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Abstract

It has been shown that graphical models can
be used to leverage the dependence in large-
scale multiple testing problems with significantly
improved performance (Sun & Cai, 2009; Liu
et al., 2012). These graphical models are fully
parametric and require that we know the pa-
rameterization of f1 — the density function of
the test statistic under the alternative hypothe-
sis. However in practice, f1 is often hetero-
geneous, and cannot be estimated with a sim-
ple parametric distribution. We propose a novel
semiparametric approach for multiple testing un-
der dependence, which estimates f1 adaptively.
This semiparametric approach exactly general-
izes the local FDR procedure (Efron et al., 2001)
and connects with the BH procedure (Benjamini
& Hochberg, 1995). A variety of simulations
show that our semiparametric approach outper-
forms classical procedures which assume inde-
pendence and the parametric approaches which
capture dependence.

1. Introduction
High-throughput computational biology studies, such as
gene expression analysis and genome-wide association
studies, often involve large-scale multiple testing problems
which exhibit dependence in the sense that whether the null
hypothesis of one test is true or not depends on the ground

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

truth of other tests. Recently, new multiple testing proce-
dures have been proposed with such dependence explicitly
captured by graphical models such as hidden Markov mod-
els (Sun & Cai, 2009) and Markov-random-field-coupled
mixture models (Liu et al., 2012). These graphical mod-
els are fully parametric, and they assume that we know not
only the parameterization form of f0, but also the param-
eterization form of f1. 1 Eventually, a fully parametric
graphical model is learned, and the multiple testing prob-
lem becomes an inference problem on the graphical model.
This parametric approach is effective in some simple situa-
tions, but the assumptions for f1 often make it impractical,
as discussed next.

A long tradition in hypothesis testing is to derive test statis-
tics and calculate P -values all under the null hypothe-
sis H0. The distribution of the test statistic under H1

sometimes can be difficult to derive. Take for instance a
two-proportion z-test, which tests whether two Bernoulli
variables have the same parameter (i.e. P (head) in coin-
flippings); the two-proportion z-test is widely used in case-
control studies (e.g. comparing the minor allele frequencies
in cases and controls). Under H0 (the two proportions are
the same), the test statisticX asymptotically follows a stan-
dard normal N (0, 1). Under H1 (the two proportions are
different), X asymptotically follows a standardized non-
centered normal N (µ, 1) (µ 6= 0) where µ depends on the
odds-ratio of this genetic marker. When there are multi-
ple genetic markers to be tested, f0 remains N (0, 1), but
f1 becomes a mixture of Gaussians because these associ-
ated markers can have different odds-ratios and therefore

1f0 and f1 are the probability density functions of the test
statistic under the null hypothesis H0 and the alternative hypoth-
esis H1, respectively. In the HMM model (Sun & Cai, 2009) and
the MRF-coupled mixture model (Liu et al., 2012), f0 and f1 are
the emitting probabilities for state 0 and state 1 respectively.
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Figure 1. Estimated f1 in a real-world genome-wide association
study on breast cancer.

different µ values (i.e. different effect sizes). In this situ-
ation, f1 is no longer a simple parametric distribution. In
a real-world genome-wide association study on breast can-
cer, we plot the estimated f1 in Figure 1; obviously it is
inappropriate to estimate f1 with a simple parametric dis-
tribution. Note that this is not a problem for classical mul-
tiple testing procedures such as the BH procedure, whose
calculations of P -values are done under H0, but this is a
serious problem for the graphical-model-based procedures
which require f1 to be estimated parametrically. There-
fore, the key question is whether we can still make use of
the graphical models to leverage the dependence among
the hypotheses without making assumptions about f1.

In this paper, we propose a semiparametric graphical model
to leverage the dependence among the hypotheses. In our
model, f1 is estimated nonparametrically and the remain-
ing parts are estimated parametrically. More algorithmic
details are introduced in Section 3 after we summarize the
terminology in Section 2. Section 4 shows that the two
widely-used multiple testing procedures, the BH procedure
(Benjamini & Hochberg, 1995) and the local FDR pro-
cedure (Efron et al., 2001), estimate their parameters in
the same semiparametric way to avoid assumptions about
f1. This unification demonstrates that the most appropri-
ate way of using graphical models to capture the depen-
dence is the semiparametric model in our paper rather than
the fully parametric models (Sun & Cai, 2009; Liu et al.,
2012). Simulations in Section 5 show that our semipara-
metric approach controls false discovery rate and reduces
false non-discovery rate, compared with the baseline pro-
cedures. We apply the procedure to a real-world genome-
wide association study on breast cancer in Section 6 and
identify a number of genetic variants.

2. Preliminaries
FDR, FNR, Validity and Efficiency: When we test
m hypotheses simultaneously, various outcomes can be
described by Table 1 based on their ground truth and
whether the hypotheses are rejected. False discovery rate
(FDR), E(N10/R|R>0)P (R>0), is the expected propor-
tion of incorrectly rejected null hypotheses (Benjamini
& Hochberg, 1995). False non-discovery rate (FNR),

Table 1. Classification of tested hypotheses
RETAINED REJECTED TOTAL

H0 IS TRUE N00 N10 m0

H0 IS FALSE N01 N11 m1

TOTAL S R m

E(N01/S|S>0)P (S>0), is the expected proportion of
false non-rejections in those tests whose null hypotheses
are not rejected (Genovese & Wasserman, 2002). An FDR
procedure is valid if it controls FDR at a nominal level α.
One valid procedure is more efficient than another if it has a
smaller FNR. In multiple testing problems, we would like
to control FDR at the nominal level and reduce FNR as
much as possible.

Dependence in Multiple Testing: Classical multiple test-
ing procedures usually assume independence among the
hypotheses. The effects of dependence on multiple test-
ing have been investigated with a focus on the validity is-
sue, namely how to control FDR at the nominal level when
dependence exists (Benjamini & Yekutieli, 2001; Finner
& Roters, 2002; Reiner et al., 2003; Owen, 2005; Sarkar,
2006; Efron, 2007; Farcomeni, 2007; Romano et al., 2008;
Strimmer, 2008; Wu, 2008; Blanchard & Roquain, 2009).
Despite FDR-control challanges, dependence also brings
opportunities for decreasing FNR. This efficiency issue
has been investigated (Yekutieli & Benjamini, 1999; Gen-
ovese et al., 2006; Benjamini & Heller, 2007; Zhang et al.,
2011), indicating FNR could be decreased by leveraging
the dependence among hypotheses. Several approaches
have been proposed, such as dependence kernels (Leek &
Storey, 2008), factor models (Friguet et al., 2009) and prin-
cipal factor approximation (Fan et al., 2012). Sun & Cai
(2009) use a hidden Markov model to explicitly leverage
chain dependence structures (Sun & Cai, 2009). Liu et al.
(2012) extend such graphical-model-based approaches to
general dependence structures via a Markov-random-field-
coupled mixture model. Capturing the dependence in mul-
tiple testing in such an explicit manner is innovative, but it
relies on the strong assumption that we know the param-
eterization of f1, which is unrealistic in all but the sim-
plest situations. Improper assumption of f1 may make the
testing procedure too liberal, e.g. Figure 4 of Sun & Cai
(2009), or conservative, e.g. Figure 3 of Liu et al. (2012).
In this paper, we build on the approach of Liu et al. (2012)
and take the major step of relaxing this assumption by esti-
mating f1 adaptively.

3. Methods
3.1. Graphical models for Multiple Testing

Let x = (x1, ..., xm) be a vector of test statistics from
hypotheses (H1, ...,Hm) with their ground truth denoted
by a latent Bernoulli vector θ = (θ1, ..., θm) ∈ {0, 1}m,
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Figure 2. The semiparametric graphical model for hypotheses Hi,
Hj and Hk with observed test statistics (xi, xj , xk) and latent
ground truth (θi, θj , θk).

with θi = 0 denoting that the hypothesis Hi is null and
θi = 1 denoting that the hypothesis Hi is non-null. In the
work of Liu et al. (2012), the dependence among these hy-
potheses is represented as a binary Markov random field
(MRF) on θ. The structure of the MRF is assumed to be
known, and described by an undirected graph G(V, E) with
the node set V and the edge set E . The dependence be-
tween Hi and Hj is denoted by an edge connecting nodei
and nodej . The strength of dependence is captured by a
potential function (parametrized by φij , 0<φij<1) on this
edge. The degree of prior belief that Hi is null is cap-
tured by the node potential function (parametrized by πi,
0<πi<1). Suppose that the probability density function of
the test statistic xi|θi=0 is f0, and the density of xi|θi=1 is
f1. Then (x,θ;π,φ, f0, f1) forms an MRF-coupled mix-
ture model where π and φ are node potential functions and
edge potential functions in the MRF. In the MRF-coupled
mixture model, x is observed, and θ is hidden. We also
need to estimate π, φ and f1. 2

For the reasons discussed in Section 1, it is often difficult to
estimate f1 with a simple parametric distribution. In order
to avoid the f1 assumption, we estimate f1 adaptively via
an indirect, nonparametric way, as introduced in Section
3.2. Then we estimate π and φ via a contrastive diver-
gence style algorithm, as introduced in Section 3.3. There-
fore the graphical model is learned semiparametrically —
f1 is learned nonparametrically and the MRF part is learned
by estimating parameters φ and π. Finally, we perform
marginal inference of θ|x with the learned model and re-
ject hypotheses with a step-up procedure to control FDR,
as introduced in Section 3.4. Figure 2 3 shows the semi-
parametric MRF-coupled mixture model for the three de-
pendent hypothesesHi,Hj andHk.

2f0 is usually known to us in hypothesis testing.
3We slightly modify Figure 1 of Liu et al. (2012).

3.2. Nonparametric Estimation of f1

We cannot directly estimate f1 from observed x because
the ground truth θ is hidden. However, we can estimate f
from observed x nonparametrically via kernel density esti-
mation. Therefore, we can estimate f1 indirectly using the
rule of total probability

f(x) = p0f0(x) + (1− p0)f1(x), (1)

where p0 is the proportion of null hypotheses. Since we
know f0 in advance (e.g. N (0, 1)), we only need to esti-
mate f and p0 so as to estimate f1.

Estimating p0: We can estimate p0 with the method in the
work of Storey (2002), namely

p̂0(λ) =
W (λ)

(1− λ)m
, (2)

where λ ∈ [0, 1) is a tuning parameter, and W (λ) is the to-
tal number of hypotheses whose P -values are above λ. The
motivation of this estimation is that the P -values of null hy-
potheses are uniformly distributed on the interval (0, 1). If
we assume all the hypotheses with P -values greater than
λ are from null hypotheses, then W (λ)/(1 − λ) is the to-
tal number of null hypotheses. Therefore the right hand
side of (2) is an estimate of p0. Obviously, p̂0(λ) over-
estimates p0 because there might be nonnull hypotheses
whose P -values are greater than λ, especially when λ is
small. Therefore, a bias-variance trade-off presents in the
choice of λ — a larger λ value yields less bias but brings
in more variance. Storey et al. (2004) showed that the BH
procedure coupled with p̂0(λ) maintains strong control of
FDR under mild conditions. In simulations, we test dif-
ferent λ values, and the results show that the performance
of our multiple testing procedure is insensitive to different
choices of λ.

Estimating f : Since we can observe all the test statistics
x, we can estimate f directly via kernel density estimation
(Rosenblatt, 1956). One may choose any kernel function
and bandwidth parameter as long as they provide a reason-
able estimate. A Gaussian kernel would be a natural choice.
Nevertheless in our experiments, we use the Epanechnikov
kernel because its computation burden is low, and it is op-
timal in a minimum variance sense (Epanechnikov, 1969).
Finally we can get f̂ , the nonparametric estimate of f .

Estimating f1: With the estimated p̂0 and f̂ , we estimate
f1 as

f̂1(x) =
f̂(x)− p̂0f0(x)

1− p̂0
. (3)
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3.3. Parametric Estimation of φ and π

The pairwise potential functions φ and the node potential
functions π parametrize the Markov random field part of
the model. In the simulations, we tie all the pairwise po-
tential functions together, i.e. φ={φ}. In the real-world
application in Section 6, we assume there are three types of
edges (high correlation edges, medium correlation edges
and low correlation edges), and there are three parameters,
φ={φh, φm, φl}, corresponding to the three levels of cor-
relation. We also tie all the node potentials in both the sim-
ulations and the real-world application, i.e. π={π}.

Parameter learning for MRFs is generally difficult due to
the partition function. So far, the state-of-the-art parame-
ter learning algorithms are based on contrastive divergence
(Hinton, 2002), such as the persistent contrastive diver-
gence (PCD) algorithm (Tieleman, 2008). Contrastive di-
vergence algorithms are iterative algorithms which grad-
ually update parameters by generating particles based on
current estimates of parameters and then comparing the
moments from the particles with the moments from the
data. Contrastive divergence is related to pseudo-likelihood
(Besag, 1975) and ratio matching (Hyvärinen, 2007a;b).
However, contrastive divergence algorithms cannot be di-
rectly applied to our model because θ is hidden. There-
fore, we modify the PCD algorithm as follows. Suppose
we already generate particles for θ in the normal PCD al-
gorithm. We further generate the particles for x using f0
and f̂1 conditional on the generated particles for θ. Then
we update the parameters by comparing the moments from
particles for x and the moments from the observed x. One
systematic review of learning parameters in hidden Markov
random fields is in the prior work of Liu et al. (2014).

3.4. Inference of θ and FDR Control

After we estimate f1, φ and π, the MRF-coupled mix-
ture model is fully specified, and the next importance step
is to calculate the posterior probability that Hi is null
given all the observed statistics x, namely P (θi=0|x) for
i = 1, ...,m. This quantity is termed the local index of
significance (LIS) (Sun & Cai, 2009), which reduces to lo-
cal false discovery rate P (θi=0|xi) when the hypotheses
are independent. In our simulations and the real-world ap-
plication, we use a Markov chain Monte Carlo (MCMC)
algorithm to perform posterior inference for P (θi=0|x).

After we calculate the posterior marginal probabilities of θ
(i.e. LIS), we use a step-up procedure (Sun & Cai, 2009)
to decide which of the hypotheses should be rejected so
as to control FDR at the nominal level α. We first sort
LIS from the smallest value to the largest value. Suppose
LIS(1), LIS(2), ..., and LIS(m) are the ordered LIS, and the
corresponding hypotheses areH(1),H(2),..., andH(m). Let

k = max

{
i :

1

i

∑i

j=1
LIS(j) ≤ α

}
. (4)

Then we rejectH(i) for i = 1, ..., k.

4. Connections with Classical Multiple
Testing Procedures

We show that both the local FDR procedure (Efron et al.,
2001) and the BH procedure (Benjamini & Hochberg,
2000; Genovese & Wasserman, 2004) can be regarded as
semiparametric graphical models which do not consider
dependence among the hypotheses. The local FDR pro-
cedure uses Bayes Theorem to calculate the posterior prob-
ability that Hi is null given its observed test statistic xi,
namely

P (Hi is null|Xi=xi) =
p0f0(xi)

p0f0(xi) + p1f1(xi)
. (5)

This posterior probability is termed the local false discov-
ery rate (Efron & Tibshirani, 2002). Note that our LIS re-
duces to local false discovery rate under the assumption of
independence. Efron & Tibshirani (2002) recommend us-
ing empirical Bayes inference (Robbins, 1956) to calculate
local false discovery rate as

P (Hi is null|Xi=xi) =
p̂0f0(xi)

f̂(xi)
, (6)

where f̂ is the empirical density of the test statistic and p̂0
is an estimate of p0. If we use θi to denote the ground truth
of Hi, its local false discovery rate is P (θi = 0|Xi=xi).
Therefore, we can use the graphical model in Figure 3(a)
to denote it. Obviously, this model is exactly our semi-
parametric model in Figure 2, except that there are no pair-
wise potentials capturing the dependence because the lo-
cal FDR procedure assumes independence among the hy-
potheses. The model for the local FDR procedure is also
semiparametric because f1 is nonparametrically estimated.
Also note that the parameter π in our model reduces to the
prior parameter p0 in this simplified model.

The following shows that the BH procedure is also a
semiparametric model, but the observed statistic is mod-
eled by a cumulative distribution function (CDF). Let
P(1)<...<P(m) be the ordered P -values from the m tests
and P(0)=0. The BH procedure rejects any hypothesis
whose P -value satisfies P ≤ P ∗ with

P ∗ = max{P(i)|P(i) ≤
i

m

α

p0
}, (7)
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Figure 3. The plate presentation of the semiparametric graphical
models for local FDR and the BH procedure.

which controls FDR at the level α (Benjamini & Hochberg,
1995; Storey, 2002; Genovese & Wasserman, 2002). The
inequality in (7) can be rewritten as

p0P(i)

i/m
≤ α. (8)

Because a P -value is the CDF of f0 at the value of its test
statistic x, and i/m is the empirical CDF of f at the test
statistic ofH(i), (8) is further rewritten as

p0F0(x)

F̂ (x)
≤ α, (9)

where F0 and F are the CDFs of f0 and f respectively,
and F̂ is an empirical version of F . Note that the left hand
side of (9) is also an empirical Bayes inference, similar to
(6). Therefore, both the BH procedure and the local FDR
procedure can be interpreted as empirical Bayes inference,
and the difference is that the BH procedure uses the CDFs
whereas the local FDR procedure uses the density func-
tions. Thus, we can present the BH procedure as the graph-
ical model in Figure 3(b). This model is also semipara-
metric because F1 is nonparametrically estimated. There-
fore, both the local FDR procedure and the BH procedure
are semiparametric graphical models which do not consider
dependence among the hypotheses.

5. Simulations
We explore the empirical performance of our multiple test-
ing procedure and three baseline procedures, including the
local FDR procedure (Efron et al., 2001), the BH procedure
(Benjamini & Hochberg, 2000; Genovese & Wasserman,
2004) and the procedure based on a parametric graphical
model (Liu et al., 2012). Because we have the ground truth
parameters, we have two versions of our multiple testing
approach, namely an oracle procedure and a data-driven
procedure. The oracle procedure knows the true parameters
in the graphical model (including φ, π and f1), whereas
the data-driven procedure does not and has to estimate the
graphical model in the semiparametric way introduced in
Sections 3.2 and 3.3. Both the BH procedure and the local

FDR procedure need an estimate of p0; we use the same es-
timating method in Section 3.2 for a fair comparison. The
local FDR procedure also needs an estimate of f , and we
estimate it in the same way as in our data-driven procedure.

We choose the setup to be consistent with previous work
(Sun & Cai, 2009; Liu et al., 2012) when possible. We
consider two dependence structures, namely a chain struc-
ture and a grid structure. For the chain structure, we choose
the number of hypotheses m=10,000. For the grid struc-
ture, we choose a 100×100 grid, which also yields 10,000
hypotheses. We test two levels of dependence strength,
i.e. φ=0.8 and φ=0.6. We set π to be 0.4. We first sim-
ulate the ground truth of the hypotheses θ from P (θ;φ,π)
and then simulate the test statistics x from P (x|θ; f0, f1).
We assume that the observed xi under the null hypothesis
(namely θi=0) is from a standard normalN (0, 1). We test
two different models for xi under the alternative hypothesis
(namely θi=1) as follows.

Model 1: xi|θi=1 comes from a mixture of Gaussians

1

3
N (1, 1) +

1

3
N (µ, 1) +

1

3
N (5, 1). (10)

In total, we test nine values for µ, namely 1.4, 1.8, 2.2, 2.6,
3.0, 3.4, 3.8, 4.2 and 4.6. Different µ values yield different
f1 with different shapes.

Model 2: xi|θi=1 comes from a Gaussian N (µ, 1) and µ
has a prior of Gamma(2.0, β) where β is the scale param-
eter. We test six different values for β, namely 1.0, 1.2,
1.4, 1.6, 1.8 and 2.0. This model is designed to mimic the
common situation in GWAS that common genetic variants
have small effect sizes and rare genetic variants have large
effect sizes (Manolio et al., 2009).

We compare three measures from these procedures. First,
we check whether these procedures are valid, namely
whether the FDR yielded from these procedures is con-
trolled at the nominal level α. The nominal FDR level α is
0.10, which is consistent with the multiple testing literature
(Efron, 2010). Second, we compare the FNR yielded from
these procedures. The third measure is the average number
of true positives (ATP) of these procedures. Valid proce-
dures with a lower FNR and a higher ATP are considered
to be more efficient (or powerful). In the simulations, each
experiment is replicated 500 times and the average results
are reported.

Performance under chain structure: The performance of
the five procedures under the chain dependence structure is
shown in Figures 4 and 5, which correspond to Model 1
and Model 2, respectively. It is observed that all five pro-
cedures are valid. The parametric procedure (Liu et al.,
2012) is conservative, which agrees with the observations
in Figure 3(1d) of Liu et al. (2012). Our semiparametric
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Figure 4. Performance of the procedures under Model 1 when (1) φ = 0.8 and (2) φ = 0.6 in terms of (a) FDR (b) FNR and (c) ATP
when the dependence structure is chain.
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Figure 5. Performance of the procedures under Model 2 when (1) φ = 0.8 and (2) φ = 0.6 in terms of (a) FDR (b) FNR and (c) ATP
when the dependence structure is chain.

data-driven procedure, the BH procedure and the local FDR
procedure are slightly conservative. The oracle procedure
slightly outperforms the semiparametric data-driven proce-
dure based the plots for FNR and ATP. These two com-
pletely dominate the three baselines, which indicates the
benefit of leveraging dependence among the hypotheses via
the semiparametric graphical model. We also observe that
the advantage of the oracle procedure and our semipara-
metric data-driven procedure over the local FDR procedure
is larger when φ = 0.8 than when φ = 0.6. The reason is
that as φ decreases from 0.8 to 0.6, the dependence strength
among the hypotheses decreases, and we benefit less from
leveraging the dependence. When φ = 0.5, the edge po-
tentials in our graphical model are no longer informative,
and the node potentials become the priors in the local FDR
procedure, and our procedure exactly reduces to the local
FDR procedure.

Performance under grid structure: The performance of
the five procedures under the grid dependence structure is

shown in Figures 6 and 7, which correspond to Model 1 and
Model 2, respectively. All five procedures are valid. The
parametric procedure is considerably conservative, which
agrees with the observations in Figure 3(3d) of Liu et al.
(2012). Again, our semiparametric data-driven procedure
significantly outperforms the three baselines in all the con-
figurations, demonstrating the benefit of leveraging depen-
dence among the hypotheses via the semiparametric graph-
ical model. The difference between our semiparametric
data-driven procedure and the baselines is even larger com-
pared with simulations under the chain structure. The rea-
son is that in the grid structure, each hypothesis has more
neighbors than in the chain structure, and we can benefit
more from leveraging the dependence among the hypothe-
ses.

Robustness of λ: In the previous simulations, λ is fixed
at 0.8. We test another two values for λ, namely 0.2 and
0.5, and repeat previous simulations. The performance of
our semiparametric procedure under the chain dependence
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Figure 6. Performance of the procedures under Model 1 when (1) φ = 0.8 and (2) φ = 0.6 in terms of (a) FDR (b) FNR and (c) ATP
when the dependence structure is grid.
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when the dependence structure is grid.

structure and Model 1 with φ = 0.8 is provided in Figure
8. Quite surprisingly, our data-driven semiparametric pro-
cedure is valid for the three values of λ and is slightly con-
servative for most of the configurations. However, the FNR
and ATP of our data-driven procedure for the three differ-
ent values of λ are almost the same. Therefore although
our approach needs to pick a λ parameter, its performance
is robust for different choices of λ. The robustness of λwas
also observed in the work of Storey (2002). The sensitivity
analysis of λ in other configurations yield similar obser-
vations, and is given in Appendix 1 (in the supplementary
materials).

Efficiency of Ranking: Although ranking the hypotheses
by the probability that H0 is false is a secondary goal in
multiple testing, readers may wonder how well our semi-
parametric procedure performs in terms of ranking the hy-
potheses. For the oracle procedure, the parametric proce-
dure (Liu et al., 2012) and our semiparametric procedure,
we rank the hypotheses by the posterior probability thatH0
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Figure 9. ROC/PR curves from these procedures.

is false, namely 1− LIS. For BH, we use 1−P -value. For
local FDR procedure, we use 1 − lfdr. Here we plot the
ROC curves and PR curves yielded by the five procedures
in Figure 9 for µ = 1.4 and φ = 0.8 in the chain structure
under model 1. We observe that the oracle procedure pro-
duces the most efficient ranking, followed by the semipara-
metric procedure and the parametric procedure. The rank-
ings yielded by local FDR and BH procedure are less effi-
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cient. The ROC curves and PR curves of these procedures
under other configurations show similar behavior, and are
provided in Appendix 2 (in the supplementary materials).

Run Time: In the chain-structure simulations, it took our
data-driven procedure about 10 hours to finish the 500
replications sequentially (for one µ value in (10)) on one
3GHz CPU. In the grid-structure simulations, it took our
procedure around 30 hours to finish the 500 replications
sequentially (for one µ value in (10)) on one 3GHz CPU.

6. Application
We apply our procedure to a real-world GWAS on breast
cancer (Hunter et al., 2007) which involves 528,173 SNPs
for 1,145 cases and 1,142 controls. In total, we test 528,173
hypotheses, and they are dependent because SNPs nearby
tend to be highly correlated. We query the squared correla-
tion coefficients (r2 values) among the SNPs from HapMap
(International HapMap Consortium, 2003), and build the
dependence structure as follows. Each SNP becomes a
node in the graph. For each SNP, we connect it with the
SNP having the highest r2 value with it. We further cat-
egorize the edges into a high correlation edge set Eh (r2

above 0.8), a medium correlation edge set Em (r2 between
0.5 and 0.8) and a low correlation edge set El (r2 between
0.25 and 0.5). We have three parameters (φh, φm, and φl)
for the three sets of edges.

When we apply our procedure on the dataset, the individual
test is a two-proportion z-test. We set λ=0.8, and the value
of p0 is estimated to be 0.978, which means that about 2.2%
of the SNPs are associated to breast cancer. The estimated
f1 in this study is plotted in Figure 1. The whole experi-
ment takes around 30 hours on a single processor. Our pro-
cedure reports 20 SNPs with LIS value below 0.01. There
are five clusters covering 18 of them. All 18 SNPs have
very small P -values from the two-proportion z-test and lo-
cate near one another in the same cluster. The first cluster
on Chr2, the cluster on Chr4, the cluster on Chr9 and the
cluster on Chr10 are identified in the studies of Hunter et al.
(2007) and Satrom et al. (2009). The second cluster on
Chr2 is associated to a telomere and telomeres are known
to be related to breast cancer (Svenson et al., 2008). We
further use a second cohort to validate the 18 SNPs, and 16
of them show a moderate level of association on the second

cohort. More details are provided in Appendix 3 (in the
supplementary materials). We also would like to mention
that there is some work on estimating less conservative sig-
nificance thresholds for controlling family-wise error rate
in GWAS (Salyakina et al., 2005; Han & Eskin, 2010).

7. Conclusion
We propose a novel semiparametric graphical model to
leverage the dependence in multiple testing problems. Al-
though our semiparametric approach seems incremental
over previous fully parametric approach (Sun & Cai, 2009;
Liu et al., 2012) from the viewpoint of graphical models,
such a modification is nontrivial to the multiple testing
area, for both a methodological reason and an application
reason. From the methodological standpoint, our semipara-
metric approach naturally generalizes the local FDR proce-
dure and connects with the BH procedure — we show that
both the BH procedure and the local FDR procedure esti-
mate their parameters in the same semiparametric way to
avoid assumptions about f1. The methodological unifica-
tion demonstrates that such a modification is necessary for
multiple testing. From the application aspect, our semi-
parametric approach no longer requires the investigators to
know the parameterization of f1, which is generally un-
known in practical problems. Improper parameterization
assumptions for f1 can make the fully parametric approach
either too liberal which makes the procedure invalid, or
too conservative which makes the procedure lose power,
as illustrated by both our simulations and previous work
(Sun & Cai, 2009; Liu et al., 2012). Our semiparamet-
ric approach better controls FDR and is more powerful.
For these reasons, we suggest that investigators choose the
semiparametric approach for their large-scale multiple test-
ing problems if (i) they speculate that there exists depen-
dence among the hypotheses, and (ii) there is no suitable
parametric distribution for f1.
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Appendix 1. Sensitivity Analysis of λ

We test three different values for λ, namely 0.2, 0.5 and 0.8, and repeat the simulations in the main text. In the main text, we
only report the results for the chain dependence structure with φ = 0.8 under Model 1 due to the limitation of space. In this
appendix, we have the space to report all the configurations. Figure 1 is for the chain structure with φ = 0.8 and φ = 0.6 and
f1 is from model 1. Figure 2 is for the chain structure with φ = 0.8 and φ = 0.6 and f1 is from model 2. Figure 3 is for the grid
structure with φ = 0.8 and φ = 0.6 and f1 is from model 1. Figure 4 is for the grid structure with φ = 0.8 and φ = 0.6 and f1 is
from model 2.
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Figure 1: Performance of our procedure when λ is 0.2 (dotted lines), 0.5 (dashed lines) and 0.8 (solid lines) when (1) φ = 0.8
and (2) φ = 0.6 in terms of (a) FDR (b) FNR and (c) ATP when the dependence structure is chain and f1 is from model 1.
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Figure 2: Performance of our procedure when λ is 0.2 (dotted lines), 0.5 (dashed lines) and 0.8 (solid lines) when (1) φ = 0.8
and (2) φ = 0.6 in terms of (a) FDR (b) FNR and (c) ATP when the dependence structure is chain and f1 is from model 2.

Appendix 2. ROC/PR Curves for Other Configurations

In the main text, we only show the ROC curve and the PR curve for µ = 1.4. Here we provide all the ROC curves and PR
curves for the other eight values of µ in Figure 5 and Figure 6.

Appendix 3. Validation of the GWAS Findings on the Second Dataset

In the main text, we applied our procedure on a real-world GWAS on breast cancer and identified 18 SNPs which can be
potentially associated with breast cancer. In addition to their association evidence in the literature, we further validate the 18
SNPs on a second cohort which include 162 breast cancer cases and 162 controls.
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Figure 3: Performance of our procedure when λ is 0.2 (dotted lines), 0.5 (dashed lines) and 0.8 (solid lines) when (1) φ = 0.8
and (2) φ = 0.6 in terms of (a) FDR (b) FNR and (c) ATP when the dependence structure is grid and f1 is from model 1.
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Figure 4: Performance of our procedure when λ is 0.2 (dotted lines), 0.5 (dashed lines) and 0.8 (solid lines) when (1) φ = 0.8
and (2) φ = 0.6 in terms of (a) FDR (b) FNR and (c) ATP when the dependence structure is grid and f1 is from model 2.

On the second cohort, we calculate the odds-ratio of the 18 SNPs, as listed in Table 1. It turns out that 16 of them show a
moderate level of association. The five SNPs in the first cluster (on Chr2) have odds-ratio around 1.17-1.20. The four SNPs in
the second cluster (on Chr2) have odds-ratio around 1.15-1.17. The two SNPs in the third cluster (on Chr4) have odds-ratio
around 1.02. The four SNPs in the fourth cluster (on Chr9) have odds-ratio around 1.06-1.08. The three SNPs in the last cluster
(on Chr10) have odds-ratio around 1.15-1.20.
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Figure 5: ROC curves.
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Figure 6: PR curves.
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Table 1: Clusters of SNPs identified by our procedure
dbSNP ID Chr PhyPos LIS P -value Odds-ratio on Second dataset

rs2288118 2 86221768 0 1.8E-04 1.18
rs1991106 2 86227832 0.0048 8.4E-04 1.17
rs1075622 2 86249588 0.0040 7.5E-05 1.15
rs2367202 2 86257194 0.0025 1.7E-04 1.18
rs1025104 2 86262322 0.0025 1.8E-04 1.20

rs4398317 2 136817773 0 5.3E-04 1.17
rs4954580 2 136820035 0.0047 9.4E-04 1.15
rs4440020 2 136824059 0.0039 8.3E-04 1.17
rs4075810 2 136836877 0.0058 8.8E-04 1.15

rs1970801 4 96427703 0.0072 1.2E-04 1.02
rs11097457 4 96433991 0.0083 1.9E-04 1.02

rs10819865 9 100730611 0 3.2E-04 1.06
rs1338733 9 100737703 0.0020 1.5E-04 1.08
rs1571581 9 100738024 0.0038 1.9E-04 1.07
rs12553370 9 100756745 0.0040 7.0E-04 1.07

rs11200014 10 123324920 0.0071 2.3E-05 1.20
rs1219648 10 123336180 0.0065 2.8E-05 1.15
rs2420946 10 123341314 0.0023 2.8E-05 1.15
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Supplementary Material for “Learning a Semiparametric
Graphical Model for Multiple Testing under Dependence”

October 1, 2012

1 The Modified PCD algorithm

The original PCD algorithm is for learning parameters in Markov random fields with observed data.
It cannot be applied to our Markov-random-field-coupled mixture models (a.k.a. hidden Markov
random fields) because θ is hidden. Here we provide the modified PCD algorithm for learning
parameters in the Markov random field part of our MRF-coupled mixture model. Essentially in
the modified PCD algorithm, we need to calculate the probability θi = 0 (namely the local FDR)
from both the observed statistics and the generated observable particle statistics. Then we can
update the parameters by matching the moments from them. The details are given in Algorithm
1. We call the modified PCD algorithm the PCDh algorithm.

The modified PCD algorithm accomodates the fact that in our semiparametric MRF-coupled
mixture model, the f1 is estimated nonparametrically. The pseudocode is also given the context
of our graphical model in the simulations, namely there are two parameters to estimate, namely
φ and π which are in the pairwise edge potentials and the node potentials of the MRF on hidden
vector θ.

1



Algorithm 1 PCDh algorithm for hidden MRFs

Input: observed data x = (x1, ..., xm), maximum iteration number T , the total number of
hidden particle Nh, the total number of observable particles No(= 20,000), function f0 and the
nonparametrically estimated f̂1, initial values for φ̂(0) and π̂(0), learning rate η which gradually
decreases in iterations, the n parameter in original PCD algorithm
Output: φ̂ and π̂ from the last iteration
Procedure:
1. Initialize the observable particles: Yj = −10.0 + j × 0.001 for j = 1, ..., 20,000 ; // Uniformly
distributed on the interval [-10.0,10,0] which covers most of the mass of f0 and f1
2. Calculate lfdr(Yi) =

f0(Yj)

f0(Yj)+f̂1(Yj)
for j = 1, ..., 20,000. // Local FDR at these observable

particles
3. Calculate f0(Yj) and f̂1(Yj) for j = 1, ..., 20,000. // The weights of observable particles for
θ = 0 and θ = 1 respectively
4. Calculate E0[lfdr] =

∑20,000
j lfdr(Yj)× f0(Yj)× 0.001. // Expected local FDR for θ = 0

5. Calculate E1[lfdr] =
∑20,000

j lfdr(Yj)× f̂1(Yj)× 0.001 // Expected local FDR for θ = 1

6. Calculate lfdr(xk) = f0(xk)

f0(xk)+f̂1(xk)
for k = 1, ...,m. // Local FDR at observed data

7.
for t = 1 to T do

7.1 For k = 1, ..., Nh: Advance particle θ
(t)
k according to φ̂(t−1) and π̂(t−1) for n MCMC steps.

7.2 For every edge (i, j) ∈ E : Calculate edge moment from particle θ
(t)
k (k = 1, ..., Nh) and

the edge moment from data. The moment of edge (i, j) from particle θ
(t)
k is Z1

Z1+Z2
where

Z1 = E
θi

(t)
k

[lfdr]E
θj

(t)
k

[lfdr] + (1− E
θi

(t)
k

[lfdr])(1− E
θj

(t)
k

[lfdr]),

Z2 = (1− E
θi

(t)
k

[lfdr])E
θj

(t)
k

[lfdr] + E
θi

(t)
k

[lfdr](1− E
θj

(t)
k

[lfdr]).
(1)

The moment of edge (i, j) from the data x is W1

W1+W2
where

W1 = lfdr(xi)lfdr(xj) + (1− lfdr(xi))(1− lfdr(xj)),

W2 = (1− lfdr(xi))lfdr(xj) + lfdr(xi)(1− lfdr(xj)).
(2)

We need to average over all the edges in E . We also need to average over all the particles θ
(t)
k

for k = 1, ..., Nh when calculating moment from particles.
7.3 For every node i ∈ V : Calculate node moment from particle θ

(t)
k (k = 1, ..., Nh) and node

moment from data. The moment of node i from particle θ
(t)
k is E

θi
(t)
k

[lfdr]. The moment of

node i from the data x is lfdr(xi).

We need to average over all the nodes in V . We also need to average over all the particles θ
(t)
k

for k = 1, ..., Nh when calculating moment from particles.
7.4 Update φ: φ̂(t) = φ̂(t−1) + η × difference in edge moment between data and particles.
7.5 Update π: π̂(t) = π̂(t−1) + η × difference in node moment between data and particles.
7.6 If converge, then break.

end for
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