n

n

∑
i=1

p2(Yi; η̃i(t; β)){t∗i (t)t∗i (t)T}w1(X i)Kh(Ti − t)− S2(t, β)

]
a∗
∣∣∣∣

≤ ‖a∗‖2
∣∣∣∣ 1n n

∑
i=1

p2(Yi; η̃i(t; β)){t∗i (t)t∗i (t)T}w1(X i)Kh(Ti − t)− S2(t, β)

∣∣∣∣.
The proof completes by applying [31].
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Proof of Theorem 1. Before showing Theorem 1, we need Proposition A1 (whose proof is omitted),
where the following notation will be used. Denote by C1(T ) the set of continuously differentiable
functions in T . Let V(β) denote the neighborhood of β ∈ K. LetHδ(β) denote the neighborhood of
η

β
such that V(β) ⊆ K andHδ(β) = {u ∈ C1(T ) : ‖u− η

β
‖∞ ≤ δ, ‖ ∂

∂t u− ∂
∂t η

β
‖∞ ≤ δ}.

Proposition A1. Let {(Yi, X i, Ti)}n
i=1 be independent observations of (Y, X, T) modeled by (2) and (5).

Assume that a random variable T is distributed on T . Let K and H1(β) be compact sets, g(·; ·) : R2 → R
be a continuous and bounded function, W(x, t) : Rd+1 → R be such that E{|W(X, T)|} < ∞ and
η

β
(t) = η(t, β) : Rd+1 → R be a continuous function of (t, β). Then:

(i) E{g(Y; XTθ+ v(T))W(X, T)} → E{g(Y; XT β + η
β
(T))W(X, T)} as ‖θ− β‖+ ‖v− η

β
‖∞ → 0;

(ii) supθ∈K |n−1 ∑n
i=1 g(Yi; XT

i θ+ η
θ
(Ti))W(X, T) − E{g(Y; XTθ+ η

θ
(T))W(X, T)} P−→ 0 as n →

∞;
(iii) if, in addition, T is compact and η

β
∈ C1(T ), then supθ∈K, v∈H1(β)

|n−1 ∑n
i=1 g(Yi; XT

i θ+ v(Ti))W(X i, Ti)− E{g(Y; XTθ+ v(T))W(X, T)}| P−→ 0 as n→ ∞.

For part (i), we first show that for any compact set K in Rd,

sup
β∈K
|Jn(β, η̂

β
)− J(β, η

β
)| P−→ 0. (A3)

It suffices to show supβ∈K |Jn(β, η
β
)− J(β, η

β
)| P−→ 0, which follows from Proposition A1 (ii), and:

sup
β∈K
|Jn(β, η̂

β
)− Jn(β, η

β
)| P−→ 0. (A4)

To show (A4), we note that for any ε > 0, let T0 be a compact set such that P(Ti /∈ T0) < ε. Then:

Jn(β, η̂
β
)− Jn(β, η

β
)

=
1
n

n

∑
i=1
{ρq(Yi, F−1(XT

i β + η̂
β
(Ti)))− ρq(Yi, F−1(XT

i β + η
β
(Ti)))}w2(X i) I(Ti ∈ T0)

+
1
n

n

∑
i=1
{ρq(Yi, F−1(XT

i β + η̂
β
(Ti)))− ρq(Yi, F−1(XT

i β + η
β
(Ti)))}w2(X i) I(Ti /∈ T0).

For Ti ∈ T0 , by the mean-value theorem,

|ρq(Yi, F−1(XT
i β + η̂

β
(Ti)))− ρq(Yi, F−1(XT

i β + η
β
(Ti)))|

= |p1(Yi; XT
i β + η∗i,β){η̂β

(Ti)− η
β
(Ti)}|

≤ ‖p1(·; ·)‖∞ sup
β∈K
‖η̂

β
− η

β
‖T0 ;∞,

where η∗i,β is located between η̂
β
(Ti) and η

β
(Ti). For Ti /∈ T0 , it follows that:

|ρq(Yi, F−1(XT
i β + η̂

β
(Ti)))− ρq(Yi, F−1(XT

i β + η
β
(Ti)))|

≤ 2‖ρq(·, ·)‖∞.
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Hence,

|Jn(β, η̂
β
)− Jn(β, η

β
)| ≤

{
‖p1(·; ·)‖∞ sup

β∈K
‖η̂

β
− η

β
‖T0 ;∞ + 2‖ρq(·, ·)‖∞ T∗n

}
‖w2‖∞

≤ 2ε,

where the last inequality is entailed by Lemma 1 and the law of large numbers for T∗n = n−1 ∑n
i=1 I(Ti /∈

T0). This completes the proof of (A3). The proof of β̂
P−→ βo follows from combining Lemma A-1

of [1] with (A3) and Condition A2.
Part (ii) follows from Lemma 1, Part (i) and Condition B5 for η

β
(t).

Proof of Theorem 2. Similar to the proof of Lemma 1, it can be shown that |η̂
β
(t) − η

β
(t) +

eT
1,p+1{S2(t, β)}−1 1

n ∑n
i=1 p1(Yi; ηi(t; β))t∗i (t)w1(X i)Kh(Ti − t)| = OP(h

2an + a2
n
√

log(1/h)). Note that
for p = 1,

eT
1,p+1{S2(t, β)}−1t∗i (t) =

1
g2(t; t, β) fT(t)

(1, 0)

(
1 0
0 1/µ2(K)

)(
1

(Ti − t)/h

)
=

1
g2(t; t, β) fT(t)

.

Thus:∣∣∣∣η̂β
(t)− η

β
(t) +

1
n fT(t)g2(t; t, β)

n

∑
i=1

p1(Yi; ηi(t; β))w1(X i)Kh(Ti − t)
∣∣∣∣ = OP(h

2an + a2
n

√
log(1/h)).

Consider β̂ defined in (23). Note that:

XT
i β + η̂

β
(Ti) = XT

i βo + XT
i (β− βo) + η̂

(β−βo)+βo
(Ti)

= XT
i βo + cnXT

i {
√

n(β− βo)}+ η̂
cn{
√

n(β−βo)}+βo
(Ti),

where cn = 1/
√

n. Then, θ̂ =
√

n(β̂− βo) minimizes:

Jn(θ) = n
[

1
n

n

∑
i=1

{
ρq(Yi, F−1(XT

i βo + cnXT
i θ+ η̂cnθ+βo

(Ti)))w2(X i)

−ρq(Yi, F−1(XT
i βo + η̂

βo
(Ti)))w2(X i)

}]
with respect to θ. By Taylor expansion,

Jn(θ)

= n
(

1
n

n

∑
i=1

p1(Yi; XT
i βo + η̂

βo
(Ti))[cnXT

i θ+ {η̂cnθ+βo
(Ti)− η̂

βo
(Ti)}]w2(X i)

+
1

2n

n

∑
i=1

p2(Yi; XT
i βo + η̂

βo
(Ti))[cnXT

i θ+ {η̂cnθ+βo
(Ti)− η̂

βo
(Ti)}]2w2(X i)

+
1

6n

n

∑
i=1

p3(Yi; η∗i )[cnXT
i θ+ {η̂cnθ+βo

(Ti)− η̂
βo
(Ti)}]3w2(X i)

)
= In,1 + In,2 + In,3,

where η∗i is located between XT
i βo + η̂

βo
(Ti) and XT

i βo + cnXT
i θ+ η̂cnθ+βo

(Ti),

In,1 =
n

∑
i=1

p1(Yi; XT
i βo + η̂

βo
(Ti))

{
cnXT

i θ+
∂η̂

β
(Ti)

∂β

T∣∣∣
β=βn

cnθ
}

w2(X i)
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=
1√
n

n

∑
i=1

p1(Yi; XT
i βo + η̂

βo
(Ti))

{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=βn

}T
θw2(X i)

=
1√
n

n

∑
i=1

p1(Yi; XT
i βo + η̂

βo
(Ti))

{
X i +

∂η
β
(Ti)

∂β

∣∣∣
β=βo

}T
θw2(X i) + oP(1),

In,2 =
1
2

θT
[

1
n

n

∑
i=1

p2(Yi; XT
i βo + η̂

βo
(Ti)){

X i +
∂η̂

β
(Ti)

∂β

∣∣∣
β=βn

}{
X i +

∂η̂
β
(Ti)

∂β

∣∣∣
β=βn

}T
w2(X i)

]
θ

=
1
2

θTB2θ+ oP(1),

In,3 = oP(1),

with βn located between β
o

and cnθ + β
o
, and B2 = H0 following Lemma 1, Condition A3 and

Proposition A1. Thus:

Jn(θ) = I∗n,1
Tθ+

1
2

θTB2θ+ oP(1), (A5)

where I∗n,1 = 1√
n ∑n

i=1 p1(Yi; XT
i βo + η̂

βo
(Ti)){X i +

∂η
β
(Ti)

∂β |β=βo
}w2(X i). Note that:

I∗n,1 =
1√
n

n

∑
i=1

[
p1(Yi; XT

i βo + η
βo
(Ti))

{
X i +

∂η
β
(Ti)

∂β

∣∣∣
β=βo

}
w2(X i)

+p2(Yi; XT
i βo + η

βo
(Ti))

{
X i +

∂η
β
(Ti)

∂β

∣∣∣
β=βo

}
w2(X i){η̂βo

(Ti)− η
βo
(Ti)}

+
1
2

p3(Yi; η∗∗i )
{

X i +
∂η

β
(Ti)

∂β

∣∣∣
β=βo

}
w2(X i){η̂βo

(Ti)− η
βo
(Ti)}2

]
= Tn,1 + Tn,2 + Tn,3,

where η∗∗i is between XT
i βo + η̂

βo
(Ti) and XT

i βo + η
βo
(Ti),

Tn,3 = oP(1),

Tn,2 =
1√
n

n

∑
i=1

p2(Yi; XT
i βo + η

βo
(Ti))

{
X i +

∂η
β
(Ti)

∂β

∣∣∣
β=βo

}
w2(X i)

× (−1)
n fT(Ti)g2(Ti; Ti, β

o
)

n

∑
j=1

p1(Yj; ηj(Ti; β
o
))w1(X j)Kh(Tj − Ti)

= − 1√
n

n

∑
j=1

p1(Yj; ηj)w1(X j)

g2(Tj; Tj, β
o
)

E
[
p2(Yj; ηj)

{
X j +

∂η
β
(Tj)

∂β

∣∣∣
β=βo

}
w2(X j)

∣∣∣Tj

]
≡ − 1√

n

n

∑
j=1

p1(Yj; ηj)
γ(Tj)

g2(Tj; Tj, β
o
)

w1(X j),

with:

γ(t) = E
[

p2(Y; η(X, T))
{

X +
∂η

β
(T)

∂β

∣∣∣
β=βo

}
w2(X)

∣∣∣T = t
]

.

Therefore,

I∗n,1 =
1√
n

n

∑
i=1

p1(Yi; ηi)

[{
X i +

∂η
β
(Ti)

∂β

∣∣∣
β=βo

}
w2(X i)−

γ(Ti)

g2(Ti; Ti, β
o
)

w1(X i)

]
+ oP(1).

By the central limit theorem,

I∗n,1
D−→ N(0, Ω∗0), (A6)
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where:

Ω∗0 = E
(

p2
1
(Y; η(X, T))

[{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}
w2(X)− γ(T)

g2(T; T, β
o
)

w1(X)
]

[{
X +

∂η
β
(T)

∂β

∣∣∣
β=βo

}
w2(X)− γ(T)

g2(T; T, β
o
)

w1(X)
]T)

.

From (A5) and (A6), θ̂ = −B−1
2 I∗n,1 + oP(1). This implies that

√
n(β̂ − βo)

D−→
N(0, H−1

0 Ω∗0H−1
0 ).

Proof of Theorem 3. Denote V0 = H−1
0 Ω∗0H−1

0 and V̂n = Ĥ−1
0 Ω̂∗0Ĥ−1

0 . Note that Aβ̂− g0 = A(β̂−
βo) + (Aβo − g0). Thus:

(AV̂nAT)−1/2√n(Aβ̂− g0)

= (AV̂nAT)−1/2{A
√

n(β̂− βo)}+ (AV̂nAT)−1/2{
√

n(Aβo − g0)}
≡ I1 + I2,

which implies that Wn = ‖I1 + I2‖2. Arguments for Theorem 2 give I1
D−→ N(0, Ik). Under H0 in (4),

I2 ≡ 0 and thus (I1 + I2)
D−→ N(0, Ik), which completes the proof.

Proof of Theorem 4. Follow the notation and proof in Theorem 3. Under H1n in (29), I2
P−→

(AV0AT)−1/2c and thus (I1 + I2)
D−→ N((AV0AT)−1/2c, Ik). This completes the proof.

Proof of Theorem 5. Following the notation and proof in Theorem 3, Wn = ‖I1‖2 + 2IT
1 I2 + ‖I2‖2.

We see that ‖I1‖2 D−→ χ2
k. Under H1 in (4), I2 = (AV0AT)−1/2√n(Aβo− g0){1+ oP(1)}, which means

‖I2‖2 = n(Aβo − g0)
T(AV0AT)−1(Aβo − g0){1 + oP(1)} and thus IT

1 I2 = OP(
√

n). Hence, n−1Wn ≥
λmin{(AV0AT)−1}‖Aβo − g0‖2 + oP(1). This completes the proof.

Proof of Theorem 6. Denote Jn(β) = Jn(β, η̂
β
). For the matrix A in (4), there exists a (d− k)× d matrix

B satisfying BBT = Id−k and ABT = 0. Therefore, Aβ = g0 is equivalent to β = BTγ + b0 for some
vector γ ∈ Rd−k and b0 = AT(AAT)−1g0. Then, minimizing Jn(β) subject to Aβ = g0 is equivalent to
minimizing Jn(BTγ + b0) with respect to γ, and we denote by γ̂ the minimizer. Furthermore, under

H0 in (4), we have βo = BTγ0 + b0 for γ0 = Bβo, and γ̂− γ0
P−→ 0.

For Part (i), using the Taylor expansion around β̂, we get:

Jn(BTγ̂ + b0)− Jn(β̂) =
1

2n
{
√

n(BTγ̂ + b0 − β̂)}TJ′′n(β̃){
√

n(BTγ̂ + b0 − β̂)}, (A7)

where β̃ is between BTγ̂ + b0 and β̂. We now discuss BTγ̂ + b0 − β̂. From the proof in Theorem 2,
(β̂− βo) = −H−1

0 J′n(βo){1 + oP(1)}, where J′n(βo) = {I∗n,1 + oP(1)}/
√

n. Similar arguments deduce
γ̂− γ0 = −(BH0BT)−1BJ′n(βo){1 + oP(1)}. Thus, under H0 in (4),

BTγ̂ + b0 − β̂ = BT(γ̂− γ0)− (β̂− βo) = H−1/2
0 PH−1/2

0 AT H−1/2
0 J′n(βo){1 + oP(1)},

and thus by (A6),
√

n(BTγ̂ + b0 − β̂)
D−→ H−1/2

0 PH−1/2
0 AT H−1/2

0 Ω∗0
1/2Z, (A8)

where Z = (Z1, . . . , Zd)
T ∼ N(0, Id). Combining the fact J′′n(β̃)

P−→ H0, (A7) and (A8) gives:

Λn = {
√

n(BTγ̂ + b0 − β̂)}TH0{
√

n(BTγ̂ + b0 − β̂)}{1 + oP(1)}
D−→ ZTΩ∗0

1/2H−1/2
0 PH−1/2

0 AT H−1/2
0 Ω∗0

1/2Z
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=
d

∑
j=1

λj(Ω∗0
1/2H−1/2

0 PH−1/2
0 AT H−1/2

0 Ω∗0
1/2)Z2

j

=
k

∑
j=1

λj{(AH−1
0 AT)−1(AV0AT)}Z2

j . (A9)

This proves Part (i).
For Part (ii), using ψ(r) = r, w1(x) = w2(x) ≡ 1 and (31), we obtain Ω∗0 = Ω0 = CH0, and thus,

AV0AT = C(AH−1
0 AT). Thus, (A9) = C ∑k

j=1 Z2
j ∼ Cχ2

k, which completes the proof.

Proof of Theorem 7. The proofs are similar to those used in Theorem 4 and Theorems 5 and 6.
The lengthy details are omitted.
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