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Abstract: An important issue for robust inference is to examine the stability of the asymptotic level
and power of the test statistic in the presence of contaminated data. Most existing results are derived
in finite-dimensional settings with some particular choices of loss functions. This paper re-examines
this issue by allowing for a diverging number of parameters combined with a broader array of
robust error measures, called “robust-BD”, for the class of “general linear models”. Under regularity
conditions, we derive the influence function of the robust-BD parameter estimator and demonstrate
that the robust-BD Wald-type test enjoys the robustness of validity and efficiency asymptotically.
Specifically, the asymptotic level of the test is stable under a small amount of contamination of the
null hypothesis, whereas the asymptotic power is large enough under a contaminated distribution in
a neighborhood of the contiguous alternatives, thus lending supports to the utility of the proposed
robust-BD Wald-type test.

Keywords: Bregman divergence; general linear model; hypothesis testing; influence function; robust;
Wald-type test

1. Introduction

The class of varying-dimensional “general linear models” [1], including the conventional
generalized linear model (GLM in [2]), is flexible and powerful for modeling a large variety of data
and plays an important role in many statistical applications. In the literature, it has been extensively
studied that the conventional maximum likelihood estimator for the GLM is nonrobust; for example,
see [3,4]. To enhance the resistance to outliers in applications, many efforts have been made to obtain
robust estimators. For example, Noh et al. [5] and Künsch et al. [6] developed robust estimator for the
GLM, and Stefanski et al. [7], Bianco et al. [8] and Croux et al. [9] studied robust estimation for the
logistic regression model with the deviance loss as the error measure.

Besides robust estimation for the GLM, robust inference is another important issue,
which, however, receives relatively less attention. Basically, the study of robust testing includes
two aspects: (i) establishing the stability of the asymptotic level under small departures from
the null hypothesis (i.e., robustness of “validity”); and (ii) demonstrating that the asymptotic
power is sufficiently large under small departures from specified alternatives (i.e., robustness of
“efficiency”). In the literature, robust inference has been conducted for different models. For example,
Heritier et al. [10] studied the robustness properties of the Wald, score and likelihood ratio tests based
on M estimators for general parametric models. Cantoni et al. [11] developed a test statistic based on
the robust deviance, and conducted robust inference for the GLM using quasi-likelihood as the loss
function. A robust Wald-type test for the logistic regression model is studied in [12]. Ronchetti et al. [13]
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concerned the robustness property for the generalized method of moments estimators. Basu et al. [14]
proposed robust tests based on the density power divergence (DPD) measure for the equality of
two normal means. Robust tests for parameter change have been studied using the density-based
divergence method in [15,16]. However, the aforementioned methods based on the GLM mostly focus
on situations where the number of parameters is fixed and the loss function is specific.

Zhang et al. [1] developed robust estimation and testing for the “general linear model” based on
a broader array of error measures, namely Bregman divergence, allowing for a diverging number of
parameters. The Bregman divergence includes a wide class of error measures as special cases, e.g., the
(negative) quasi-likelihood in regression, the deviance loss and exponential loss in machine learning
practice, among many other commonly used loss functions. Zhang et al. [1] studied the consistency
and asymptotic normality of their proposed robust-BD parameter estimator and demonstrated the
asymptotic distribution of the Wald-type test constructed from robust-BD estimators. Naturally,
it remains an important issue to examine the robustness property of the robust-BD Wald-type test [1] in
the varying-dimensional case, i.e., whether the test still has stable asymptotic level and power, in the
presence of contaminated data.

This paper aims to demonstrate the robustness property of the robust-BD Wald-type test in [1].
Nevertheless, it is a nontrivial task to address this issue. Although the local stability for the
Wald-type tests have been established for the M estimators [10], generalized method of moment
estimators [13], minimum density power divergence estimator [17] and general M estimators under
random censoring [18], their results for finite-dimensional settings are not directly applicable to our
situations with a diverging number of parameters. Under certain regularity conditions, we provide
rigorous theoretical derivation for robust testing based on the Wald-type test statistic. The essential
results are approximations of the asymptotic level and power under contaminated distributions of the
data in a small neighborhood of the null and alternative hypotheses, respectively.

• Specifically, we show in Theorem 1 that, if the influence function of the estimator is bounded,
then the asymptotic level of the test is also bounded under a small amount of contamination.

• We also demonstrate in Theorem 2 that, if the contamination belongs to a neighborhood of the
contiguous alternatives, then the asymptotic power is also stable.

Hence, we contribute to establish the robustness of validity and efficiency for the robust-BD
Wald-type test for the “general linear model” with a diverging number of parameters.

The rest of the paper is organized as follows. Section 2 reviews the Bregman divergence (BD),
robust-BD estimation and the Wald-type test statistic proposed in [1]. Section 3 derives the influence
function of the robust-BD estimator and studies the robustness properties of the asymptotic level and
power of the Wald-type test under a small amount of contamination. Section 4 conducts the simulation
studies. The technical conditions and proofs are given in Appendix A. A list of notations and symbols
is provided in Appendix B.

We will introduce some necessary notations. In the following, C and c are generic finite
constants which may vary from place to place, but do not depend on the sample size n. Denote
by EK(·) the expectation with respect to the underlying distribution K. For a positive integer
q, let 0q = (0, . . . , 0)T ∈ Rq be a q × 1 zero vector and Iq be the q × q identity matrix. For a
vector v = (v1, . . . , vq)T ∈ Rq, the L1 norm is ‖v‖1 = ∑

q
i=1 |vi|, L2 norm is ‖v‖2 = (∑

q
i=1 v2

i )
1/2

and the L∞ norm is ‖v‖∞ = maxi=1,...,q |vi|. For a q × q matrix A, the L2 and Frobenius norms
of A are ‖A‖2 = {λmax(AT A)}1/2 and ‖A‖F =

√
tr(AAT), respectively, where λmax(·) denotes the

largest eigenvalue of a matrix and tr(·) denotes the trace of a matrix.

2. Review of Robust-BD Estimation and Inference for “General Linear Models”

This section briefly reviews the robust-BD estimation and inference methods for the “general linear
model” developed in [1]. Let {(Xn1, Y1), . . . , (Xnn, Yn)} be i.i.d. observations from some underlying
distribution (Xn, Y) with Xn = (X1, . . . , Xpn)

T ∈ Rpn the explanatory variables and Y the response
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variable. The dimension pn is allowed to diverge with the sample size n. The “general linear model” is
given by

m(xn) ≡ E(Y | Xn = xn) = F−1(x̃T
n β̃n,0), (1)

and

var(Y | Xn = xn) = V(m(xn)), (2)

where F is a known link function, β̃n,0 ∈ Rpn+1 is the vector of unknown true regression parameters,
x̃n = (1, xT

n )
T and V(·) is a known function. Note that the conventional generalized linear model

(GLM) satisfying Equations (1) and (2) assumes that Y | Xn = xn follows a particular distribution
in the exponential family. However, our “general linear model” does not require explicit form of
distributions of the response. Hence, the “general linear model” includes the GLM as a special case.

For notational simplicity, denote Zn = (XT
n , Y)T and Z̃n = (X̃

T
n , Y)T .

Bregman divergence (BD) is a class of error measures, which is introduced in [19] and covers
a wide range of loss functions. Specifically, Bregman divergence is defined as a bivariate function,

Qq(ν, µ) = −q(ν) + q(µ) + (ν− µ)q′(µ),

where q(·) is the concave generating q-function. For example, q(µ) = aµ − µ2 for a constant
a corresponds to the quadratic loss Qa(Y, µ) = (Y − µ)2. For a binary response variable
Y, q(µ) = min{µ, 1− µ} gives the misclassification loss Qq(Y, µ) = I{Y 6= I(µ > 0.5)};
q(µ) = −2{µ log(µ) + (1− µ) log(1− µ)} gives Bernoulli deviance loss Qq(Y, µ) = −2{Y log(µ) +
(1 − Y) log(1 − µ)}; q(µ) = 2 min{µ, 1 − µ} gives the hinge loss Qq(Y, µ) = max{1 − (2Y −
1)sign(µ − 0.5), 0} for the support vector machine; q(µ) = 2{µ(1− µ)}1/2 yields the exponential
loss Qq(Y, µ) = exp[−(Y− 0.5) log{µ/(1− µ)}] used in AdaBoost [20]. Furthermore, Zhang et al. [21]
showed that if

q(µ) =
∫ µ

a

s− µ

V(s)
ds, (3)

where a is a finite constant such that the integral is well-defined, then Qq(y, µ) is the “classical (negative)
quasi-likelihood” function −QQL(y, µ) with ∂QQL(y, µ)/∂µ = (y− µ)/V(µ).

To obtain a robust estimator based on BD, Zhang et al. [1] developed the robust-BD loss function

ρq(y, µ) =
∫ µ

y
ψ(r(y, s)){q′′(s)

√
V(s)}ds− G(µ), (4)

where ψ(·) is a bounded odd function, such as the Huber ψ-function [22], r(y, s) = (y− s)/
√

V(s)
denotes the Pearson residual and G(µ) is the bias-correction term satisfying

G′(µ) = G′1(µ){q′′(µ)
√

V(µ)},

with

G′1(m(xn)) = E{ψ(r(Y, m(xn))) | Xn = xn}.

Based on robust-BD, the estimator of β̃n,0 proposed in [1] is defined as

̂̃
β = arg min

β̃

{ 1
n

n

∑
i=1

ρq(Yi, F−1(X̃
T
ni β̃))w(Xni)

}
, (5)
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where w(·) ≥ 0 is a known bounded weight function which downweights the high leverage points.
In [11], the “robust quasi-likelihood estimator” of β̃n,0 is formulated according to the “robust

quasi-likelihood function” defined as

QRQL(xn, y, µ)

=
{ ∫ µ

µ0

ψ(r(y, s))/
√

V(s)ds
}

w(xn)−
1
n

n

∑
j=1

∫ µj

µ0

[
E{ψ(r(Yj, s))|Xnj}/

√
V(s)ds

]
w(Xnj),

where µ = F−1(x̃T
n β̃) and µj = µj(β̃) = F−1(X̃

T
nj β̃), j = 1, . . . , n. To describe the intuition of

the “robust-BD”, we use the following diagram from [1], which illustrates the relation among the
“robust-BD”, “classical-BD”, “robust quasi-likelihood” and “classical (negative) quasi-likelihood”.

ρq(y, µ)w(xn)
robust-BD

Qq(y, µ)
classical-BD

−QRQL(xn, y, µ)
robust quasi-likelihood

−QQL(y, µ)
classical (negative) quasi-likelihood

q in Equation (3)

ψ(r) = r

w(xn) ≡ 1

ψ(r) = r

w(xn) ≡ 1

q in Equation (3)

For the robust-BD, assume that

pj(y; θ) =
∂j

∂θ j ρq(y, F−1(θ)), j = 0, 1, . . . ,

exist finitely up to any order required. For example, for j = 1,

p1(y; θ) = {ψ(r(y, µ))− G′1(µ)}{q′′(µ)
√

V(µ)}/F′(µ), (6)

where µ = F−1(θ). Explicit expressions for pj(y; θ) (j = 2, 3) can be found in Equation (3.7) of [1].

Then, the estimation equation for ̂̃β is

1
n

n

∑
i=1

ψRBD(Zni; β̃) = 0,

where the score vector is

ψRBD(zn; β̃) = p1(y; θ)w(xn)x̃n, (7)

with θ = x̃T
n β̃. The consistency and asymptotic normality of ̂̃β have been studied in [1];

see Theorems 1 and 2 therein.
Furthermore, to conduct statistical inference for the “general linear model”, the following

hypotheses are considered,

H0 : An β̃n,0 = g0 versus H1 : An β̃n,0 6= g0, (8)

where An is a given k× (pn + 1) matrix such that An AT
n → G with G being a k× k positive-definite

matrix, and g0 is a known k× 1 vector.
To perform the test of Equation (8), Zhang et al. [1] proposed the Wald-type test statistic,

Wn = n(An
̂̃
β− g0)

T(AnĤ−1
n Ω̂nĤ−1

n AT
n )
−1(An

̂̃
β− g0), (9)
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constructed from the robust-BD estimator ̂̃β in Equation (5), where

Ω̂n =
1
n

n

∑
i=1

p2
1(Yi; X̃

T
ni
̂̃β)w2(Xni)X̃niX̃

T
ni,

Ĥn =
1
n

n

∑
i=1

p2(Yi; X̃
T
ni
̂̃β)w(Xni)X̃niX̃

T
ni.

The asymptotic distributions of Wn under the null and alternative hypotheses have been
developed in [1]; see Theorems 4–6 therein.

On the other hand, the issue on the robustness of Wn, used for possibly contaminated data,
remains unknown. Section 3 of this paper will address this issue with detailed derivations.

3. Robustness Properties of Wn in Equation (9)

This section derives the influence function of the robust-BD Wald-type test and studies the
influence of a small amount of contamination on the asymptotic level and power of the test. The proofs
of the theoretical results are given in Appendix A.

Denote by Kn,0 the true distribution of Zn following the “general linear model” characterized
by Equations (1) and (2). To facilitate the discussion of robustness properties, we consider the
ε-contamination,

Kn,ε =
(

1− ε√
n

)
Kn,0 +

ε√
n

J, (10)

where J is an arbitrary distribution and ε > 0 is a constant. Then, Kn,ε is a contaminated distribution
of Zn with the amount of contamination converging to 0 at rate 1/

√
n. Denote by Kn the empirical

distribution of {Zni}n
i=1.

For a generic distribution K of Zn, define

`K(β̃) = EK{ρq(Y, F−1(X̃
T
n β̃))w(Xn)}, (11)

SK = {β̃ : EK{ψRBD(Zn; β̃)} = 0},

where ρq(·, ·) and ψRBD(·; ·) are defined in Equations (4) and (7), respectively. It’s worth noting that
the solution to EK{ψRBD(Zn; β̃)} = 0 may not be unique, i.e., SK may contain more than one element.
We then define a functional for the estimator of β̃n,0 as follows,

T(K) = arg min
β̃∈SK

‖β̃− β̃n,0‖. (12)

From the result of Lemma A1 in Appendix A, T(Kn,ε) is the unique local minimizer
of `Kn,ε(β̃) in the

√
pn/n-neighborhood of β̃n,0. Particularly, T(Kn,0) = β̃n,0. Similarly,

from Lemma A2 in Appendix A, T(Kn) is the unique local minimizer of `Kn(β̃) which satisfies
‖T(Kn)− β̃n,0‖ = OP(

√
pn/n).

From [23] (Equation (2.1.6) on pp. 84), the influence function of T(·) at Kn,0 is defined as

IF(zn; T , Kn,0) =
∂

∂t
T((1− t)Kn,0 + t∆zn)

∣∣∣
t=0

= lim
t↓0

T((1− t)Kn,0 + t∆zn)− β̃n,0

t
,

where ∆zn is the probability measure which puts mass 1 at the point zn. Since the dimension of T(·)
diverges with n, its influence function is defined for each fixed n. From Lemma A8 in Appendix A,
under certain regularity conditions, the influence function exists and has the following expression:

IF(zn; T , Kn,0) = −H−1
n ψRBD(zn; β̃n,0), (13)
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where Hn = EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n}. The form of the influence function for diverging pn in

Equation(13) coincides with that in [23,24] for fixed pn.
In our theoretical derivations, approximations of the asymptotic level and power of Wn will

involve the following matrices:

Ωn = EKn,0{p
2
1(Y; X̃

T
n β̃n,0)w

2(Xn)X̃nX̃
T
n},

Un = AnH−1
n ΩnH−1

n AT
n .

3.1. Asymptotic Level of Wn under Contamination

We now investigate the asymptotic level of the Wald-type test Wn under the ε-contamination.

Theorem 1. Assume Conditions A0–A9 and B4 in Appendix A. Suppose p6
n/n → 0 as n →

∞, supn EJ(‖w(Xn)X̃n‖) ≤ C. Denote by α(Kn,ε) the level of Wn = n{AnT(Kn) −
g0}T(AnĤ−1

n Ω̂nĤ−1
n AT

n )
−1{AnT(Kn) − g0} when the underlying distribution is Kn,ε in Equation (10)

and by α0 the nominal level. Under H0 in Equation (8), it follows that

lim sup
n→∞

α(Kn,ε) = α0 + ε2µkD + o(ε2) as ε→ 0,

where

D = lim sup
n→∞

‖U−1/2
n An EJ{IF(Zn; T , Kn,0)}‖2 < ∞,

µk = − ∂
∂δ Hk(η1−α0

; δ)|δ=0, Hk(·; δ) is the cumulative distribution function of a χ2
k(δ) distribution, and η1−α0

is the 1− α0 quantile of the central χ2
k distribution.

Theorem 1 indicates that if the influence function for T(·) is bounded, then the asymptotic
level of Wn under the ε-contamination is also bounded and close to the nominal level when ε is
sufficiently small. As a comparison, the robustness property in [10] of the Wald-type test is studied
based on M-estimator for general parametric models with a fixed dimension pn. They assumed certain
conditions that guarantee Fréchet differentiability which further implies the existence of the influence
function and the asymptotic normality of the corresponding estimator. However, in the set-ups of our
paper, it’s difficult to check those conditions, due to the use of Bregman divergence and the diverging
dimension pn. Hence, the assumptions we make in Theorem 1 are different from those in [10], and are
comparatively mild and easy to check. Moreover, the result of Theorem 1 cannot be easily derived
from that of [10].

In Theorem 1, pn is allowed to diverge with p6
n/n = o(1), which is slower than that in [1]

with p5
n/n = o(1). Theoretically, the assumption p5

n/n = o(1) is required to obtain the asymptotic
distribution of Wn in [1]. Furthermore, to derive the limit distribution of Wn under the ε-contamination,
assumption p6

n/n = o(1) is needed (see Lemma A7 in Appendix A). Hence, the reason that our
assumption is stronger than that in [1] is the consideration of the ε-contamination of the data. Practically,
due to the advancement of technology and different forms of data gathering, large dimension becomes
a common characteristic and hence the varying-dimensional model has a wide range of applications,
e.g., brain imaging data, financial data, web term-document data and gene expression data. Even
some of the classical settings, e.g. the Framingham heart study with n = 25, 000 and pn = 100, can be
viewed as varying-dimensional cases.

As an illustration, we apply the general result of Theorem 1 to the special case of a point mass
contamination.

Corollary 1. With the notations in Theorem 1, assume Conditions A0–A9 in Appendix A,
supxn∈Rpn ‖w(xn)xn‖ ≤ C and supµ∈R |q′′(µ)

√
V(µ)/F′(µ)| ≤ C.
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(i) If pn ≡ p, An ≡ A, β̃n,0 ≡ β̃0, Kn,0 ≡ K0 and Un ≡ U are fixed, then, for Kn,ε = (1− ε/
√

n)K0 +

ε/
√

n∆z with z ∈ Rp a fixed point, under H0 in Equation (8), it follows that

sup
z∈Rp

lim
n→∞

α(Kn,ε) = α0 + ε2µkD1 + o(ε2) as ε→ 0,

where

D1 = sup
z∈Rp

‖U−1/2 A IF(z; T , K0)‖2 < ∞.

(ii) If pn diverges with p6
n/n → 0, for Kn,ε = (1− ε/

√
n)Kn,0 + ε/

√
n∆zn with zn ∈ Rpn a sequence of

deterministic points, then, under H0 in Equation (8),

sup
C0>0

sup
zn∈SC0

lim sup
n→∞

α(Kn,ε) = α0 + ε2µkD2 + o(ε2) as ε→ 0,

where SC0 = {zn = (xT
n , y)T : ‖xn‖∞ ≤ C0}, C0 > 0 is a constant and

D2 = sup
C0>0

sup
zn∈SC0

lim sup
n→∞

‖U−1/2
n AnIF(zn; T , Kn,0)‖2 < ∞.

In Corollary 1, conditions supxn∈Rpn ‖w(xn)xn‖ ≤ C and supµ∈R |q′′(µ)
√

V(µ)/F′(µ)| ≤ C are
needed to guarantee the boundedness of the score function in Equation (7). Particularly, the function
w(xn) downweights the high leverage points and can be chosen as, e.g., w(xn) = 1/(1 + ‖xn‖). The
condition supµ∈R |q′′(µ)

√
V(µ)/F′(µ)| ≤ C is needed to bound Equation (6), and is satisfied in many

situations.

• For example, for the linear model with q(µ) = aµ− µ2, V(µ) = σ2 and F(µ) = µ, where a and σ2

are constants, we observe |q′′(µ)
√

V(µ)/F′(µ)| = 2σ ≤ C.
• Another example is the logistic regression model with binary response and

q(µ) = −2{µ log(µ) + (1− µ) log(1− µ)} (corresponding to Bernoulli deviance loss),
V(µ) = µ(1− µ), F(µ) = log{µ/(1− µ)}. In this case, |q′′(µ)

√
V(µ)/F′(µ)| = 2{µ(1 −

µ)}1/2 ≤ C since µ ∈ [0, 1]. Likewise, if q(µ) = 2{µ(1− µ)}1/2 (for the exponential loss), then
|q′′(µ)

√
V(µ)/F′(µ)| = 1/2.

Furthermore, the bound on ψ(·) is useful to control deviations in the Y-space, which ensures the
stability of the robust-BD test if Y is arbitrarily contaminated.

Concerning the dimensionality pn, Corollary 1 reveals the following implications. If pn is fixed,
then the asymptotic level of Wn under the ε-contamination is uniformly bounded for all z ∈ Rp,
which implies the robustness of validity of the test. This result coincides with that in Proposition 5
of [10]. When pn diverges, the asymptotic level is still stable if the point contamination satisfies
‖xn‖∞ ≤ C0, where C0 > 0 is an arbitrary constant. Although this condition may not be the weakest, it
still covers a wide range of point mass contaminations.

3.2. Asymptotic Power of Wn under Contamination

Now, we will study the asymptotic power of Wn under a sequence of contiguous alternatives of
the form

H1n : An β̃n,0 − g0 = n−1/2c, (14)

where c = (c1, . . . , ck)
T 6= 0 is fixed.

Theorem 2. Assume Conditions A0–A9 and B4 in Appendix A. Suppose p6
n/n → 0 as n →

∞, supn EJ(‖w(Xn)X̃n‖) ≤ C. Denote by β(Kn,ε) the power of Wn = n{AnT(Kn) −
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g0}T(AnĤ−1
n Ω̂nĤ−1

n AT
n )
−1{AnT(Kn) − g0} when the underlying distribution is Kn,ε in Equation (10)

and by β0 the nominal power. Under H1n in Equation (14), it follows that

lim inf
n→∞

β(Kn,ε) = β0 + ενkB + o(ε) as ε→ 0,

where

B = lim inf
n→∞

2cTU−1
n An EJ{IF(Zn; T , Kn,0)},

with |B| < ∞, νk = − ∂
∂δ Hk(η1−α0

; δ)|
δ=cTU−1

n c and Hk(·; δ) and η1−α0
being defined in Theorem 1.

The result for the asymptotic power is similar in spirit to that for the level. From Theorem 2, if the
influence function is bounded, the asymptotic power is also bounded from below and close to the
nominal power under a small amount of contamination. This means that the robust-BD Wald-type test
enjoys the robustness of efficiency. In addition, the property of the asymptotic power can be obtained
for a point mass contamination.

Corollary 2. With the notations in Theorem 2, assume Conditions A0–A9 in Appendix A,
supxn∈Rpn ‖w(xn)xn‖ ≤ C and supµ∈R |q′′(µ)

√
V(µ)/F′(µ)| ≤ C.

(i) If pn ≡ p, An ≡ A, β̃n,0 ≡ β̃0, Kn,0 ≡ K0 and Un ≡ U are fixed, then, for Kn,ε = (1− ε/
√

n)K0 +

ε/
√

n∆z with z ∈ Rp a fixed point, under H1n in Equation (14), it follows that

inf
z∈Rp

lim
n→∞

β(Kn,ε) = β0 + ενkB1 + o(ε) as ε→ 0,

where

B1 = inf
z∈Rp

2cTU−1 A IF(z; T , K0),

with |B1| < ∞.
(ii) If pn diverges with p6

n/n → 0, for Kn,ε = (1− ε/
√

n)Kn,0 + ε/
√

n∆zn with zn ∈ Rpn a sequence of
deterministic points, then, under H1n in Equation (14),

inf
C0>0

inf
zn∈SC0

lim inf
n→∞

β(Kn,ε) = β0 + ενkB2 + o(ε) as ε→ 0,

where SC0 = {zn = (xT
n , y)T : ‖xn‖∞ ≤ C0}, C0 > 0 is a constant and

B2 = inf
C0>0

inf
zn∈SC0

lim inf
n→∞

2cTU−1
n AnIF(Zn; T , Kn,0),

with |B2| < ∞.

4. Simulation

Regarding the practical utility of Wn, numerical studies concerning the empirical level and power
of Wn under a fixed amount of contamination have been conducted in Section 6 of [1]. To support the
theoretical results in our paper, we conduct new simulations to check the robustness of validity and
efficiency of Wn. Specifically, we will examine the empirical level and power of the test statistic as
ε varies.

The robust-BD estimation utilizes the Huber ψ-function ψc(·) with c = 1.345 and the weight
function w(Xn) = 1/(1 + ‖Xn‖). Comparisons are made with the classical non-robust counterparts
corresponding to using ψ(r) = r and w(xn) ≡ 1. For each situation below, we set n = 1000 and
conduct 400 replications.
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4.1. Overdispersed Poisson Responses

Overdispersed Poisson counts Y, satisfying var(Y|Xn = xn) = 2m(xn), are generated via
a negative Binomial(m(xn), 1/2) distribution. Let pn = b4(n1/5.5 − 1)c and β̃n,0 = (0, 2, 0, . . . , 0)T ,

where b·c denotes the floor function. Generate Xni = (Xi,1, . . . , Xi,pn)
T by Xi,j

i.i.d.∼ Unif[−0.5, 0.5].
The log link function is considered and the (negative) quasi-likelihood is utilized as the BD, generated
by the q-function in Equation (3) with V(µ) = µ. The estimator and test statistic are calculated by
assuming Y follows Poisson distribution.

The data are contaminated by X∗i,mod(i,pn−1)+1 = 3sign(Ui − 0.5) and Y∗i = YiI(Yi > 20) + 20I(Yi ≤ 20)
for i = 1, . . . , k, with k ∈ {2, 4, 6, 8, 10, 12, 14, 16} the number of contaminated data points,

where mod(a, b) is the modulo operation “a modulo b” and {Ui}
i.i.d.∼ Unif(0, 1). Then, the proportion

of contaminated data, k/n, is equal to ε/
√

n as in Equation (10), which implies ε = k/
√

n.
Consider the null hypothesis H0 : An β̃n,0 = 0 with An = (0, 0, 0, 1, 0, . . . , 0). Figure 1 plots the

empirical level of Wn versus ε. We observe that the asymptotic nominal level 0.05 is approximately
retained by the robust Wald-type test. On the other hand, under contaminations, the non-robust
Wald-type test breaks in level, showing high sensitivity to the presence of outliers.

0.1 0.2 0.3 0.4 0.5
0

0

0.1

0.2

0.3

0.4

0.5

le
ve

l

Poisson

non-robust
robust

Figure 1. Observed level of Wn versus ε for overdispersed Poisson responses. The dotted line indicates
the 5% significance level.

To assess the stability of the power of the test, we generate the original data from the true
model, but with the true parameter β̃n,0 replaced by β̃n = β̃n,0 + δc with δ ∈ {−0.4, 0.4, −0.6, 0.6}
and c = (1, . . . , 1)T a vector of ones. Figure 2 plots the empirical rejection rates of the null model,
which implies that the robust Wald-type test has sufficiently large power to detect the alternative
hypothesis. In addition, the power of the robust method is generally larger than that of the
non-robust method.
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/ = 0.6
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/ = -0.4
/ = 0.4
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Figure 2. Observed power of Wn versus ε for overdispersed Poisson responses. The statistics in the left
panel correspond to non-robust method and those in the right panel are for robust method. The asterisk
line indicates the 5% significance level.
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4.2. Bernoulli Responses

We generate data with two classes from the model, Y|Xn = xn ∼ Bernoulli{m(xn)},
where logit{m(xn)} = x̃T

n β̃n,0. Let pn = 2, β̃n,0 = (0, 1, 1)T and Xni
i.i.d.∼ N(0, Ipn). The null

hypothesis is H0 : β̃n,0 = (0, 1, 1)T . Both the deviance loss and the exponential loss are employed
as the BD. We contaminate the data by setting X∗i,1 = 2 + i/8 and Y∗i = 0 for i = 1, . . . , k with
k ∈ {2, 4, 6, 8, 10, 12, 14, 16}. To investigate the robustness of validity of Wn, we plot the observed
level versus ε in Figure 3. We find that the level of the non-robust method diverges fast as ε increases.
It’s also clear that the empirical level of the robust method is close to the nominal level when ε is small
and increases slightly with ε, which coincides with our results in Theorem 1.

0.1 0.2 0.3 0.4 0.5
0

0

0.2

0.4

0.6

0.8

1
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l

Bernoulli, deviance loss
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(a)

0.1 0.2 0.3 0.4 0.5
0

0

0.2

0.4

0.6

0.8

1
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ve

l

Bernoulli, exponential loss

non-robust
robust

(b)

Figure 3. Observed level of Wn versus ε for Bernoulli responses. The statistics in (a) use deviance loss
and those in (b) use exponential loss. The dotted line indicates the 5% significancelevel.

To assess the stability of the power of Wn, we generate the original data from the true model,
but with the true parameter β̃n,0 replaced by β̃n = β̃n,0 + δc with δ ∈ {−0.1, 0.2, −0.3, 0.4} and
c = (1, . . . , 1)T a vector of ones. Figure 4 plots the power of the Wald-type test versus ε, which implies
that the robust method has sufficiently large power, and hence supports the theoretical results in
Theorem 2.
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Figure 4. Observed power of Wn versus ε for Bernoulli responses. The top panels correspond to
deviance loss while the bottom panels are for exponential loss. The statistics in the left panels are
calculated using non-robust method and those in the right panels are from robust method. The asterisk
line indicates the 5% significance level.
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Appendix A. Conditions and Proofs of Main Results

We first introduce some necessary notations used in the proof.

Notations. For arbitrary distributions K and K′ of Zn, define

Ωn,K,T(K′) = EK{p2
1(Y; X̃

T
n T(K′))w2(Xn)X̃nX̃

T
n},

Hn,K,T(K′) = EK{p2(Y; X̃
T
n T(K′))w(Xn)X̃nX̃

T
n}.

Therefore, Ωn = Ωn,Kn,0,β̃n,0
, Hn = Hn,Kn,0,β̃n,0

, Ω̂n = Ωn,Kn ,T(Kn) and Ĥn = Hn,Kn ,T(Kn). For

notational simplicity, let Ωn,ε = Ωn,Kn,ε ,T(Kn,ε) and Hn,ε = Hn,Kn,ε ,T(Kn,ε).
Define the following matrices,

U(Kn,ε) = AnH−1
n,εΩn,εH−1

n,ε AT
n ,

U(Kn) = AnĤ−1
n Ω̂nĤ−1

n AT
n .
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The following conditions are needed in the proof, which are adopted from [1].
Condition A.

A0. supn≥1 ‖β̃n,0‖1 < ∞.
A1. w(·) is a bounded function. Assume that ψ(r) is a bounded, odd function, and twice

differentiable, such that ψ′(r), ψ′(r)r, ψ′′(r), ψ′′(r)r and ψ′′(r)r2 are bounded; V(·) > 0,
V(2) is continuous.

A2. q(4)(·) is continuous, and q(2)(·) < 0. G(3)
1 is continuous.

A3. F(·) is monotone and a bijection, F(3)(·) is continuous, and F(1)(·) 6= 0.
A4. ‖Xn‖∞ ≤ C almost surely if the underlying distribution is Kn,0.

A5. EKn,0(X̃nX̃
T
n ) exists and is nonsingular.

A6. There is a large enough open subset of Rpn+1 which contains β̃n,0, such that F−1(x̃T
n β̃) is bounded

for all β̃ in the subset and all x̃n such that ‖x̃n‖∞ ≤ C, where C > 0 is a large enough constant.
A7. Hn is positive definite, with eigenvalues uniformly bounded away from 0.
A8. Ωn is positive definite, with eigenvalues uniformly bounded away from 0.
A9. ‖H−1

n Ωn‖ is bounded away from ∞.

Condition B.

B4. ‖Xn‖∞ ≤ C almost surely if the underlying distribution is J.

The following Lemmas A1–A9 are needed to prove the main theoretical results in this paper.

Lemma A1 (‖T(Kn,ε) − β̃n,0‖). Assume Conditions A0–A7 and B4. For Kn,ε in Equation (10), `K(·) in
Equation (11) and T(·) in Equation (12), if p4

n/n→ 0 as n→ ∞, then T(Kn,ε) is a local minimizer of `Kn,ε(β̃)

such that ‖T(Kn,ε)− β̃n,0‖ = O(
√

pn/n). Furthermore, T(Kn,ε) is unique.

Proof. We follow the idea of the proof in [25]. Let rn =
√

pn/n and ũn = (u0, u1, . . . , upn)
T ∈ Rpn+1.

First, we show that there exists a sufficiently large constant C such that, for large n, we have

inf
‖ũn‖=C

`Kn,ε(β̃n,0 + rnũn) > `Kn,ε(β̃n,0). (A1)

To show Equation (A1), consider

`Kn,ε(β̃n,0 + rnũn)− `Kn,ε(β̃n,0) = EKn,ε

{
ρq
(
Y, F−1(X̃

T
n β̃n,0 + rnX̃

T
n ũn))w(Xn)

−ρq(Y, F−1(X̃
T
n β̃n,0))w(Xn)

}
≡ I1,

where ‖ũn‖ = C.
By Taylor expansion,

I1 = I1,1 + I1,2 + I1,3, (A2)

where

I1,1 = rn EKn,ε{p1(Y; X̃
T
n β̃n,0)w(Xn)X̃

T
n}ũn,

I1,2 = r2
n/2 EKn,ε{p2(Y; X̃

T
n β̃n,0)w(Xn)(X̃

T
n ũn)

2},
I1,3 = r3

n/6 EKn,ε{p3(Y; X̃
T
n β̃
∗
n)w(Xn)(X̃

T
n ũn)

3},

for β̃
∗
n located between β̃n,0 and β̃n,0 + rnũn. Hence

|I1,1| ≤ rn‖EKn,ε{p1(Y; X̃
T
n β̃n,0)w(Xn)X̃n}‖‖ũn‖
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= rn
ε√
n
‖EJ{p1(Y; X̃

T
n β̃n,0)w(Xn)X̃n}‖‖ũn‖

≤ Crn
√

pn/n‖ũn‖,

since ‖EJ{p1(Y; X̃
T
n β̃n,0)w(Xn)X̃n}‖ = O(

√
pn) and EKn,0{p1(Y; X̃

T
n β̃n,0)w(Xn)X̃n} = 0. For I1,2 in

Equation (A2),

I1,2 =
r2

n
2

EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)(X̃

T
n ũn)

2}

+
r2

n
2
[EKn,ε{p2(Y; X̃

T
n β̃n,0)w(Xn)(X̃

T
n ũn)

2} − EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)(X̃

T
n ũn)

2}]
≡ I1,2,1 + I1,2,2,

where I1,2,1 = 2−1r2
nũT

n Hnũn. Meanwhile, we have

|I1,2,2|
≤ r2

n‖EKn,ε{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n} − EKn,0{p2(Y; X̃

T
n β̃n,0)w(Xn)X̃nX̃

T
n}‖F‖ũn‖2

= r2
n

ε√
n
‖EJ{p2(Y; X̃

T
n β̃n,0)w(Xn)X̃nX̃

T
n} − EKn,0{p2(Y; X̃

T
n β̃n,0)w(Xn)X̃nX̃

T
n}‖F‖ũn‖2

≤ Cr2
n pn‖ũn‖2/

√
n,

where ‖EJ{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n}‖F = O(pn) and ‖EKn,0{p2(Y; X̃

T
n β̃n,0)w(Xn)X̃nX̃

T
n}‖F = O(pn). Thus,

I1,2 = 2−1r2
nũT

n Hnũn + O(r2
n pn/

√
n)‖ũn‖2. (A3)

For I1,3 in Equation (A2), we observe that

|I1,3| ≤ Cr3
n EKn,ε{|p3(Y; X̃

T
n β̃
∗
n)|w(Xn)|X̃

T
n ũn|3} = O(r3

n p3/2
n )‖ũn‖3.

We can choose some large C such that I1,1 , I1,2,2 and I1,3 are all dominated by the first term of
I1,2 in Equation (A3), which is positive by the eigenvalue assumption. This implies Equation (A1).
Therefore, there exists a local minimizer of `Kn,ε(β̃) in the

√
pn/n neighborhood of β̃n,0, and denote

this minimizer by β̃n,ε.
Next, we show that the local minimizer β̃n,ε of `Kn,ε(β̃) is unique in the

√
pn/n neighborhood of

β̃n,0. For all β̃ such that ‖β̃− β̃n,0‖ = O(n−1/4 p−1/2
n ),

EKn,ε

∥∥∥ ∂

∂β̃
ρq(Y, F−1(X̃

T
n β̃))w(Xn)

∥∥∥ = EKn,ε‖p1(Y; X̃
T
n β̃)w(Xn)X̃n‖ ≤ C

√
pn

EKn,ε

∥∥∥ ∂2

∂β̃
2 ρq(Y, F−1(X̃

T
n β̃))w(Xn)

∥∥∥ = EKn,ε‖p2(Y; X̃
T
n β̃)w(Xn)X̃nXT

n‖ ≤ Cpn

and hence,

∂

∂β̃
EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)} = EKn,ε

{ ∂

∂β̃
ρq(Y, F−1(X̃

T
n β̃))w(Xn)

}
∂2

∂β̃
2 EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)} = EKn,ε

{ ∂2

∂β̃
2 ρq(Y, F−1(X̃

T
n β̃))w(Xn)

}
.

Therefore,

∂2

∂β̃
2 EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)}

= EKn,ε{p2(Y; X̃
T
n β̃)w(Xn)X̃nX̃

T
n}
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= EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n}

+EKn,0 [{p2(Y; X̃
T
n β̃)− p2(Y; X̃

T
n β̃n,0)}w(Xn)X̃nX̃

T
n ]

+[EKn,ε{p2(Y; X̃
T
n β̃)w(Xn)X̃nX̃

T
n} − EKn,0{p2(Y; X̃

T
n β̃)w(Xn)X̃nX̃

T
n}]

= I∗1 + I∗2 + I∗3 .

We know that the minimum eigenvalues of I∗1 are uniformly bounded away from 0,

‖I∗2 ‖ = ‖EKn,0{p3(Y; X̃
T
n β̃
∗∗
)w(Xn)X̃nX̃

T
n X̃

T
n (β̃− β̃n,0)}‖ ≤ Cpn/n1/4 = o(1)

‖I∗3 ‖ ≤ ε/
√

n[‖EKn,0{p2(Y; X̃
T
n β̃)w(Xn)X̃nX̃

T
n}‖+ ‖EJ{p2(Y; X̃

T
n β̃)w(Xn)X̃nX̃

T
n}‖]

≤ Cpn/
√

n = o(1).

Hence, for n large enough, ∂2

∂β̃
2 EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)} is positive definite for all β̃ such

that ‖β̃ − β̃n,0‖ = O(n−1/4 p−1/2
n ). Therefore, there exists a unique minimizer of `Kn,ε(β̃) in the

n−1/4 p−1/2
n neighborhood of β̃n,0 which covers β̃n,ε. From

0 =
∂

∂β̃
EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)}

∣∣∣
β̃=β̃n,ε

= EKn,ε

{ ∂

∂β̃
ρq(Y, F−1(X̃

T
n β̃))

∣∣∣
β̃=β̃n,ε

w(Xn)
}

= EKn,ε{p1(Y; X̃
T
n β̃n,ε)w(Xn)X̃n},

we know T(Kn,ε) = β̃n,ε. From the definition of T(·), it’s easy to see that T(Kn,ε) is unique.

Lemma A2 (‖T(Kn)− T(Kn,ε)‖). Assume Conditions A0–A7 and B4. For Kn,ε in Equation (10), `K(·) in
Equation (11) and T(·) in Equation (12), if p4

n/n→ 0 as n→ ∞ and the distribution of (Xn, Y) is Kn,ε, then

there exists a unique local minimizer ̂̃βn of `Kn(β̃) such that ‖̂̃βn − T(Kn,ε)‖ = OP(
√

pn/n). Furthermore,

‖̂̃βn − β̃n,0‖ = OP(
√

pn/n) and T(Kn) =
̂̃β.

Proof. Let rn =
√

pn/n and ũn = (u0, u1, . . . , upn)
T ∈ Rpn+1. To show the existence of the estimator, it

suffices to show that for any given κ > 0, there exists a sufficiently large constant Cκ such that, for large
n we have

P
{

inf
‖ũn‖=Cκ

`Kn(T(Kn,ε) + rnũn) > `Kn(T(Kn,ε))
}
≥ 1− κ. (A4)

This implies that with probability at least 1− κ, there exists a local minimizer ̂̃βn of `Kn(β̃) in the
ball {T(Kn,ε) + rnũn : ‖ũn‖ ≤ Cκ}. To show Equation (A4), consider

`Kn(T(Kn,ε) + rnũn)− `Kn(T(Kn,ε)) =
1
n

n

∑
i=1
{ρq(Yi, F−1(X̃

T
ni(T(Kn,ε) + rnũn)))w(Xni)

−ρq(Yi, F−1(X̃
T
niT(Kn,ε)))w(Xni)}

≡ I1,

where ‖ũn‖ = Cκ .
By Taylor expansion,

I1 = I1,1 + I1,2 + I1,3, (A5)

where

I1,1 = rn/n
n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃

T
niũn,
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I1,2 = r2
n/(2n)

n

∑
i=1

p2(Yi; X̃
T
niT(Kn,ε))w(Xni)(X̃

T
niũn)

2,

I1,3 = r3
n/(6n)

n

∑
i=1

p3(Yi; X̃
T
ni β̃
∗
n)w(Xni)(X̃

T
niũn)

3

for β̃
∗
n located between T(Kn,ε) and T(Kn,ε) + rnũn.
Since ‖T(Kn,ε) − β̃n,0‖ = O(

√
pn/n) = o(1), the large open set considered in Condition A6

contains T(Kn,ε) when n is large enough, say n ≥ N where N is a positive constant. Therefore, for any
fixed n ≥ N, there exists a bounded open subset of Rpn+1 containing T(Kn,ε) such that for all β̃ in this

set, ‖p1(Y; X̃
T
n β̃)w(Xn)X̃n‖ ≤ C‖X̃n‖ which is integrable with respect to Kn,ε, where C is a positive

constant. Thus, for n ≥ N,

0 =
∂

∂β̃
EKn,ε{ρq(Y, F−1(X̃

T
n β̃))w(Xn)}

∣∣∣
β̃=T(Kn,ε)

= EKn,ε{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n}. (A6)

Hence,

|I1,1| ≤ rn

∥∥∥ 1
n

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni

∥∥∥‖ũn‖ = OP(rn
√

pn/n)‖ũn‖.

For I1,2 in Equation (A5),

I1,2 =
r2

n
2n

n

∑
i=1

EKn,ε{p2(Yi; X̃
T
niT(Kn,ε))w(Xni)(X̃

T
niũn)

2}

+
r2

n
2n

n

∑
i=1

[p2(Yi; X̃
T
niT(Kn,ε))w(Xni)(X̃

T
niũn)

2

−EKn,ε{p2(Yi; X̃
T
niT(Kn,ε))w(Xni)(X̃

T
niũn)

2}]
≡ I1,2,1 + I1,2,2,

where I1,2,1 = 2−1r2
nũT

n Hn,εũn. Meanwhile, we have

|I1,2,2| ≤
r2

n
2

∥∥∥ 1
n

n

∑
i=1

[p2(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃niX̃

T
ni

−EKn,ε{p2(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃niX̃

T
ni}]

∥∥∥
F
‖ũn‖2

= r2
nOP(pn/

√
n)‖ũn‖2.

Thus,

I1,2 = 2−1r2
nũT

n Hn,εũn + OP(r2
n pn/

√
n)‖ũn‖2. (A7)

For I1,3 in Equation (A5), we observe that

|I1,3| ≤ Cr3
n

1
n

n

∑
i=1
|p3(Yi; X̃

T
ni β̃
∗
n)|w(Xni)|X̃

T
niũn|3 = OP(r3

n p3/2
n )‖ũn‖3.

We will show that the minimum eigenvalue of Hn,ε is uniformly bounded away from 0.
Hn,ε = (1− ε/

√
n)Hn,Kn,0,T(Kn,ε) + ε/

√
nHn,J,T(Kn,ε). Note

‖Hn,Kn,0,T(Kn,ε) −Hn‖
= ‖EKn,0 [{p2(Y; X̃

T
n T(Kn,ε))− p2(Y; X̃

T
n β̃n,0)}w(Xn)X̃nX̃

T
n ]‖

= ‖EKn,0 [p3(Y; X̃
T
n β̃
∗∗
n )w(Xn)X̃nX̃

T
n X̃

T
n{T(Kn,ε)− β̃n,0}]‖ = O(p2

n/
√

n).
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Since the eigenvalues of Hn are uniformly bounded away from 0, so are those of Hn,Kn,0,T(Kn,ε)

and Hn,ε.
We can choose some large Cκ such that I1,1 and I1,3 are both dominated by the first term of I1,2 in

Equation (A7), which is positive by the eigenvalue assumption. This implies Equation (A4).

Next we show the uniqueness of ̂̃β. For all β̃ such that ‖β̃− T(Kn,ε)‖ = O(n−1/4 p−1/2
n ),

1
n

n

∑
i=1

p2(Yi; X̃
T
ni β̃)w(Xni)X̃niX̃

T
ni

= EKn,0{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nXT

n}
+EKn,0 [{p2(Y; X̃

T
n β̃)− p2(Y; X̃

T
n β̃n,0)}w(Xn)X̃nXT

n ]

+[EKn,ε{p2(Y; X̃
T
n β̃)w(Xn)X̃nXT

n} − EKn,0{p2(Y; X̃
T
n β̃)w(Xn)X̃nXT

n}]

+
[ 1

n

n

∑
i=1

p2(Yi; X̃
T
ni β̃))w(Xni)X̃niX̃

T
ni − EKn,ε{p2(Y; X̃

T
n β̃)w(Xn)X̃nXT

n}
]

= I∗1 + I∗2 + I∗3 + I∗4 .

We know that the minimum eigenvalues of I∗1 are uniformly bounded away from 0. Following
the proof of Lemma A1, we have ‖I∗2 ‖ = o(1) and ‖I∗3 ‖ = o(1). It’s easy to see ‖I∗4 ‖ = OP(pn/

√
n).

Hence, for n large enough, ∂2

∂β̃
2 `Kn(β̃) is positive definite with high probability for all β̃ such that

‖β̃− β̃n,0‖ = O(n−1/4 p−1/2
n ). Therefore, there exists a unique minimizer of `Kn(β̃) in the n−1/4 p−1/2

n

neighborhood of T(Kn,ε) which covers ̂̃β.

Lemma A3 (‖An{T(Kn,ε)− β̃n,0}‖). Assume Conditions A0–A7 and B4. For Kn,ε in Equation (10) and T(·)
in Equation (12), if p5

n/n→ 0 as n→ ∞, the distribution of (Xn, Y) is Kn,ε and EJ(‖w(Xn)Xn‖) ≤ C, then

√
nAn{T(Kn,ε)− β̃n,0} = O(1),

where An is any given k× (pn + 1) matrix such that An AT
n → G, with G being a k× k positive-definite

matrix and k is a fixed integer.

Proof. Taylor’s expansion yields

0 = EKn,ε{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n}

= EKn,ε{p1(Y; X̃
T
n β̃n,0)w(Xn)X̃n}

+EKn,ε{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n}{T(Kn,ε)− β̃n,0}

+1/2 EKn,ε

(
p3(Y; X̃

T
n β̃
∗
n)w(Xn)X̃n[X̃

T
n{T(Kn,ε)− β̃n,0}]

2)
= I1 + I2{T(Kn,ε)− β̃n,0}+ I3,

where β̃
∗
n lies between T(Kn,ε) and β̃n,0. Below, we will show

‖I1‖ = O(1/
√

n), ‖I2 −Hn‖ = O(pn/
√

n), ‖I3‖ = O(p5/2
n /n).

First, ‖I1‖ = ε/
√

n‖EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n}‖ ≤ Cε/

√
n EJ(‖w(Xn)Xn‖) = O(1/

√
n).

Following the proof of I∗3 in Lemma A1, ‖I2−Hn‖ = O(pn/
√

n). Since ‖T(Kn,ε)− β̃n,0‖ = O(
√

pn/n),
we have ‖I3‖ = O(p5/2

n /n).
Therefore,

√
nAn{T(Kn,ε)− β̃n,0} = −

√
nAnH−1

n I1 + o(1), which completes the proof.
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Lemma A4 (asymptotic normality of T(Kn)− T(Kn,ε)). Assume Conditions A0–A8 and B4. If p5
n/n→ 0

as n→ ∞ and the distribution of (Xn, Y) is Kn,ε, then

√
n{U(Kn,ε)}−1/2 An{T(Kn)− T(Kn,ε)}

L−→ N(0, Ik),

where U(Kn,ε) = AnH−1
n,εΩn,εH−1

n,ε AT
n , An is any given k× (pn + 1) matrix such that An AT

n → G, with G
being a k× k positive-definite matrix, k is a fixed integer.

Proof. We will first show that

T(Kn)− T(Kn,ε) = −
1
n

H−1
n,ε

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni + oP(n−1/2). (A8)

From ∂`Kn (β̃)

∂β̃
|
β̃=T(Kn)

= 0, Taylor’s expansion yields

0 =
{ 1

n

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni

}
+
{ 1

n

n

∑
i=1

p2(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃niX̃

T
ni

}
{T(Kn)− T(Kn,ε)}

+
1

2n

n

∑
i=1

p3(Yi; X̃
T
ni β̃
∗
n)w(Xni)[X̃

T
ni{T(Kn)− T(Kn,ε)}]2X̃ni

≡
{ 1

n

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni

}
+ I2{T(Kn)− T(Kn,ε)}+ I3, (A9)

where β̃
∗
n lies between T(Kn,ε) and T(Kn). Below, we will show

‖I2 −Hn,ε‖ = OP(pn/
√

n), ‖I3‖ = OP(p5/2
n /n).

Similar arguments for the proof of I1,2 of Lemma A2, we have ‖I2 −Hn,ε‖ = OP(pn/
√

n).
Second, a similar proof used for I∗1,3 in Equation (A5) gives ‖I3‖ = OP(p5/2

n /n).
Third, by Equation (A9) and ‖T(Kn)− T(Kn,ε)‖ = OP(

√
pn/n), we see that

Hn,ε{T(Kn)− T(Kn,ε)} = −
1
n

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni + un,

where ‖un‖ = OP(p5/2
n /n) = oP(n−1/2). From the proof of Lemma A2, the eigenvalues of Hn,ε are

uniformly bounded away from 0 and we complete the proof of Equation (A8).
Following the proof for the bounded eigenvalues of Hn,ε in Lemma A2, we can show that the

eigenvalues of Ωn,ε are uniformly bounded away from 0. Hence, the eigenvalues of H−1
n,εΩn,εH−1

n,ε are
uniformly bounded away from 0, as are the eigenvalues of U(Kn,ε). From Equation (A8), we see that

An{T(Kn)− T(Kn,ε)} = −
1
n

AnH−1
n,ε

n

∑
i=1

p1(Yi; X̃
T
niT(Kn,ε))w(Xni)X̃ni + oP(n−1/2).

It follows that

√
n{U(Kn,ε)}−1/2 An{T(Kn)− T(Kn,ε)} =

n

∑
i=1

Rni + oP(1),

where Rni = −n−1/2{U(Kn,ε)}−1/2 AnH−1
n,εp1(Yi; X̃

T
niT(Kn,ε))w(Xni)X̃ni. Following (A6) in

Lemma A2, one can show that EKn,ε(Rni) = 0 for n large enough.
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To show ∑n
i=1 Rni

L−→ N(0, Ik), we apply the Lindeberg-Feller central limit theorem in [26].
Specifically, we check (I) ∑n

i=1 covKn,ε(Rni) → Ik; (II) ∑n
i=1 EKn,ε(‖Rni‖2+δ) = o(1) for some δ >

0. Condition (I) is straightforward since ∑n
i=1 covKn,ε(Rni) = {U(Kn,ε)}−1/2U(Kn,ε){U(Kn,ε)}−1/2 = Ik.

To check condition (II), we can show that EKn,ε(‖Rni‖2+δ) = O((pn/n)(2+δ)/2). This yields

∑n
i=1 EKn,ε(‖Rni‖2+δ) ≤ O(p(2+δ)/2

n /nδ/2) = o(1). Hence

√
n{U(Kn,ε)}−1/2 An{T(Kn)− T(Kn,ε)}

L−→ N(0, Ik).

Thus, we complete the proof.

Lemma A5 (asymptotic covariance matrices U(Kn,ε) and Un). Assume Conditions A0–A9 and B4.
If p4

n/n→ 0 as n→ ∞, then

‖U−1/2
n {U(Kn,ε)}1/2 − Ik‖ = O(pn/n1/4),

where U(Kn,ε) = AnH−1
n,εΩn,εH−1

n,ε AT
n , An is any given k× (pn + 1) matrix such that An AT

n → G, with G
being a k× k positive-definite matrix, and k is a fixed integer.

Proof. Note that

‖{U(Kn,ε)}1/2 −U1/2
n ‖2 ≤ ‖U(Kn,ε)−Un‖

≤ ‖H−1
n,εΩn,εH−1

n,ε −H−1
n ΩnH−1

n ‖‖An‖2
F.

Since ‖An‖2
F → tr(G), it suffices to prove that ‖H−1

n,εΩn,εH−1
n,ε −H−1

n ΩnH−1
n ‖ = O(p2

n/
√

n).
First, we prove ‖Hn,ε −Hn‖ = O(p2

n/
√

n). Note that

Hn,ε −Hn = EKn,ε [{p2(Y; X̃
T
n T(Kn,ε))− p2(Y; X̃

T
n β̃n,0)}w(Xn)X̃nX̃

T
n ]

+[EKn,ε{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n} −Hn]

= EKn,ε [p3(Y; X̃
T
n β̃
∗
)w(Xn)X̃nX̃

T
n X̃

T
n{T(Kn,ε)− β̃n,0}]

+[EKn,ε{p2(Y; X̃
T
n β̃n,0)w(Xn)X̃nX̃

T
n} −Hn]

≡ I1 + I2.

We know that ‖I1‖ = O(p2
n/
√

n) and ‖I2‖ = O(pn/
√

n). Thus, ‖I1‖ = O(p2
n/
√

n).
Second, we show ‖Ωn,ε −Ωn‖ = O(p2

n/
√

n). It is easy to see that

Ωn,ε −Ωn = EKn,ε [{p2
1(Y; X̃

T
n T(Kn,ε))− p2

1(Y; X̃
T
n β̃n,0)}w

2(Xn)X̃nX̃
T
n ]

+[EKn,ε{p2
1(Y; X̃

T
n β̃n,0)w

2(Xn)X̃nX̃
T
n} −Ωn]

= ∆1,1 + ∆1,2,

where ‖∆1,1‖ = O(p2
n/
√

n) and ‖∆1,2‖ = O(pn/
√

n). We observe that ‖Ωn,ε −Ωn‖ = O(p2
n/
√

n).
Third, we show ‖H−1

n,εΩn,εH−1
n,ε − H−1

n ΩnH−1
n ‖ = O(p2

n/
√

n). Note H−1
n,εΩn,εH−1

n,ε −
H−1

n ΩnH−1
n = L1 + L2 + L3, where L1 = H−1

n,ε(Ωn,ε − Ωn)H−1
n,ε, L2 = H−1

n,ε(Hn − Hn,ε)H−1
n ΩnH−1

n,ε
and L3 = H−1

n ΩnH−1
n,ε(Hn −Hn,ε)H−1

n . Under Conditions A7 and A9, it is straightforward to see
that ‖H−1

n,ε‖ = O(1), ‖H−1
n ‖ = O(1) and ‖H−1

n Ωn‖ = O(1). Since ‖L1‖ ≤ ‖H−1
n,ε‖‖Ωn,ε −Ωn‖‖H−1

n,ε‖,
we conclude ‖L1‖ = O(p2

n/
√

n), and similarly ‖L2‖ = O(p2
n/
√

n) and ‖L3‖ = O(p2
n/
√

n). Hence,
‖H−1

n,εΩn,εH−1
n,ε −H−1

n ΩnH−1
n ‖ = O(p2

n/
√

n).
Thus, we can conclude that ‖U(Kn,ε)−Un‖ = O(p2

n/
√

n) and that the eigenvalues of U(Kn,ε) and
Un are uniformly bounded away from 0 and ∞. Consequently, ‖{U(Kn,ε)}1/2 −U1/2

n ‖ = O(pn/n1/4)

and proof is finished.
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Lemma A6 (asymptotic covariance matrices U(Kn) and U(Kn,ε)). Assume Conditions A0–A9 and B4.
If p4

n/n→ 0 as n→ ∞ and the distribution of (Xn, Y) is Kn,ε, then

‖{U(Kn)}−1/2{U(Kn,ε)}1/2 − Ik‖ = OP(pn/n1/4),

where U(Kn,ε) = AnH−1
n,εΩn,εH−1

n,ε AT
n , U(Kn) = AnĤ−1

n Ω̂nĤ−1
n AT

n , An is any given k× (pn + 1) matrix
such that An AT

n → G, with G being a k× k positive-definite matrix, and k is a fixed integer.

Proof. Note that ‖{U(Kn)}1/2 − {U(Kn,ε)}1/2‖2 ≤ ‖U(Kn) − U(Kn,ε)‖ ≤ ‖Ĥ−1
n Ω̂nĤ−1

n −
H−1

n,εΩn,εH−1
n,ε‖‖An‖2

F. Since ‖An‖2
F → tr(G), it suffices to prove that ‖Ĥ−1

n Ω̂nĤ−1
n −H−1

n,εΩn,εH−1
n,ε‖ =

OP(p2
n/
√

n).
Following the proof of Proposition 1 in [1], we can show that ‖Ĥn −Hn,ε‖ = OP(p2

n/
√

n) and
‖Ω̂n −Ωn,ε‖ = OP(p2

n/
√

n).
To show ‖Ĥ−1

n Ω̂nĤ−1
n − H−1

n,εΩn,εH−1
n,ε‖ = OP(p2

n/
√

n), note Ĥ−1
n Ω̂nĤ−1

n − H−1
n,εΩn,εH−1

n,ε =

L1 + L2 + L3, where L1 = Ĥ−1
n (Ω̂n − Ωn,ε)Ĥ−1

n , L2 = Ĥ−1
n (Hn,ε − Ĥn)H−1

n,εΩn,εĤ−1
n and L3 =

H−1
n,εΩn,εĤ−1

n (Hn,ε − Ĥn)H−1
n,ε. Following the proof in Lemma A2, it is straightforward to verify

that ‖H−1
n,ε‖ = O(1), ‖Ĥ−1

n ‖ = OP(1). In addition, ‖H−1
n,εΩn,ε‖ = ‖(H−1

n,ε −H−1
n )Ωn,ε + H−1

n (Ωn,ε −
Ωn) + H−1

n Ωn‖ ≤ ‖H−1
n,ε‖‖Hn,ε −Hn‖‖H−1

n ‖‖Ωn,ε‖+ ‖H−1
n ‖‖Ωn,ε −Ωn‖+ ‖H−1

n Ωn‖ = O(1).
Since ‖L1‖ ≤ ‖Ĥ−1

n ‖‖Ω̂n − Ωn,ε‖‖Ĥ−1
n ‖, we conclude ‖L1‖ = OP(p2

n/
√

n), and similarly
‖L2‖ = OP(p2

n/
√

n) and ‖L3‖ = OP(p2
n/
√

n). Hence, ‖Ĥ−1
n Ω̂nĤ−1

n −H−1
n,εΩn,εH−1

n,ε‖ = OP(p2
n/
√

n).
Thus, we can conclude that ‖U(Kn)−U(Kn,ε)‖ = OP(p2

n/
√

n) and the eigenvalues of U(Kn) are
uniformly bounded away from 0 and ∞ with probability tending to 1. Noting that ‖{U(Kn)}1/2 −
{U(Kn,ε)}1/2‖2 ≤ ‖U(Kn)−U(Kn,ε)‖.

Lemma A7 (asymptotic distribution of test statistic). Assume Conditions A0–A9 and B4. If p6
n/n→ 0 as

n→ ∞ and the distribution of (Xn, Y) is Kn,ε, then

√
n[{U(Kn)}−1/2 An{T(Kn)− β̃n,0} −U−1/2

n An{T(Kn,ε)− β̃n,0}]
L−→ N(0, Ik),

where An is any given k× (pn + 1) matrix such that An AT
n → G, with G being a k× k positive-definite

matrix, and k is a fixed integer.

Proof. Note that

√
n[{U(Kn)}−1/2 An{T(Kn)− β̃n,0} −U−1/2

n An{T(Kn,ε)− β̃n,0}]
=
√

n{U(Kn)}−1/2 An{T(Kn)− T(Kn,ε)}
+
√

n[{U(Kn)}−1/2 − {U(Kn,ε)}−1/2]An{T(Kn,ε)− β̃n,0}
+
√

n[{U(Kn,ε)}−1/2 −U−1/2
n ]An{T(Kn,ε)− β̃n,0}

≡ I + II + III.

For term I, we obtain from Lemma A4 that
√

n{U(Kn,ε)}−1/2 An(T(Kn)− T(Kn,ε))
L−→ N(0, Ik).

From Lemma A6, we get ‖{U(Kn)}−1/2{U(Kn,ε)}1/2 − Ik‖ = oP(1). Thus, by Slutsky theorem,

I L−→ N(0, Ik). (A10)

For term II, we see from Lemma A6 that

‖{U(Kn)}−1/2 − {U(Kn,ε)}−1/2‖ = OP(pn/n1/4).

Since

‖An{T(Kn,ε)− β̃n,0}‖ ≤ ‖An‖‖T(Kn,ε)− β̃n,0‖ = O(
√

pn/n).
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Thus,

‖II‖ ≤
√

n‖{U(Kn)}−1/2 − {U(Kn,ε)}−1/2‖‖An‖‖T(Kn,ε)− β̃n,0‖ = OP(p3/2
n /n1/4). (A11)

Similarly, ‖III‖ = oP(1). Combining (A10) and (A11) with Slutsky theorem completes
the proof.

Lemma A8 (Influence Function IF). Assume Conditions A1–A8 and B4. For any fixed sample size n,

∂

∂t
T
(
(1− t)Kn,0 + tJ

)∣∣∣
t=t0
≡ lim

t→t0

T
(
(1− t)Kn,0 + tJ

)
− T

(
(1− t0)Kn,0 + t0 J

)
t− t0

= −H−1
n,Kt0 ,T(Kt0 )

[EJ{ψRBD(Zn; T(Kt0))} − EKn,0{ψRBD(Zn; T(Kt0))}],

where Kt0 = (1− t0)Kn,0 + t0 J and t0 is a positive constant such that t0 ≤ c/p2
n with c > 0 a sufficiently

small constant. In addition, ‖H−1
n,Kt0 ,T(Kt0 )

‖ ≤ C uniformly for all n and t0 such that t0 ≤ c/p2
n with c > 0 a

sufficiently small constant.

Proof. We follow the proof of Theorem 5.1 in [27]. Note

lim
t→t0

T
(
(1− t)Kn,0 + tJ

)
− T

(
(1− t0)Kn,0 + t0 J

)
t− t0

= lim
∆→0

T
(
Kt0 + ∆(J − Kn,0)

)
− T

(
Kt0

)
∆

,

where ∆ = t− t0.
It suffices to prove that for any sequence {∆j}∞

j=1 such that limj→∞ ∆j = 0, we have

lim
j→∞

T
(
Kt0 + ∆j(J − Kn,0)

)
− T(Kt0)

∆j

= −H−1
n,Kt0 ,T(Kt0 )

[EJ{ψRBD(Zn; T(Kt0))} − EKn,0{ψRBD(Zn; T(Kt0))}].

Following similar proofs in Lemma A1, we can show that for t0 sufficiently small,

‖β̃n,0 − T(Kt0)‖ ≤ Ct0
√

pn. (A12)

Next we will show that the eigenvalues of Hn,Kt0 ,T(Kt0 )
are bounded away from 0.

Hn,Kt0 ,T(Kt0 )
= (1− t0)Hn,Kn,0,T(Kt0 )

+ t0Hn,J,T(Kt0 )

= (1− t0)Hn + t0Hn,J,β̃n,0
+ (1− t0){Hn,Kn,0,T(Kt0 )

−Hn}
+t0{Hn,J,T(Kt0 )

−Hn,J,β̃n,0
} = (1− t0)I1 + t0 I2 + I3 + I4.

First,

‖I3‖ ≤ C EKn,0‖{p2(Y; X̃
T
n T(Kt0))− p2(Y; X̃

T
n β̃n,0)}w(Xn)X̃nX̃

T
n‖

≤ Cp3/2
n ‖T(Kt0)− β̃n,0‖ ≤ Cp2

nt0.

Similarly, ‖I2‖ ≤ Cpnt0 and ‖I4‖ ≤ Cp2
nt2

0. Since the eigenvalues of I1 are bounded away from
zero, ‖I2‖, ‖I3‖ and ‖I4‖ could be sufficiently small, we conclude that for t0 ≤ c/p2

n when c is
sufficiently small, the eigenvalues of Hn,Kt0 ,T(Kt0 )

are uniformly bounded away from 0.
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Define Kj = Kt0 + ∆j(J − Kn,0). Following similar arguments for (A6) in Lemma A2, for j large
enough, EKj{ψRBD(Zn; T(Kj))} = 0. We will only consider j large enough below. The two term Taylor
expansion yields

0 = EKj{ψRBD(Zn; T(Kj))} = EKj{ψRBD(Zn; T(Kt0))}+ Hn,Kj ,β̃
∗
j
{T(Kj)− T(Kt0)}, (A13)

where β̃
∗
j lies between T(Kt0) and T(Kj).

Thus, from (A13) and the fact EKj{ψRBD(Zn; T(Kt0))} = ∆j[EJ{ψRBD(Zn; T(Kt0))} −
EKn,0{ψRBD(Zn; T(Kt0))}], we have

0 = EKj{ψRBD(Zn; T(Kt0))}+ Hn,Kt0 ,T(Kt0 )
{T(Kj)− T(Kt0)}

+{Hn,Kj ,β̃
∗
j
−Hn,Kt0 ,T(Kt0 )

}{T(Kj)− T(Kt0)}
= ∆j[EJ{ψRBD(Zn; T(Kt0))} − EKn,0{ψRBD(Zn; T(Kt0))}]

+Hn,Kt0 ,T(Kt0 )
{T(Kj)− T(Kt0)}+ (Hn,Kj ,β̃

∗
j
−Hn,Kt0 ,T(Kt0 )

){T(Kj)− T(Kt0)},

and we obtain that

T(Kj)− T(Kt0)

= −∆jH−1
n,Kt0 ,T(Kt0 )

[EJ{ψRBD(Zn; T(Kt0))} − EKn,0{ψRBD(Zn; T(Kt0))}]

−H−1
n,Kt0 ,T(Kt0 )

{Hn,Kj ,β̃
∗
j
−Hn,Kt0 ,T(Kt0 )

}{T(Kj)− T(Kt0)}. (A14)

Next, we will show that ‖Hn,Kj ,β̃
∗
j
− Hn,Kt0 ,T(Kt0 )

‖ = o(1) as j → ∞ for any fixed n. Since

‖β̃∗j − T(Kt0)‖ ≤ ‖T(Kj)− T(Kt0)‖ = O(∆j),

‖Hn,Kj ,β̃
∗
j
−Hn,Kt0 ,β̃

∗
j
‖

= ∆j‖EJ{p2(Y; X̃
T
n β̃
∗
j )w(Xn)X̃nX̃

T
n} − EKn,0{p2(Y; X̃

T
n β̃
∗
j )w(Xn)X̃nX̃

T
n}‖

= O(∆j) = o(1) as j→ ∞, (A15)

and also,

‖Hn,Kt0 ,β̃
∗
j
−Hn,Kt0 ,T(Kt0 )

‖

= ‖EKt0
[{p2(Y; X̃

T
n β̃
∗
j )− p2(Y; X̃

T
n T(Kt0))}w(Xn)X̃nX̃

T
n ]‖

= o(1) as j→ ∞. (A16)

From Equations (A15) and (A16),

‖Hn,Kj ,β̃
∗
j
−Hn,Kt0 ,T(Kt0 )

‖ = o(1) as j→ ∞

which, together with Equations (A12) and (A14), implies that

‖T(Kj)− T(Kt0) + ∆jH−1
n,Kt0 ,T(Kt0 )

[EJ{ψRBD(Zn; T(Kt0))} − EKn,0{ψRBD(Zn; T(Kt0))}]‖ = o(∆j).

This completes the proof.

Lemma A9. Assume Conditions A1–A8 and B4 and supn EJ(‖w(Xn)X̃n‖) ≤ C. Let Hk(·; δ)

be the cumulative distribution function of χ2
k(δ) distribution with δ the noncentrality parameter.

Denote δ(ε) = n‖U−1/2
n {AnT(Kn,ε) − g0}‖2. Let b(ε) = −Hk(x; δ(ε)). Then, for any fixed x > 0,

supε∈[0,C] lim supn→∞ |b(3)(ε)| ≤ C under H0 and supε∈[0,C] lim supn→∞ |b′′(ε)| ≤ C under H1n.
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Proof. Since b(ε) = −Hk(x; δ(ε)), we have

b′(ε) = − ∂

∂ε
Hk(x; δ(ε)) =

{
− ∂

∂δ
Hk(x; δ)

∣∣∣
δ=δ(ε)

}{∂δ(ε)

∂ε

}
b′′(ε) =

{
− ∂2

∂δ2 Hk(x; δ)
∣∣∣
δ=δ(ε)

}{∂δ(ε)

∂ε

}2
+
{
− ∂

∂δ
Hk(x; δ)

∣∣∣
δ=δ(ε)

}{∂2δ(ε)

∂ε2

}
b(3)(ε) =

{
− ∂3

∂δ3 Hk(x; δ)
∣∣∣
δ=δ(ε)

}{∂δ(ε)

∂ε

}3

+3
{
− ∂2

∂δ2 Hk(x; δ)
∣∣∣
δ=δ(ε)

}{∂δ(ε)

∂ε

}{∂2δ(ε)

∂ε2

}
+
{
− ∂

∂δ
Hk(x; δ)

∣∣∣
δ=δ(ε)

}{∂3δ(ε)

∂ε3

}
.

To complete the proof, we only need to show that ∂i/∂δi Hk(x; δ)|δ=δ(ε) and ∂iδ(ε)/∂εi (i = 1, 2, 3)
are bounded as n→ ∞ for all ε ∈ [0, C]. Note that

Hk(x; δ) = e−δ/2
∞

∑
j=0

(δ/2)j

j!
γ(j + k/2, x/2)

Γ(j + k/2)
,

where Γ(·) is the Gamma function, and γ(·, ·) is the lower incomplete gamma function γ(s, x) =∫ x
0 ts−1e−tdt, which satisfies γ(s, x) = (s− 1)γ(s− 1, x)− xs−1e−x. Therefore,

∂

∂δ
Hk(x; δ) = − e−δ/2

2

∞

∑
j=0

(δ/2)j

j!
γ(j + k/2, x/2)

Γ(j + k/2)
+

e−δ/2

2

∞

∑
j=1

(δ/2)j−1

(j− 1)!
γ(j + k/2, x/2)

Γ(j + k/2)

=
1
2

e−δ/2
∞

∑
j=0

(δ/2)j

j!

{
− γ(j + k/2, x/2)

Γ(j + k/2)
+

γ(j + 1 + k/2, x/2)
Γ(j + 1 + k/2)

}
.

Since

γ(j + 1 + k/2, x/2)
Γ(j + 1 + k/2)

=
(j + k/2)γ(j + k/2, x/2)− (x/2)j+k/2e−x/2

Γ(j + 1 + k/2)

=
γ(j + k/2, x/2)

Γ(j + k/2)
− (x/2)j+k/2e−x/2

Γ(j + 1 + k/2)
,

we have

∂

∂δ
Hk(x; δ) = −1

2
e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j+k/2e−x/2

Γ(j + 1 + k/2)

∂2

∂δ2 Hk(x; δ) =
1
4

e−δ/2
∞

∑
j=0

(δ/2)j

j!
(x/2)j+k/2e−x/2

Γ(j + 1 + k/2)
− 1

4
e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j+1+k/2e−x/2

Γ(j + 2 + k/2)

=
1
4
(x/2)k/2e−x/2e−δ/2

∞

∑
j=0

(δ/2)j

j!

{ (x/2)j

Γ(j + 1 + k/2)
− (x/2)j+1

Γ(j + 2 + k/2)

}
=

1
4
(x/2)k/2e−x/2e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j

Γ(j + 1 + k/2)

{
1− (x/2)

j + 1 + k/2

}
∂3

∂δ3 Hk(x; δ) = −1
8
(x/2)k/2e−x/2e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j

Γ(j + 1 + k/2)

{
1− (x/2)

j + 1 + k/2

}
+

1
8
(x/2)k/2e−x/2e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j+1

Γ(j + 2 + k/2)

{
1− (x/2)

j + 2 + k/2

}
=

1
8
(x/2)k/2e−x/2e−δ/2

∞

∑
j=0

(δ/2)j

j!
(x/2)j

Γ(j + 1 + k/2)
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·
[ (x/2)

j + 1 + k/2

{
1− (x/2)

j + 2 + k/2

}
−
{

1− (x/2)
j + 1 + k/2

}]
.

From the results of Lemma A3, that |δ(ε)| is bounded as n→ ∞ for all ε ∈ [0, C] under both H0

and H1n, so are ∂i/∂δi Hk(x; δ)|δ=δ(ε) (i = 1, 2, 3). Now, we consider the derivatives of δ(ε),

∂δ(ε)

∂ε
= 2n

{
An

∂T(Kn,ε)

∂ε

}T
U−1

n {AnT(Kn,ε)− g0}
∂2δ(ε)

∂ε2 = 2n
{

An
∂T(Kn,ε)

∂ε

}T
U−1

n

{
An

∂T(Kn,ε)

∂ε

}
+2n

{
An

∂2T(Kn,ε)

∂ε2

}T
U−1

n {AnT(Kn,ε)− g0}
∂3δ(ε)

∂ε3 = 6n
{

An
∂2T(Kn,ε)

∂ε2

}T
U−1

n

{
An

∂T(Kn,ε)

∂ε

}
+2n

{
An

∂3T(Kn,ε)

∂ε3

}T
U−1

n {AnT(Kn,ε)− g0}.

To complete the proof, we only need to show that
√

n‖∂i/∂εiT(Kn,ε)‖ (i = 1, 2, 3) are bounded
as n→ ∞ for all ε ∈ [0, C], and

√
n‖AnT(Kn,ε)− g0‖ is bounded under H0 and H1n as n→ ∞ for all

ε ∈ [0, C]. The result for
√

n‖AnT(Kn,ε)− g0‖ is straightforward from Lemma A3.
First, for the first order derivative of T(Kn,ε),

√
n

∂

∂ε
T(Kn,ε)

= −H−1
n,Kn,ε ,T(Kn,ε)

[EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}].

Since ‖H−1
n,Kn,ε ,T(Kn,ε)

‖ ≤ C, ‖EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n}‖ ≤ C EJ‖w(Xn)X̃n‖ ≤ C and

‖EKn,0{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n}‖

= ‖EKn,0{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n β̃n,0)w(Xn)X̃n}‖

= ‖EKn,0 [p2(Y; X̃
T
n β̃
∗
)w(Xn)X̃nX̃

T
n{T(Kn,ε)− β̃n,0}]‖

≤ Cp3/2
n /
√

n,

we conclude that
√

n‖∂/∂εT(Kn,ε)‖ is uniformly bounded for all ε ∈ [0, C] as n→ ∞.
Second, for the second order derivative of T(Kn,ε),

√
n

∂2

∂ε2 T
(
(1− ε/

√
n)Kn,0 + ε/

√
nJ
)

= −
∂H−1

n,Kn,ε ,T(Kn,ε)

∂ε

·[EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

−H−1
n,Kn,ε ,T(Kn,ε)

· ∂

∂ε
[EJ{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

with

∂

∂ε
H−1

n,Kn,ε ,T(Kn,ε)
= −H−1

n,Kn,ε ,T(Kn,ε)

∂Hn,Kn,ε ,T(Kn,ε)

∂ε
H−1

n,Kn,ε ,T(Kn,ε)
,

∂Hn,Kn,ε ,T(Kn,ε)

∂ε
= − 1√

n
EKn,0{p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n}

+
1√
n

EJ{p2(Y; X̃
T
n T(Kn,ε))w(Xn)X̃nX̃

T
n}
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+(1− ε/
√

n)EKn,0

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n X̃

T
n

∂

∂ε
T(Kn,ε)

}
+ε/
√

n EJ

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n X̃

T
n

∂

∂ε
T(Kn,ε)

}
.

Therefore, ‖∂/∂εH−1
n,Kn,ε ,T(Kn,ε)

‖ ≤ C‖∂/∂εHn,Kn,ε ,T(Kn,ε)‖ ≤ Cp3/2
n /
√

n. In addition,

∥∥∥ ∂

∂ε
[EJ{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

∥∥∥
=

∥∥∥EJ

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂

∂ε
T(Kn,ε)

}
−EKn,0

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂

∂ε
T(Kn,ε)

}∥∥∥
≤ Cpn/

√
n.

Therefore, ‖
√

n ∂2

∂ε2 T
(
(1− ε/

√
n)Kn,0 + ε/

√
nJ
)
‖ = o(1) for all ε ∈ [0, C].

Finally, for the third order derivative of T(Kn,ε),

√
n

∂3

∂ε3 T
(
(1− ε/

√
n)Kn,0 + ε/

√
nJ
)

= −
∂2H−1

n,Kn,ε ,T(Kn,ε)

∂ε2

·[EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

−2
∂H−1

n,Kn,ε ,T(Kn,ε)

∂ε

· ∂

∂ε
[EJ{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

−H−1
n,Kn,ε ,T(Kn,ε)

· ∂2

∂ε2 [EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}].

Note:

∂2

∂ε2 H−1
n,Kn,ε ,T(Kn,ε)

= −
∂H−1

n,Kn,ε ,T(Kn,ε)

∂ε

∂Hn,Kn,ε ,T(Kn,ε)

∂ε
H−1

n,Kn,ε ,T(Kn,ε)

−H−1
n,Kn,ε ,T(Kn,ε)

∂2Hn,Kn,ε ,T(Kn,ε)

∂ε2 H−1
n,Kn,ε ,T(Kn,ε)

−H−1
n,Kn,ε ,T(Kn,ε)

∂Hn,Kn,ε ,T(Kn,ε)

∂ε

∂H−1
n,Kn,ε ,T(Kn,ε)

∂ε
,

where

∂2

∂ε2 Hn,Kn,ε ,T(Kn,ε)

= − 2√
n

EKn,0

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n X̃

T
n

∂

∂ε
T(Kn,ε)

}
+

2√
n

EJ

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n X̃

T
n

∂

∂ε
T(Kn,ε)

}
+(1− ε/

√
n)EKn,0

{
p4(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n (X̃

T
n

∂

∂ε
T(Kn,ε))

2
}

+ε/
√

n EJ

{
p4(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n (X̃

T
n

∂

∂ε
T(Kn,ε))

2
}

.
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Hence, ‖ ∂2

∂ε2 Hn,Kn,ε ,T(Kn,ε)‖ ≤ Cp2
n/n which implies that ‖ ∂2

∂ε2 H−1
n,Kn,ε ,T(Kn,ε)

‖ = o(1) for all
ε ∈ [0, C]. In addition,

∂2

∂ε2 [EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]

=
∂

∂ε

[
EJ

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂

∂ε
T(Kn,ε)

}
−EKn,0

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂

∂ε
T(Kn,ε)

}]
= EJ

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n

(
X̃

T
n

∂

∂ε
T(Kn,ε)

)2}
+EJ

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂2

∂ε2 T(Kn,ε)
}

−E
β̃n,0

{
p3(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n

(
X̃

T
n

∂

∂ε
T(Kn,ε)

)2}
−E

β̃n,0

{
p2(Y; X̃

T
n T(Kn,ε))w(Xn)X̃nX̃

T
n

∂2

∂ε2 T(Kn,ε)
}

.

Hence, ‖ ∂2

∂ε2 [EJ{p1(Y; X̃
T
n T(Kn,ε))w(Xn)X̃n} − EKn,0{p1(Y; X̃

T
n T(Kn,ε))w(Xn)X̃n}]‖ ≤ Cpn/

√
n.

Therefore, ‖
√

n ∂3

∂ε3 T
(
(1 − ε/

√
n)Kn,0 + ε/

√
nJ
)
‖ = o(1) for all ε ∈ [0, C]. Hence, we complete

the proof.

Proof of Theorem 1. We follow the idea of the proof in [10]. Lemma A7 implies that
the Wald-type test statistic Wn is asymptotically noncentral χ2

k with noncentrality parameter
δ(ε) = n‖U−1/2

n {AnT(Kn,ε)− g0}‖2. Therefore, α(Kn,ε) = P(Wn > η1−α0
|H0) = 1− Hk(η1−α0

; δ(ε)) +

h(n, ε) where h(n, ε) = α(Kn,ε) − 1 + Hk(η1−α0
; δ(ε)) → 0 as n → ∞ for any fixed ε.

Let b(ε) = −Hk(η1−α0
; δ(ε)). Then, for ε close to 0, we have

α(Kn,ε)− α0 = b(ε)− b(0) + h(n, ε)− h(n, 0)

= εb′(0) +
1
2

ε2b′′(0) +
1
6

ε3b(3)(ε∗) + h(n, ε)− h(n, 0), (A17)

where 0 < ε∗ < ε. Note that under H0

b′(0) = µk

{∂δ(ε)

∂ε

∣∣∣
ε=0

}
= 2µkn

{
An

∂T(Kn,ε)

∂ε

}T∣∣∣
ε=0

U−1
n {An β̃n,0 − g0} = 0.

From Lemma A8, under H0

∂T(Kn,ε)

∂ε

∣∣∣
ε=0

= 1/
√

n EJ{IF(Zn; T , Kn,0)}.

Thus,

b′′(0) = µk

{∂2δ(ε)

∂ε2

∣∣∣
ε=0

}
= 2µk‖U−1/2

n An EJ{IF(Zn; T , Kn,0)}‖2.

Since from Lemma A8, IF(zn; T, Kn,0) = −H−1
n EJ{ψRBD(zn; β̃n,0)} is uniformly bounded,

we have

D = lim sup
n→∞

‖U−1/2
n An EJ{IF(Zn; T , Kn,0)}‖2 < ∞.
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From Equation (A17)

lim sup
n→∞

α(Kn,ε) = α0 + ε2µkD + o(ε2),

since supε∈[0,C] lim supn→∞ |b(3)(ε)| ≤ C from Lemma A9. We complete the proof.

Proof of Corollary 1. For Part (i), following the proof of Theorem 1, for any fixed z,

lim
n→∞

α(Kn,ε) = α0 + ε2µk‖U−1/2 A IF(z; T , K0)‖2 + d(z, ε),

where d(z, ε) = o(ε2). From the assumption that supx∈Rp ‖w(x)x‖ ≤ C and
supµ∈R |q′′(µ)

√
V(µ)/F′(µ)| ≤ C, we know D1 ≤ ∞. Following the proof of Lemma A9,

supz∈R |d(z, ε)| = o(ε2). We finished the proof of part (i).
Part (ii) is straightforward by applying Theorem 1 with J = ∆zn .

Proof of Theorem 2. Lemma A7 implies that

√
n[{U(Kn)}−1/2{AnT(Kn)− g0} − {U(Kn)}−1/2(An β̃n,0 − g0)

−U−1/2
n An{T(Kn,ε)− β̃n,0}]

L−→ (0, Ik).

From Lemmas A5 and A6,

√
n[{U(Kn)}−1/2{AnT(Kn)− g0} −U−1/2

n {AnT(Kn,ε)− g0}]
L−→ (0, Ik).

Then, Wn is asymptotically χ2
k(δ(ε)) with δ(ε) = n‖U−1/2

n {AnT(Kn,ε) − g0}‖2 under H1n.
Therefore, β(Kn,ε) = P(Wn > η1−α0

|H1n) = 1− Hk(η1−α0
; δ(ε)) + h(n, ε), where h(n, ε) = β(Kn,ε)−

1 + Hk(η1−α0
; δ(ε))→ 0 as n→ ∞ for any fixed ε. Let b(ε) = −Hk(η1−α0

; δ(ε)). Then, for ε close to 0,
we have

β(Kn,ε)− β0 = b(ε)− b(0) + h(n, ε)− h(n, 0)

= εb′(0) +
1
2

ε2b′′(ε∗) + h(n, ε)− h(n, 0), (A18)

where 0 < ε∗ < ε. Note that under H1n, δ(0) = n‖U−1/2
n (An β̃n,0 − g0)‖2 = cTU−1

n c. Then,

b′(0) =
−∂Hk(η1−α0

; δ)

∂δ

∣∣∣
δ=δ(0)

∂δ(ε)

∂ε

∣∣∣
ε=0

= 2νkn
{

An
∂T(Kn,ε)

∂ε

}T∣∣∣
ε=0

U−1
n {An β̃n,0 − g0}

= 2νk
√

n
{

An
∂T(Kn,ε)

∂ε

}T∣∣∣
ε=0

U−1
n c.

From Lemma A8,

∂T(Kn,ε)

∂ε

∣∣∣
ε=0

= 1/
√

n EJ{IF(Zn; T , Kn,0)},

and hence,

b′(0) = 2νkcTU−1
n An EJ{IF(Zn; T , Kn,0)}.

Since supε∈[0,C] lim supn→∞ |b′′(ε)| ≤ C under H1n by Lemma A9, we have
lim infn→∞ 1/2ε2b′′(ε∗) = o(ε) as ε→ 0.

Since from Lemma A8, IF(zn; T , Kn,0) = −H−1
n EJ{ψRBD(zn; β̃n,0)} is uniformly bounded,

|B| = | lim inf
n→∞

2cTU−1
n An EJ{IF(Zn; T , Kn,0)}| < ∞.
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From Equation (A18), we complete the proof.

Proof of Corollary 2. The proof is similar to that for Corollary 1, using the results in Theorem 2.

Appendix B. List of Notations and Symbols

• An: k× (pn + 1) matrix in hypotheses Equations (8) and (14)
• c: k dimensional vector in H1n in Equation (14)
• F(·): link function
• G: bias-correction term in “robust-BD”
• G: limit of An AT

n , i.e. An AT
n

n→∞−→ G
• Hn: Hn = EKn,0{p2(Y; X̃

T
n β̃n,0)w(Xn)X̃nX̃

T
n}

• IF(·; ·, ·): influence function
• J: an arbitrary distribution in the contamination of Equation (10)
• Kn,0: true parametric distribution of Zn
• Kn,ε: Kn,ε = (1− ε√

n )Kn,0 +
ε√
n J, ε-contamination in Equation (10)

• Kn: empirical distribution of {Zni}n
i=1

• `K(·): expectation of robust-BD in Equation (11)
• m(·): conditional mean of Y given Xn in Equation (1)
• n: sample size
• pn: dimension of β

• pi(·; ·): ith order derivative of robust-BD
• q(·): generating q-function of BD
• T(·): vector, a functional of estimator in Equation (12)
• Un: Un = AnH−1

n ΩnH−1
n AT

n
• V(·): conditional variance of Y given Xn in Equation (2)
• Wn: Wald-type test statistic in Equation (9)
• w(·): weight function
• Xn: explanatory variables
• Y: response variable
• Zn = (XT

n , Y)T

• α(·): level of the test
• β(·): power of the test
• β̃n,0: true regression parameter
• ∆zn : probability measure which puts mass 1 at the point zn
• ε: amount of contamination in Equation (10), positive constant
• ψRBD(·; ·): score vector in Equation (7)

• Ωn: Ωn = EKn,0{p2
1(Y; X̃

T
n β̃n,0)w

2(Xn)X̃nX̃
T
n}

• ρq(·, ·): robust-BD in Equation (4)
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