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Learning Network-Structured Dependence From
Non-Stationary Multivariate Point
Process Data

Muhong Gao™, Chunming Zhang™, and Jie Zhou

Abstract— Learning the sparse network-structured dependence
among nodes from multivariate point process data {T;};cv
has wide applications in information transmission, social sci-
ence, and computational neuroscience. This paper develops new
continuous-time stochastic models of the conditional intensity
functions {\;(t | F) : t > 0}i;cy, dependent on past
event counts of parent nodes, to uncover the network structure
within an array of non-stationary multivariate counting processes
{N(t) : t > 0} for {T';}scv. The stochastic mechanism is
crucial for statistical inference of graph parameters relevant to
structure recovery but does not satisfy the key assumptions of
commonly used processes like the Poisson process, Cox process,
Hawkes process, queuing model, and piecewise deterministic
Markov process. We introduce a new marked point process for
intensity discontinuities, derive compact representations of their
conditional distributions, and demonstrate the cyclicity property
of N (t) driven by recurrence time points. These new theoretical
properties enable us to establish statistical consistency and con-
vergence properties of the proposed penalized M -estimators for
graph parameters under mild regularity conditions. Simulation
evaluations demonstrate computational simplicity and increased
estimation accuracy compared to existing methods. Real multiple
neuron spike train recordings are analyzed to infer connectivity
in neuronal networks.

Index Terms— Consistency, generalized linear model, condi-
tional intensity function, M -estimation, multivariate counting
process, network structure.

I. INTRODUCTION

TRUCTURED multivariate point process data, ranging
from neuron multiple spike trains, file access patterns and
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Fig. 1. Each node of the network graph in the left panel corresponds to a point
process in the right panel. Arrows indicate interactions (red for excitatory and
blue for inhibitory effects).

failure events in server farms, queuing networks to social
networks, has wide applications. Inference of the network
structure underlying such multivariate point processes and
addressing queries based on the learned structure are important
issues. For example, learning the structure of cooperative
activity between multiple neurons is an important task in
understanding neural spike activity and identifying patterns of
information transmission and storage in cortical circuits [1],
[2], [3], [4], [5]. Analogously, learning the access patterns of
files can be exploited for developing faster file access systems.

Typically, multivariate temporal point processes refer to
random processes of occurrences of a particular event (such
as neuron spike firing) in time, recorded at V nodes as
{T1,..., Ty}, where

T,=(Tia, ..., Tin,)" (1)
with0< T <---<Tijn, <T, foriecV.

These correspond to series of time points T; , of the /th event,
¢=1,...,N,, arriving at the 7th node in an experiment with
time length T, where the superscript T denotes transpose, and
V ={1,...,V} is the node set. The corresponding counting
process, N;(t) =, 1(0 < T;, < t), tallies the number of
events occurring up to time ¢ at node 4 € V, where I(-) denotes
the indicator operator. An important objective is to extract
the dependency structure among nodes within the network
from V sequences of time series. This dependence network,
also recognized as the ‘local independence graph’ [6], [7],
visually represents the dependence relationship of historical
events from parent nodes on the current events of child nodes.
Figure 1 showcases the network-structured dependence (in the
left panel) of multivariate point process data at 5 nodes (in the
right panel).

Due to the stochastic nature of the point process data
{T; ¢} in (1) for event occurrences, two types of meth-
ods are relevant for modeling multivariate point process
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data. (a) The discrete-time modeling approach includes the
dynamic Bayesian network [8], [9] and variants of generalized
linear models (GLM) [3], [10], [11], [12]. This approach
partitions the time axis into equally spaced time bins and
transforms the series of event times into a sequence of event
bin counts, empirically modelled by Poisson distributions.
However, a major drawback is the tradeoff between discrete
approximation error and the loss of information. (b) In con-
trast, the continuous-time approach aims to depict physical
processes more accurately but faces substantial challenges in
modeling both the time-varying part of conditional intensity
functions (CIF) and the sparsity feature underlying the net-
work structure. Several specific continuous-time point process
models have been developed, such as the Cox process [13],
[14], inhomogeneous Poisson process [15], the linear Hawkes
process [16], [17], [18], and the non-linear Hawkes process
[19], [20]. Other recent works analyzing point process data
include [21], [22], [23], [24], with [24] focusing on spatiotem-
poral data (e.g., crime data) and [21], [22], [23] focusing
on interaction data (e.g., E-mail/text messages). In partic-
ular, [22], [23] focus on identifying uniform effects (e.g.,
homophily, dyadic, and triadic effects) in a predetermined
network.

To capture the unknown dependency structure between
point process data represented in (1) both qualitatively and
quantitatively, we aim to develop new network structure learn-
ing methods that integrate the utility of continuous-time and
discrete-time modeling. Specifically, we build new continuous-
time GLM-type stochastic models (12) for the conditional
intensity functions {\;(t | %) }icy, where each X\;(t | %)
depends on short-term past events of all other nodes up
to time t (in contrast to [13], [14], where the CIF is a
separate stochastic process independent of the past events) and
incorporates the magnitude and direction of interaction effects
in graph parameters. By employing penalized M -estimation
of parameters in the graph structure (as in (52)), we obtain
a sparse network. In contrast, the consideration of sparsity
was not present in [21], [22], [23], and [24]. Our method
captures both excitatory and inhibitory effects between nodes,
distinguishing itself from the linear Hawkes process [16], [17],
specifically tailored for modeling excitatory effects to ensure a
non-negative CIF. Furthermore, our method does not require
partitioning the data into bins, making it partition-free and
avoiding the subjective choice of bin width associated with
the discrete-time approach.

Addressing the theoretical challenges arising from statistical
learning procedures in continuous-time stochastic modeling
remains a central issue. To the best of our knowledge, there
are limited theoretical studies at the intersection of continuous-
time point processes and network-structured learning methods.
Traditional tools for establishing stochastic convergence and
statistical consistency are not directly applicable in the con-
text of statistical estimation from point process data. This
is because the loss function (e.g., in (48)) for parameter
estimation primarily relies on the non-standard dependence
structure of counting processes {N;(t)};cy associated with
the point process data {T; ;}. While works for the non-linear
Hawkes process [19], [25], queuing models [26], [27], and the
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piecewise deterministic Markov process [28] provide insights,
they rely on specific assumptions and properties that do not
hold for our model (12). Refer to Sections IV-A.3 and IV-B
for more detailed discussions.

This paper aims to contribute to several aspects that are cen-
tral to statistical inference for a wide array of non-stationary
multivariate point process data encountered in various appli-
cations.

(i) We introduce a new tool called the marked point
process (T, I) = ({Ti}e>1,{I¢}e>1) for capturing
intensity discontinuities (see Section IV-A). This tool
involves compiling all the discontinuity points of the
CIFs {\i(t | %)}iey into a single sequence {T}}>1,
where each T} is accompanied by a unique categorical
mark I, € VU{0}. We derive the probability distributions
of (T, T) and establish a series of probabilistic properties.
These results for (’j", I) also provide valuable insights
into the probabilistic properties of the original counting
processes {N;(t)}icy and enable the development of a
new simulation algorithm for generating synthetic data.

(i) We establish the cyclicity property of {N;(¢)}iey driven

by a sequence of recurrence time points R; < Ro <

.-+ (see Section IV-B). This property demonstrates that

our counting processes {N;(t)}icy, upon reaching each

recurrence time point ¢ = Ry, initiate a renewed cyclic
procedure independent of the event history, as illustrated
in Figure 3 of Section IV-B. Building on this property,
we further derive the asymptotic mean stationarity of

{Ni(t) }iev-

All these probabilistic results are essential for deriving

the statistical properties, such as the consistency of the

proposed penalized M -estimation in structure learning,

in Section V.

(i)

The validity of our proposed penalization method for
inferring network-structured dependencies is supported by
extensive simulation studies, and its practical utility in the
analysis of real-world multivariate point process data is illus-
trated with a prefrontal cortex spike train dataset.

The rest of the paper is arranged as follows. Section II
reviews the multivariate point process and outlines the
proposed continuous-time modeling framework. Section III
presents our proposed model for {A\;(t | %#i)}icy, and
Section IV investigates related probabilistic properties of
{N;(t)}icy. Section V addresses statistical properties related
to the proposed network recovery procedure. Section VI
illustrates simulation evaluations of the proposed method,
and Section VII analyzes real spike train data. Section VIII
briefly discusses and concludes the paper. Appendices A and B
collect all supplementary simulations, technical details, and
derivations.

II. MULTIVARIATE POINT PROCESS IN OUR SETUP

We start with a brief review of the point process. For a
more comprehensive discussion, refer to [29]. Denote by V =
{1,...,V} the set of nodes. Throughout the paper, we focus
on the setting where the number V' of nodes is a fixed constant.
For each node ¢+ € V, we define the univariate point process as
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{T; ¢}e>1 on the probability space (12,.%, P), where the time-
ordered sequence of event time points at node 7 is denoted
as

0<Tin <Tip<---. )

For ¢ > 0, we use N,(t) to represent the event counts in the
time interval [0, ¢]:

Ni(t) =Y 10 < Tpp <t). 3)
0>1

The term {N;(t)}:>0 refers to the counting process of
{T}.¢}¢>1. More generally, we denote the event counts in any
Borel set 7 € B(R) as:

Ni(T)=> 1(Ti, € T), (4)
>1
which, for 7 = [0, ¢], reduces to NN;(¢) as defined in (3).

According to (3), a point process {T; ¢ }¢>1 uniquely defines
a counting process {N;(t)}i>0. Conversely, {N;(t)}i>o0
uniquely yields a point process, due to the identity T}, =
1nf{t > Ti7g_1 : Nz(t) > Ni(T’i,Z_l)}, where T;j70 = 0.
Thus, the counting process {N;(t)}:+>¢ and the point process
{T} ¢}e>1 are equivalent to each other.

For the multivariate setting with V' nodes, we define the
vector N(t) = (Ni(t),...,Ny(t))", and call {N(t)}i>0
the multivariate counting process, corresponding to the mul-
tivariate point process {T; ¢ : £ > 1},cy. For each t > 0, let
F¢ C F be the smallest sub o-algebra that contains all the
information of the multivariate counting process in the history
up to time ¢, formally defined as:

Fr=0({Ni(s): s €[0,t], i € V}), (5)
where Zy = {Q, @}. From (5), it is seen that

Ty, C€ G, Coovy forany 0 <ty <tg <---. (6)

We refer to the sequence of o-algebras {%;}i>0 in (5),
satisfying the property (6), as the filtration generated by
{N()}1>0, and call (Q, . F#,{F#}i>0,P) the corresponding
filtered probability space.

A. Total Intensity Function of N(t)

For a single node 7, the stochastic character of a counting
process N;(t) is captured by the corresponding CIF A;(¢ |
F4), which measures the instantaneous rate of event occur-
rence at node ¢. In this paper, we adopt the definition of the
CIF from [30]:

N(t | ) = E%A—lp(Ni(HA) =N;(t) + 1| .F) ()

= lim ATIP(Ny(t+ A) # Ni(t) | F) ®)

almost surely (a.s.), for i € V and ¢t > 0.

For the multivariate case with V' nodes, we similarly define
the CIF of N (¢) as:
AU | Fy)

= ImATP(Uiey {Ni(t +8) = Ni(t) + 1} [ #) )
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= lm AT'P(N(t +8) £ N(1) | 7).

where, for s # ¢, the event {N(s) # N(t)} denotes
UieV{Ni(S) 7é Nl(t)}

Remark 1: Our definition of the CIF in (7) and (8), follow-
ing [30], assumes that lima o A™'P(N;(t+A) = N;(t) +1 |
Fy) = limajo ATIP(N;(t + A) # Ni(t) | F:) holds a.s.
for every 7+ € V and ¢ > 0. This assumption essentially means
that simultaneous events from a single node are not allowed in
our point process. As shown in Appendix B, any multivariate
counting process with identical limits (7) and (8) also has
identical limits (9) and (10) a.s. for every ¢ > 0.

a.s., (10)

B. Orthogonality of Martingales of N(t)

For the multivariate setting in our study, the structure of
the counting process IN(t) cannot be fully described by
solely presenting the CIFs \;(¢ | .#;) at individual nodes i.
Additionally, it is necessary to clarify how the increments of
event counts, N,;(t + A) — N,;(t) and N;(t + A) — N;(¢t),
are correlated between any pair of distinct nodes ¢ and j.
For N (¢) in Definition 1 below, we introduce the notion of
orthogonality of martingales (OM) which refers to the case
where N;(t+ A) — N;(t) and N;(t + A) — N;(t), conditional
on #;, are asymptotically independent for all i # j.

Definition 1 (Orthogonality of Martingales (OM)): A
multivariate counting process IN (t) satisfies the OM condition
if, for any two distinct nodes %, j € V and any time ¢ > 0:

Eﬁ% ATPP(N;(t+A) = Ni(t) + 1,
Nj(t+A) = N;(t)+ 1| F)

lim {A*QP(Ni(t +A) = N(t) +1] %)

X P(Nj(t+A) = N;(0) +1].7) }
= N(t [ F) Nt ] F), (11)

Lemma 1 shows that for a multivariate counting process
N (t) that satisfies the OM condition, the total CIF \*"™ (¢ |
F:) in (9) and (10) equals the sum of all CIFs A (t | %)
over individual nodes ¢ € V. In the remainder of the paper,
we consistently assume the OM condition for the multivariate
counting process N ().

Lemma 1 (Total CIF of the Multivariate Counting Process
N (t)): Assume conditions Al and A2 in Appendix B. Assume
that P(A\;(t | #) <oo) =1foralli €V and t > 0. If N(t)
satisfies the OM condition, then for any ¢ > 0, the total CIF
Asum (¢ | Z,) defined in (9) and (10) satisfies

a.S..

Vv
N F) =S Nt F), as.
=1

ITI. STATISTICAL MODEL FOR \;(t | %) WITH NETWORK
STRUCTURE

We propose a continuous-time GLM-type model for \;(¢ |
}\t)l
Ai(t | F) = exp {ﬂo;i + Zﬂj,i a:j(t)}, ieV, t>0.

jev
12)
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Let A;(0) = XN(0 | Fo) = exp(fo,i) denote the CIF of
node 7 at time ¢ = 0. The parameters §p; and (3;;, along
with the history-dependent covariates x; (), have the following
interpretations:

Baseline intensity parameter (.. Since the background
intensity may vary over nodes, we include a bias term
Bo;i in (12) to associate the baseline intensity parameter
with each node 1.

Connection strength parameter (3;;. The parameter 3;;
in (12) quantifies the magnitude and direction of influence

from parent node j on child node i, represented as
Bji

— @ Specifically:
Bj: > 0: Excitatory effect from node j to node ¢;
B =0: No effect from node j to node ;
Bj: < 0: Inhibitory effect from node j to node i.

For interpretability, we assume 3;; = 0 for all 7 € V),
meaning there is no self-effect. The network graph G =
(V, ) can be obtained from all pairs of nodes (j,%) with
non-zero connection parameters [3;; in the edge set:

E={(,i) eV XV:B;#0;j#i} =EL UE_. (13)

This distinguishes the edge set for excitatory effects:

& ={0,)) eV xV: Bji > 0; J # i}, (14)
from the edge set for inhibitory effects:
_{(]7 EVXV 6]1<O]7él} (15)

The configuration of this graph G reveals the interaction
effects between nodes, and learning such a graph structure
through statistical estimation methods is the main goal of
this paper.

Regression covariates x;(¢). Regression covariates x;(t)
aim to represent the effect from other nodes j € V on
node ¢ within a short period of time until £. We formulate
x;(t) as follows:

z;(t) = g(rje(t)),

where r; 4(t) is the empirical rate during a short time
interval of width ¢ € (0, 00):

ri.0(t) = N ((t — ¢,t]) /o

Here, g¢(:) [0,00) — [0,00) is a non-linear
shape-function that is continuous, non-negative, and
monotonically increasing, with g(0) = 0. It is worth
noting that within the modelling framework (12) for
Ai(t | #), the function g is not restricted to be bounded.
Condition A5 assumes a bounded g¢(-) to facilitate the
analytical derivation of theoretical results, such as prob-
abilistic properties of IN(¢) and asymptotic properties
of parameter estimators. However, this assumption may
be relaxed in certain cases. For practical choices of the
shape-function ¢ and the time-lag constant ¢, refer to
Appendix A-A. Additionally, for empirical performances
in data analysis, parameter estimation, and structure
learning, see Sections VI-VIL.

(16)

a7
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A. Connection of Model (12) With Other Models

The proposed model (12) employs the GLM-type frame-
work to link the CIF \;(¢t | .%#;) with both historical data
and the network structure. This provides a novel continuous-
time approach for modeling multivariate point process data.
Note that the exponential link function in our model (12)
is convex and twice-differentiable, aiding theoretical analysis
and computational efficiency. This distinguishes it from other
non-linear link functions such as ReLU [31], [32] or sigmoid
functions [20], used in Hawkes processes for capturing both
excitatory and inhibitory effects. As shown below, by selecting
two specific choices of the shape-function g in (16) (combined
with (17)), model (12) establishes connections with two exist-
ing models.

Example 1: g(z) = . Then model (12) becomes:
Nt F2) = exp {Boi + Y Biario(®) ]

JjeV
_exp{ﬂoﬁz/ ¢gﬂ (0<t—u < ¢)dN;(u )}
jeEV Y T>®

which is a special case of the general multivariate non-
linear Hawkes process [33]:

@wZ/ walt = u) AN; (),

JEVY T

Ai(t | ) =

when we set the non-linear link function ¢(-) = exp(-),
the interaction function w;;(u) = 5;,;1(0 < u < ¢)/¢,
and assume [3; ; = 0.

Example 2: g(z) = log(1 + x). Then model (12) becomes:

Nt 70) = exp (Boi + D By log{1 +15,6(1)})
JeV
= exp(Bo.i) [ [{1+ 756},
JEV
which agrees with [15]. In comparison to Example 1,
the shape-function g(z) = log(l + z) in Example 2
is relatively flat. This moderates the steepness of the
exponential link function and down-weights the influence
of excessively large intensities. Therefore, Example 2 is
expected to better represent the dynamics of multivariate
point process data in real applications.

B. Distinction From Markov Processes

A general stochastic process is Markovian if, conditional
on the past and present states, the probability of transitioning
to a future state depends solely on the present state, but
not on the past history ( [34], p. 132). In our case, the
counting process {IN (t)}+>0 associated with the CIFs {\;(t |
Fi)biey in model (12) (together with (16) and (17)), is
not Markovian. This is because the CIFs {\;(t | Z)}icv
depend not only on the current state of IN(¢) but also on
the past states of N((t — ¢,t)). This distinction highlights
the clear difference between our model and other Markovian
models of stochastic processes, such as the Markov multi-state
model [35] commonly used in survival analysis, the versatile
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Markovian point process [36] used for modeling queuing
systems, or the piecewise deterministic Markov process [28]
used for modeling physical processes of particle motions.

IV. PROPERTIES OF THE PROPOSED INTENSITY MODEL

In this section, we investigate the probabilistic properties of
the counting process IN (¢) associated with the CIFs {)\;(¢ |
F+)}iey in model (12). These results are essentially required
for deriving our statistical properties (Theorems 5-7 and
Corollary 1 in Section V).

A distinctive feature of our CIFs {\;(¢t | %) }iey in (12)
is that they are piecewise-constant functions of time ¢ (as to
be shown in Section IV-A.1). In other words, unlike many
other models, our {\;(t | %) }icy do not change continuously
over time, yielding a countable number of discontinuity points
in (0,00) from all nodes. The discontinuity points of {\;(¢ |
Z+) biey play an important role in characterizing the stochastic
features of our CIFs. We begin by investigating the set of
discontinuity points of {\;(¢ | %) }iey in Section IV-A.

A. Marked Point Process ( ’j’, I) for Intensity Discontinuities

In this section, we conduct a step-by-step analysis based
on the discontinuity points of {\;(t | %i)}icy in (12).
Section IV-A.1 demonstrates the piecewise-constant nature of
{Ai(t | #)}iey. Section IV-A.2 defines the ‘marked point
process (T,I ) for intensity discontinuities, which proves
to be equivalent (as shown in (24) and (25)) for studying
the point process {T;,}¢>1,icy and the counting process
N (t). Section IV-A.3 derives the probability distribution of
(T,I ) (in Theorem 1) and presents related properties (in
Lemmas 5-7). By translating the results of (T',I) into the
analogues of N (t), Section IV-A.4 demonstrates the bounded
variance and finiteness properties (in Theorem 2) for our
counting process N (t).

1) Piecewise-Constant \;(t | %#;): Recall that, using (12),
(16), and (17), the CIF at each node 7 € V can be rewritten

as Ai(t | Fi) = exp{Bosi + 2 ey Bii g(N; ((t — ¢, 1)) /) },

which forms a continuous function of {N,;((t — ¢,t])};ev,
where
Nj((t=,1]) = Nj(t) = Nj(t—¢), t=0.  (I8)

Consequently, the smoothness of \;(¢ | .%;) is directly reliant
on the smoothness of {N;((t — ¢,t])};ev.

For each node j € V and event time points {7 ¢ }¢>1 in (2),
we observe N;({t}) = > ,~; I(Tj¢ = t), which represents
the jump size of N;(-) at a single point ¢. It is clear that
N;({t}) € {0, 1}, and N,({t}) = 1 is equivalent to ¢ €
{T} e }+>1. Moreover, two properties of N;((t — ¢,¢]) can be
verified. First, N,((t— ¢, t]) is non-negative, right-continuous,
piecewise-constant, but not monotonically increasing in ¢ €
[0,00). Accordingly, \;(t | %) is also right-continuous and
piecewise-constant. Second, the set of discontinuity points of
N;((t — ¢,t]) is given by

{t>0: N;({t}) - N;({t— ¢}) = +1}

U{t>0:N;({t}) - N;({t - ¢}) = -1},  (19)
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Fig. 2. Ilustrative plot showing sample paths of stochastic

processes  N;(t) in  (3), N;((t — ¢,t]) in (18), and
Xit | F) = exp{—0.8 4+ 0.5 - N;((t — ¢,t])} in (12), with
V=11, 2}, i=1, j =2, and time-lag ¢ = 1. Notice the overlap between
N;(t) and N;((t — ¢,t]) within the time interval [0,1.7). X\;(t | F¢)
is a piecewise-constant function with discontinuities identical to those of

Nj((t = o,1]).

where

N;({t}) — N;({t — ¢}) =
0, ift¢{Tjete>1,and t & {Tjp+ Olr>1,
+1, ifte{Ti}e>1,and t & {T} 1 + d}i>1,
-1, if t ¢ {Tjete>1,and t € {Tjx + dlu>1,
0, ifte {ij@}ggl, and ¢ € {Tj’k —+ ¢}k21'

(20)

Following (20), for each node j € V), we can rewrite the set
of discontinuity points in (19) as:

{t=0:t €{Tiehezrs t {Th + Oluz1}
U{t>0:t ¢ {Tjetes1;t € {Tjn + d}i>1},

which belongs to the set
{Teyes1 UAT)n + dtrx1-

Utilizing [37] (Theorem 2.4.7, p. 84) and the CIF \;(t |
Fi) < oo in (12), the event time points {7} ¢},>1 are
totally inaccessible stopping times, implying that P(Ug>1 Up>1
{Tj¢ = Tjr + ¢}) = 0. Thus, the right-continuous \;(¢ |
F:) 1is piecewise-constant in ¢ € [0,00), with the set of
discontinuity points specified in Lemma 2.

Lemma 2 (Piecewise-Constant \;(t | #;) and Its Disconti-
nuity Points): Assume conditions A1 and A2 in Appendix B.
Foreachi € V, let Pa(i) = {j € V\{i} : 8, # 0} denote the
set of parent nodes for node 7. If Pa(i) # &, then \;(¢ | %)
is a piecewise-constant function of ¢t € [0,00), with all its
discontinuity points listed in the set:

Ujepat) {{Tjete>1 U {Tk + d}i>1}-

If Pa(i) = @, then \;(t | %) = exp(fo.i) is a constant, and
{N;(t) }+>0 reduces to a homogeneous Poisson process.

An illustration of Nj(t), N;((t — ¢,t]), and \;(t | F) is
given in Figure 2. By aggregating the discontinuity points of
all CIFs {\;(t | %)} iey, we directly obtain the following
Lemma 3.

Lemma 3 (Discontinuity Points of All CIFs {\;(t |
F+) }iev): Assuming conditions Al and A2 in Appendix B,
the following results hold:
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(i) The discontinuity points of all CIFs {\;(¢ | %) }icy are
listed in the set:

Ty} {Tjn + O}r>1}-

(ii) Define the sequence of time points:
Y =Uev{Tj e {Tjn + d}rz1}, (22)

with 0 < Ty < Th < --- arranged in increasing order.
Then 7* is a subset of {Tg}gzl.

Moreover, if Ch(i) # & for all ¢ € V, where Ch(i) = {k €
V\ {i} : Bix # 0} denotes the set of child nodes for node i,
then we have 7* = {Tg}(ZL

Remark 2: Lemmas 2 and 3 demonstrate the close relation-
ship between the fundamental characteristics of CIFs {\;(t |
F4) ey in model (12) and the properties of the network
structure G = (V, ) in (13). For instance, if a node i has a
parent node in the network G, then \;(t | %;) is non-constant
and the point process on node ¢ is not reduced to the trivial
case of a homogeneous Poisson process. Additionally, if each
node in the network G has at least one child node, then the set
of all intensity discontinuities 7* in (21) is identical to the set
of time points {Te}421 in (22). Since {Tg} ¢>1 contains all the
discontinuity points in 7* and has a simpler form than 7%,
we will focus our remaining analysis on {7y} and refer to
it as ‘the set of intensity discontinuities’ with a slight abuse
of terminology.

2) Marked Point Process (T',I) for Studying Discontinuity
Points of {\i(t | F+)}iey: To investigate {\;(t | F¢)}tiev,
we next introduce the concept of a ‘marked point process
(T, 1) = ({T¢}e>1, {Is}¢>1) for intensity discontinuities’ in
Definition 2 below. A general marked point process (T,I )
is a double sequence, where {Tg}gzl is a point process, and
each Ty is associated with a mark I, usually representing
some additional features (such as labels or locations) related
to the time point T[; refer to [29] and the references therein
for further details.

Definition 2 (Marked Point Process (’I’, I) for Discontinu-
ity Points of {\;(t | F)}iev): Assume conditions Al and
A2 in Appendix B. For the strictly increasing time points
{Tl,Tg, ...} defined in (22) and integers ¢ > 1, let I, €
VU {0} be the mark corresponding to Ty, defined by:

i€V,
I = v
0, if Ty € Ujev{{Tjx + Otr>1}-

We refer to the double sequence (T, 1) = ({T;}¢1, {I¢}e>1)
as the ‘marked point process for intensity discontinuities’.

The mark I, in (23) indicates the identity of T, p. if the
discontinuity point Ty of {\;(t | .#;)}icy is due to an event
occurrence from some node ¢ at that time point, then I,
represents the index 7 of that node; otherwise, we set I, = 0.
Lemma 4 below guarantees the uniqueness of the mark I,
defined in (23) for each T}.

Lemma 4 (Uniqueness of the Mark I, Corresponding to
Ty): Assume conditions Al and A2 in Appendix B. Then,
the mark I, in (23), corresponding to the discontinuity point
Ty, is uniquely defined a.s., i.e.,

T = Uiev Ujepa(i) {{ 2

(11, Ts, ..

if Ty € {Tix}es1, (23)
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(i) For any distinct i,j € V, P(I, =i, I, = j) = P(T, €
{Tiktr>1, Te € {1k }r>1) = 0. 5

(ii) For any ¢ € V, P(I, = i,I, = 0) = P(T, €
{Ti bzt To € Ujev{{Tjk + dtis1}) = 0.

As stated by Definition 2 and Lemma 4, a multivariate point
process {7} ¢}¢>1,icy uniquely defines a marked point pro-
cess (T, I). Conversely, (T', I) uniquely yields a multivariate
point process {T; ¢}¢>1,icv, and accordingly, a multivariate
counting process {IN (t)};>0, due to the identities:

Tio=inf{Tx >Tip1: =i, k>1}, £>1, i€V,
(24)
(25)

Ni(t) =) UTp < t, I = i),

k>1

t>0,i€V,

Hence, the point process {7} }¢>1,icv, the counting process
{N(t)};>0, and the marked point process (T',I) can be
deduced from each other. As shown in Theorem 1 below, the
probability distribution of the marked point process (’f’ , I) has
a closed-form expression, making (T, I) more convenient to
analyze than {Ti,Z}ZZLiEV and {N(t)}t20~

3) Probabilistic Properties of (T’, I): A non-negative ran-
dom variable 7 is called a stopping time with respect to the
filtration {%;};>0 in (5), if {r < t} € %, holds for any
t > 0. For each integer ¢ > 1, the time point Tg in (22)
is a stopping time, and let F = {AeZ: AN {Tg <
t} € % foreveryt > 0} be the stopping time o-algebra
(defined as in [38]) with respect to Tg, i.e., generated by
the marked point process (’f’ I) up to time Ty. Denote by

(Tz ‘ f ) = hmALOA 1P( (Tg + A) (Tg) +1 |
]:T“,) the CIF of node ¢ at stopping time Ty. For £ = 0,
define F = = Fy = {Q,2}, with Ty = 0 and I, = 0.
Theorem 1 presents the probability distribution of the marked
point process (T', I) conditional on the filtration { 7, o0
For a random variable X, denote o (X)) as the o-field generated
by X; for a o-field .%, denote o(.#, X) as the smallest o-field
that contains all the events belonging to .7 U o(X).

Theorem 1 (Conditional Distributions of T£+1 and Ipyq
Given sz)" Assume conditions A1, A2, A3, A4, and A5 in
Appendix B. For each integer ¢ > 0, define the set:

T=J{te @ To+¢: N({t—¢}) =1}  (6)
iey
and the }'Tz—measurable random variable:
T — min(7y), if 7, # &, 27
¢ 0, if 7, =

The following results hold:
(i) (Support of Tyy1) P(Ty < Tpyy < Ty) =1
(ii) (Conditional distribution of Tyyq1) If T} < oo, then
Tyy1, conditional on Fy , has a mixed-type probability
distribution with a probability mass function (p.m.f.)

—T)}
(28)

P(Toyr =17 | Fy,) = exp{-N"(T, | Fy,) - (I}
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at the point 7}, and a probability density function (p.d.f.)

Ity (] Ty) = N (Ty | Fy,)

X exp{—A"NTy | Fy) - (t—To)}  (29)
for t € (Tg,Tf), where Asum(ji’( | .7:,1“«2) = Zz/:l )\Z‘(Tg |

fn). If T = oo, then (28) and (29) reduce to (Te_i_] —
Ty) | Fo, ~ Exp(X(Ty | Fi,)-
(iii) (Conditional distribution of I,41) If T, < oo, then for
1€V,
P(Ippy =i o(Fy, Trar)) =
0, if Ty =Ty,
Ni(Ty | Fg, ) /XDy | Fy,), 3 Toga € (T0, Tj).

(30)

If T; = oo, then (30) reduces to P(Ipy1 = i |
(fT 7Te+1)) = Ni(Ty | Fy) /ATy | Fy,), forieV
and Tg+1 € (Tg, OO)

The derivation of Theorem 1 primarily relies on the fact
that the CIFs {\;(t | %#:)}icy are constant within each
interval [T Z,TZH) For instance, if T} < oo, (29) indicates
that, conditional on fT , the duration Tz+1 - T, » follows an

exponentlal distribution with a rate )\“‘m(Tg | Fr,) before

Tz+1 reaches 7). Furthermore, Tg+1 = 17 unphes that
Tz+1 € {Tir + d}iev.r>1, while Tg+1 < T} indicates that
the probability of the event {Tg+1 € {T; k}x>1}, conditional
on a(]-"nj’“l), is proportional to the corresponding CIF
(T, | Fy,) at node i. It is important to note that the
V-dimensional CIF A(t | %) = (M(t | o), v(t |
)T in model (12) is not a piecewise deterministic Markov
process (PDMP) [28], and thus the general results for PDMP
do not apply to the derivation of Theorem 1.

Theorem 1 has two important applications. Firstly, it pro-
vides a simulation algorithm to generate synthetic point
process data {7} ¢ }icy,¢>1 with CIFs modeled by (12). By uti-
lizing the conditional probability distributions of (Ty41, Ir41)
given in (28)—(30), one can sequentially generate the marked
point (Tg+1,fg+1) for each ¢ > 0, and then convert them
into {T; ¢}icy ¢>1 using (24). Secondly, Theorem 1 leads to
probabilistic results of (T,I ), as presented in Lemmas 5, 6,
and 7, which are used to prove Theorem 2.

For clarity, the following notations are used: The duration
Ty between two consecutive discontinuity time points Ty is
given by

=T, —Ty_q for ¢ >1. (31)
The event counts M; o at node ¢ € V are calculated as
¢
Mig=0, M= ZI(Ik =) for £ >1. (32)

k=1

The piecewise-constant intensity at node ¢ € V) within the time
interval [Ty, Ty41) is denoted by

Xio =Xi(0), Xig=N(Ty | Fy,) fore>1. (33
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Lemma 5 (Expectation and Variance Related to (T, I)):
Assume conditions A1, A2, A3, A4, and A5 in Appendix B.
Then for each integer k£ > 1, we have:

E{I(Ik = Z) — )\i,k—l Tk | ka71} = 0,

V&T{I(Ik = i)_)\i,kfl Tk | ka_l}:E{I(Ik = Z) ‘ ka_l}.

(34)
Furthermore, for each integer ¢ > 1,
¢
E(Mi,é - Z Ai k-1 'Tk) =0,
k=1
¢
Var(MM P Tk> — E(Mi). (35)
k=1

Lemma 6 (Martingale Property Related to (T, I)):
Assume conditions A1, A2, A3, A4, and A5 in Appendix B.
Then the random process {M; ¢ — 22:1 Nik—1 - Tkte>1 1S a
martingale with respect to {F, }¢>1.

Lemma 7 (Upper Bound for Variance Related to
t-Truncated (T‘, I)): Assume conditions Al, A2, A3,
A4, and A5 in Appendix B. For a given deterministic time
point ¢ € (0, 00), let

Z (T, <t) (36)
count the number of discontinuity points {Tg}g21 that occur
up to t. For integers £ > 1, let

M =Tynt—To 1 nt (37)

be the duration between t-truncated Tg and Tg,l, where aAb =
min(a, b). Let {X,}r>0 be a sequence of random variables
such that X, > 0 is measurable with respect to F;, for each
¢ >0, and supy~y X¢ < ¢1 a.s. for a constant ¢; € (0, 00).
Then, for each i € V, we have

Ly Li+1
B{Y Xl =)= 3 Xeadiwr -7l =0, 39)
k=1 k=1
and
Ly Li+1
Var{ S X I =) — Y Xiot A .T,Lt]}

k=1 k=1

Ly
- E{ ;X,f_l I(I), = z')} <Ciét,

where the constant C; = exp(fo.; + Co - Ejev Bj.), with
Cy € (0,00) provided in Condition A5.

Remark 3: Derivations of Lemmas 5-7 are outlined as fol-
lows. Lemma 5 is obtained from direct calculations based on
the probability distribution of (flv“7 I) in Theorem 1. Lemma 6
follows from (34) in Lemma 5. Lemma 7 is a non-trivial
extension of Lemma 5, where a non-random index ¢ is
replaced with a random index L;; Lemma 7 aims to study the
properties of the marked point process (T, I) when truncated
by a fixed time point ¢t € (0,00), which is further used to
translate these results into the forms of the counting process
N ().

(39)
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4) Translating Results of ( ’j“, I) Into Results of N(t): The
equivalence verified in (25), between the marked point process
(T, I) and the counting process IN(¢), enables us to translate
the results of Lemmas 5-7 into the counterparts of N (¢) and
directly obtain Theorem 2 below, which describes some useful
properties of N ().

Theorem 2 (Upper Bounds for Variances Related to N (t);
Finiteness of N (t)): Assume conditions A1, A2, A3, A4, and
A5 in Appendix B. Then, there exists a constant ¢; € (0, 00)
such that for any 7 € V and any t € (0, 0), we have

var{Ni(t) - /Ot Ai(u | yu)du} —B{N,(H)} <ert, (40)

which implies that the counting process N;(¢) is finite a.s.,
ie.,

P(N;(t) <o0) =1, i€ V. (41)

Furthermore, for a random process {x(t)};>0 such that z(¢)
is #;-measurable, 0 < inf;>oz(t) < sup;>qz(t) < ¢z as.
for a constant ¢z € (0, 00), and 2(t) is constant in the interval
[Tg, TZH) for each integer ¢ > 0, it follows that for any ¢ €
(0,0),

var[/ot {2(u—) dN; () — 2(u) \i(u | Fo) du}}

t
= E{/ 22 (u) \i(u | F) du} < ¢ cit, 42)
0
where x(u—) = limyy, (t) denotes the left limit.

By considering the marked point process (T‘, I), we obtain
Theorem 2, which ensures certain fundamental probabilistic
properties of our counting process N (¢). In the subsequent
discussions in Section V, we will demonstrate the significance
of these results in deriving the associated statistical properties,
as presented in Theorems 5-7 and Corollary 1.

B. Cyclicity and Asymptotic Mean Stationarity of IN(t)

A counting process {N(t)};>o is considered strict-sense
stationary if, for any time point s € [0,00), N(t + s) —
N(s) 2 N(t) for every t >0, where X; 2 X, denotes
that random quantities X; and X5 have identical distributions
(see [29] and references therein). In this paper, ‘stationarity’
exclusively refers to strict-sense stationarity, while ‘non-
stationarity’ encompasses other cases. A strict-sense stationary
counting process { N (¢) };>o exhibits several well-known prop-
erties, including:

(P1) Invariant distribution of the CIF: The probability distri-
bution of the CIF A(t | %), as defined in (7) and (8),
remains invariant for any ¢ € [0, c0).

(P2) Constant mean intensity: For any ¢ € [0, 00), the mean
CIF satisfies E{\(¢t | %)} = Ao for some constant
Ao € (O7 OO)

(P3) Expectation of increments: For any ¢ € (0,00) and s €
(0,00), E{N(t + s) — N(s)} = Ao - t. Furthermore,
if N(t) is ergodic, then lim; o, N(t)/t = Ao a.s..

(P4) Finiteness of N(¢): For any ¢t € (0,00), P(N(t) <
o0) = 1.
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Fig. 3. Illustrative plot depicting recurrence time points Ro, R1, ..., and

event time points {7} ¢}¢>1 of nodes ¢ € V, where V = {1,2}. The
cyclicity property in Theorem 3 denotes that after reaching each recurrence
time point Ry, IN (t) enters a recurrence cycle (Ry, R¢1]. Within this cycle,
Xi(Rg¢ | Fr,) = Xi(Ro | Fry) = Ai(0), initiating a renewed process
{N(t+ R¢) — N(Rg)}t>0, independent of Fr,.

These properties resulting from the stationarity assumption
significantly ease theoretical analysis. Hence, the stationarity
assumption is commonly imposed in the relevant literature,
such as [19], [39], and [40]. We refer to a multivariate counting
process {IN (t)}1>0 as strict-sense stationary if {N;(t)}:>o is
strict-sense stationary for each ¢ € V.

However, the counting process N (¢) associated with the
CIFs {\(t | Z:)}iey in model (12) is not strict-sense
stationary. Lemma B.9 in Appendix B justifies that {\;(¢ |
F+) hiey in (12) violates property (P1) of stationarity. Without
possessing properties (P1)—(P4) listed above, a non-stationary
point process poses significant challenges to theoretical anal-
ysis. Therefore, it becomes necessary to explore alternative
properties for non-stationary point processes using a new
approach.

Recall that a Poisson process assumes the independent
increment property, resulting in the memoryless property [41].
In essence, for any constant s € (0,00), the time-shifted
counting process {N(t 4+ s) — N(s)};>0 is independent of
the history up to the time point s. In Theorem 3, we will
demonstrate that our study establishes a relaxed version of this
memoryless property for our IN (¢). Specifically, the counting
process {IN(t + R¢) — IN(R¢)}i>0 at certain random time
points I, is independent of the o-field Fgr,, where R, and
Fr, are introduced in Definition 3.

Definition 3 (Recurrence Time Points Ry, Recurrence Cycle
of N(t), and Fg,): Let Ry = 0. For each integer ¢ > 1, R,
is defined as the first time point, after R;_1 + ¢, such that no
events occur at any node in the time interval (R, — ¢, Ry], i.e.,

Ry=min{t > Ry_1 + ¢ : N((t — ¢,t]) = 0}. (43)

We call R, the (th recurrence time point, and the interval
(Ry—1, Ry] the fth recurrence cycle. Define Fr, = %y =
{Q,2}. For t > 0 and integer £ > 0, t + Ry is a stopping
time. Denote Fiyp, = {A € F : An{t+ Ry < u} €
F,, for every u > 0} as the stopping time o-algebra with
respect to t + Ry.

Figure 3 illustrates the recurrence time points R,. For our
N (t), the existence of Ry is verified by Lemma 8.

Lemma 8 (Existence of Ry): Assume conditions Al, A2,
A3, A4, and A5 in Appendix B. For each integer ¢ > 1, the
recurrence time point R, in Definition 3 exists with probability
one.

The memoryless property induced by R, can be intu-
itively explained as follows. In our model (12), the CIFs
{A\i(t | #)}iev at the current time ¢ primarily depend on
the historical event counts IN((t — ¢,t]) in the lag window
(t— ¢, 1] of a fixed length ¢. Once the counting process N (t)
reaches a recurrence time point ¢ = Ry, all event counts in
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the lag window (t — ¢, t] become empty, which separates the
dependence of the future CIFs {\;(t | %) : t > Ry}icy on
the past event history up to that time point Ry. At { = Ry,
both the CIFs and the counting process ‘reset, becoming
independent of Fp,, and initiating a renewed ‘cyclic’ process.
Based on these considerations, we establish a new cyclicity
property of N (t), formally presented in Theorem 3.

Theorem 3 (Cyclicity of N(t) Driven by Ry):  Assume
conditions A1, A2, A3, A4, and A5 in Appendix B. Let IN (¢)
be the counting process with the CIFs {\;(¢ | .%;) }icy in (12).
Then, for each recurrence time point Ry in (43) with £ > 1,

(i) both {\;(t+R¢ | Fr+r,)}icy and N (t+R;)—N(R;) are
independent of Fp,, with N (¢t + R;) — N(R;) 2 N(¢t)
for each ¢t > 0.
(ii) {N((R¢-1,Ry¢]) : £ > 1} is a sequence of i.i.d. random
vectors.
(iii) {Ry — Ry—1 : ¢ > 1} is a sequence of i.i.d. random
variables with finite second moment.

This cyclicity property of N (t) will be used to derive
Theorem 4 below, as well as Theorem 5 in Section V-A.
In comparison, our cyclicity property is analogous to the
renewal property of the non-linear Hawkes process [25] or
queuing models [26], [27]. However, tools for deriving the
renewal property are not directly applicable to model (12),
as it violates some basic assumptions underlying the non-linear
Hawkes process and queuing models. For example, our point
process (when £ # @) does not meet the assumption of a
deterministic arrival rate required in M;/G/co queues, and the
non-linear Hawkes process does not allow for the general type
of shape-function ¢(-) in model (12).

Theorem 4 (Asymptotic Mean Stationarity of N (t)):
Assume conditions A1, A2, A3, A4, and A5 in Appendix B.
Then, there exists a constant vector ¢y € (0,00)" such
that the counting process IN(¢) associated with the CIFs
{Ai(t | %) }iey in (12) satisfies

N@#)/t 5 ey, ast — oo. (44)

Theorem 4 verifies that the vector IN () /t of average counts
converges in probability to a constant vector as ¢ approaches
infinity. For a non-stationary counting process IN(t), this
type of property is called asymptotic mean stationarity (a
notion used in [42]). It is noted that the constant cg in (44)
deterministically depends on the baseline parameters {0o.;}
and network parameters {3;;} in model (12), but a closed-
form formulation of this dependence is not available due to
the non-linearities of both the exponential link function and
the shape-function g(-) in model (12). This is in contrast
with the case of a linear Hawkes process [43], for which a
closed-form moment equation (Equation (3) in [43]) could
be constructed to relate the mean intensity with the network
parameters. Nevertheless, without knowing the explicit value
of ¢y, Theorem 4 suffices to assist in proving further useful sta-
tistical convergence properties, as will be shown in Section V.

In summary, Lemma B.9 states the fact that our count-
ing process IN(t) is not strict-sense stationary; nevertheless,
we have verified that N () possesses some desirable properties
similar to stationary processes. For example, Theorem 4 is
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similar to the ergodicity in property (P3); Theorem 2 verifies
property (P4); and Theorem 3(i) indicates a feature similar
to the shift invariance property of stationarity. Theorems 3
and 4 are crucial for deriving the related statistical asymptotic
properties (in Theorems 5-7) in Section V. In comparison with
existing results, technical tools we have developed are easier
to interpret and utilize.

V. PARAMETER ESTIMATION VIA PENALIZED
M -ESTIMATION

Our primary interest is to learn the network structure from
the observed data {T';};cy in (1) of the multivariate point
process in the time interval [0, T], where T € (0,00) is the
total time length of the experiment. We denote the true values
of the CIF (12) as

Xi(t] Z) = exp {@:(t) T B; ),

whee B; = (B5nBi)T = (B Biae--
Bi 16 B ..ﬁ;‘,ﬂ-)Tz € RV is the vector of
true parameters, and x;(t) = (Lx;(t)")T =
(Lai(t),. i (), i (), .,zv()” € RY s
the vector of regression covariates. Our statistical learning
aims to estimate B: in (45) and recover the true network
structure G* = {V, £*}, where the true edge set £ = £; UE*
corresponds to & = £, U E_ in (13) with parameters [(3; ;
replaced by ;.

The existing parameter estimation methods can be catego-
rized into two categories: (i) moment or correlation-based
approaches [43], [44]; and (ii) intensity-based approaches
[18], [19]. The moment or correlation-based approaches are
typically applied to the linear models of \;(¢ | .%;) and are
not suitable for our non-linear model (12). Therefore, we adopt
the intensity-based approach, where parameter estimation is
achieved through the minimization of a suitable loss function
that measures the discrepancy between the true and estimated
CIFs.

(45)

A. Loss Function

In the existing literature, there are different loss functions
used for estimating parameters in a generic counting process
N(t) associated with a CIF A(¢ | &), including the negative
log-likelihood function [18], [30]:

T
o) =~ [ [roatae— | 2y an o - xe | 7).

(46)
and the squared loss [19], [40]:
1M,
L(B) = T/0 {)\ (t| Z)dt — 22(t— | Jt,)dN(t)},
47

where A(t— | #_) = limyy¢ A(u | %) denotes the left limit.

The squared loss (47) is more suitable for linear models of
A(t | ), such as the linear Hawkes process [40], while the
negative log-likelihood function (46) is typically used for non-
linear cases, such as when using an exponential link function
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in model (12). Therefore, we will focus our discussion on the
use of (46) In our multi-dimensional setting, we choose to
estimate Z")‘ at individual nodes ¢, and recover the network
structure by aggregating estimators of {B }icy using the
following loss function:

LT

——/ x;(t ,8 dN()—exp{acL ,B}dt} (48)
where B, = (B0,B))T = (BowBrir--Bi-1as
Bit1,is ...,ﬂv,i)T € RY represents a vector of generic
parameters.

In many application fields [21], [22], [23], [24], the number
of recorded event time points could be large, often in the
order of millions or more. This motivates us to study the
behavior of our estimation approach for a large number N;(T)
of event time points, or equivalently, a long total time length
T. Theorem 5 presents the asymptotic convergence results for
the gradient vector and the Hessian matrix of EZT(BT )as T
approaches infinity. These results will be used to derive param-
eter estimation consistency (Theorems 6 and 7) in Section V-C.

Theorem 5 (Asymptotic Convergence Related to Loss Func-
tion L;v(B;) in (48)): Assume conditions Al, A2, A3, A4,
A5, and A6 in Appendix B. For each ¢ € V, denote VL; 1(3;)
and VfﬁzT(Bl) as the gradient vector and Hessian matrix of
L; 1(B8;) in (48) respectively. Then, we have the following
results as T — oo:

(1) VEZ;T(B: ) converges to O in probability at a square-root
rate, i.e.,

~ %

Vﬁi,T(ﬁi)

(ii) There exists a constant matrix C; such that
V2Lir(B7)
. =T =~ nT3* P
= T/ z;(t)z;(t) " exp {@;(t)' B; } dt — C;. (50)
0

Furthermore, the matrix C; is positive definite with all
entries positive.

Theorem 5 is derived from the probabilistic results of IN (t)
in Section I'V. Specifically, (49) is attained from the bounded
variance property (42) of N (t) in Theorem 2, which itself
originates from the properties of the marked point process
(T, I) (as in Theorem 1 and Lemmas 5-7). Result (50) is
derived using the cyclicity property of IN(¢) from Theorem 3
and the asymptotic mean stationarity of N(¢) as proven in
Theorem 4.

Remark 4: Conventional tools for asymptotic results, such
as the law of large numbers or central limit theorems, are
not directly applicable to Theorem 5 due to the distinctive
features of the stochastic processes N (¢) and z;(t) in (49)
and (50). Specifically, the non-stationary counting process
N (1) is closely linked with the historical events up to ¢ (via
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its associated CIFs {\!(t | %) }icy modeled by (45)), result-
ing in a complicated dependence structure of IN(t) across
time ¢. Additionally, the stochastic process ;(t), defined as
zi(t) = (Lar(t),..., 2 1(t), zig1(t),...,zv ()T, relies
on the special type of stochastic process N;((t — ¢,t])
(see (16), (17) and (18)), for which probabilistic proper-
ties are not available in the existing literature. The use of
Theorems 1-4 enables us to prove Theorem 5, justifying the
importance of our results in Section /V.

B. Penalized Estimation of Parameters

Sparsity assumptions are commonly imposed on the true
network structure in various real-world applications (e.g., [11],
[12], [19]). To promote a sparse network structure with the
most significant interactions, we employ the weighted L-

penalty:
Z Wij,5,T |ﬁj,i|7
jeV\{i}

where {w; ;v : j € V\ {i}} represent non-negative weights.
~%

(D

We estimate the true parameter vector 3, using the penalized
M -estimator, minimizing the sum of the loss function (48)
and the penalty function (51):

~

B; =arg min {,Ci,T(,[N‘-)'i) + Pi,T(Bi)}
B;ERY

=arg min

5 G.RV {;/OT [exp {w, ,6' }dt

TBAN(D] + Y wpar |Bral}s 52
JjeV\{i}

vAvhere the vector ,5' = (ﬂo 27/81 T ,ﬁz 1 z,51+1 i e
By.i) T collects the estimates ﬁo . and all {5; i 7 €V\{i}}
The estimated network is obtained as follows:

E={(j,1) €V xV: B #0; j#i}.
Furthermore, considering that the sign of an estimator indicates

the type of effect, we estimate the sets of excitatory and
inhibitory effects separately:

Er=A{(GA) eV xV: B> 0:j#i},
,_{(], i)EeEVXV: ﬁ]2<0 Jj#i}

,ml(

(53)
(54)

C. Asymptotic Results for Structure Learning

For continuous-time point process data, the total time length
T is roughly proportional to the number of the observed data
points and typically serves as the sample size (e.g., in [19],
[20]). Therefore, in this section, we establish the asymptotic

properties of the penalized M -estimator ﬁl in (52) with respect
to T approaching infinity. To establish estimation consistency,
we first provide the following conditions for the weights w; ; T
in (51):

max w;;1 = Op(/1/T); (55)
jEPa* (i)

max wj; 1 = op(1/1/T); (56)
j€Pa* (1)
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min VT wj,;r Lo, as T — oo. (57)

jEV\{Pa* (i)ui}
Here, Pa®(i) = {j € V\{i} : B;; # 0} denotes the nodes that
have a true non-zero effect on node ¢; condition (56) employed
in Theorem 7 and Corollary 1 is stronger than condition (55)
used in Theorem 6. An example of weights {w; , v} that sat-
isfy (56) and (57) is the adaptive lasso penalty [45], in which
Wj ;T = NT |Bj7j|’y’ with np = O(l/Ta) for 1/2 <a< 3/2,

v = =2, and B; = (Bosi, Bris-- - Bi1.i> Bigriir- - Bvia) |
denoting the minimizer of £; v(3;).
Theorem 6 guarantees the existence of a y/1/T-consistent

estimator ,@Z in (52).

Theorem 6 (Existence of a  Consistent  Penalized
M-Estimator): Assume conditions Al, A2, A3, A4,
A5, A6, and AT in Appendix B. Assume (55) for the weights

wj,i,7. Then, there exists a local minimizer Bl in (52) such

that ||B; — B, | = Op(\/1/T), as T — oo.

Following Theorem 6, the sparsistency of the penalized
M -estimator is given in Theorem 7 below. Before stating it,
we introduce some notations. We partition the true parameter

vector as B; = (G5, 8, )7 = (8,808,107
~#(D)T * * *

(B, @ , B3 (H)T)T, where 3; D _ 0, and B; O collects all
the non-zero components in ﬁ Similarly, for the estimator
~(T A(II)T

(60 i B 7ﬂ7, )
(B; ,B; )T, with index sets I and II corresponding to
those of 31" and B;"™, respectively.

Theorem 7 (Sparsistency of the Penalized M -Estimator):
Assume conditions Al, A2, A3, A4, A5, A6, and A7 in
Appendix B. Assume that the weights w;; satisfy (56)
and (57). Then, any +/1/T-consistent local minimizer
= =T ~(I)T
B;=B; ,B; )T

~(ID)
P(8;

The sparsistency result in (58) immediately yields the net-
work recovery consistency stated in Corollary 1.

Corollary 1 (Network Recovery Consistency): Assume the
same conditions as in Theorem 7. Then, the network structure

estimators 6+ in (53) and & in (54), based on 6 in (52),
are consistent with the true edges &Y and &£, respectively.
In other words, P(5+ =&, E = 5*) —1las T — oo.

Corollary 1 demonstrates that our method can consistently
recover the true network structure as the total time length T
increases. This provides theoretical support for the utility of
our proposed statistical learning procedure.

Remark 5: Standard results regarding parameter estimation
consistency for general M-estimators are extensively estab-
lished in the existing statistical literature, as discussed in
Chapter 5 of [46]. However, the general theory does not
directly apply to prove the consistency results presented in
Theorems 6 and 7 within our specific context. This arises
from our complex loss function (48), which relies on a
complicated stochastic integral, while the typical loss function
in [46] is often constrained to a simpler form involving basic
summation statistics. The proofs of Theorems 6 and 7 rely on

,Bi, we adopt the partition [)'i
=T _apT

in (52) satisfies

=0) -1, asT — oo. (58)
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Fig. 4. (Simulation Study: True Network-1, Network-2, and Network-3)
The left panel: Network-1, a simple network with 10 nodes; the middle panel:
Network-2, a medium-complexity network with 20 nodes; and the right panel:
Network-3, a complex network with 50 nodes. Red arrows indicate excitatory
effects, while blue arrows indicate inhibitory effects.

the asymptotic convergence of Vﬁi,T(ﬁ ) and V2L, T(ﬁ*)
Theorem 5, derived from the probabilistic results of N (¢) in
Theorems 1-4.

VI. SIMULATION STUDY

In this section, we conduct numerical experiments to
demonstrate the practical utility of our continuous-time mod-
eling approach and estimation procedure.

A. Types of Network Structures

The simulation studies consider three simulated networks,
as depicted in Figure 4, representing networks with varying
degrees of complexity. Network-1 is a simple network of
10 nodes, including 6 excitatory and 4 inhibitory effects.
It is designed to resemble a directed acyclic graph, aiming
to capture the information flow from sensory neurons to
motor neurons. Network-2, adapted from [12], is a moderately
complex network comprising 20 nodes, with 12 excitatory
and 8 inhibitory effects. This network is intended to mimic
the potential hub and leaf structures observed in neuron
ensembles. Specifically, nodes 1, 6, 11, and 16 are hub nodes
with a degree of 6, while the remaining nodes are leaves with
a degree of 1. Network-3 is a complex network consisting of
50 nodes, with 30 excitatory and 30 inhibitory effects. It shares
the same design motivation as Network-1.

The synthetic multivariate point process data were generated
using the simulation algorithm induced by Theorem 1. The
CIF's in model (12) employ

zj(t) = g(rj,¢(t))7 JEV, telo,T],
where ¢ = 1, and g(x) = log(1 + z A 10).

(59)

B. Comparison of Estimation Methods

We compare the following estimation procedures:

(i) Continuous-time modeling (our proposed method):
This method estimates the parameters using the
penalized M-estimator in (52) with two scenarios
for the penalty (51): the Li-penalty P;r(8;)

N jew iy |Biil: the weighted-Ly penalty P;r(83;) =
ZjeV\{i} ’5]T|ﬁj,i|'Y . ‘ﬂj,i|, with v o= —2, and the M-
estimator 3;; of 37 ;, where the tuning parameters 7 and

nt are selected using the Bayesian Information Criterion
(BIC) [47].
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TABLE I
METHOD DESCRIPTIONS FOR SIMULATION STUDIES
abbreviation of method description
Discrete_L1 bin=0.5 method (ii) with L1-penalty, and bin width = 0.5.
bin=0.25 method (ii) with L1-penalty, and bin width = 0.25.
bin=0.1 method (ii) with Lq-penalty, and bin width = 0.1.
Continuous_L1 method (i) with L1-penalty.
Discrete_wL1 bin=0.5 method (ii) with weighted-L1 penalty, and bin width = 0.5.
bin=0.25 | method (ii) with weighted-L1 penalty, and bin width = 0.25.
bin=0.1 method (ii) with weighted-Lq penalty and bin width = 0.1.
Continuous_wL1 method (i) with weighted-L; penalty.
Zhao_2012 bin=0.5 method (iii) with bin width = 0.5.
bin=0.25 | method (iii) with bin width = 0.25.
bin=0.1 method (iii) with bin width = 0.1.
SIE-GLM bin=0.5 method (iv) with bin width = 0.5.
bin=0.25 | method (iv) with bin width = 0.25.
bin=0.1 method (iv) with bin width = 0.1.
Raj_2005 parent=3 | method (v) with maximum parent number = 3.
parent=2 | method (v) with maximum parent number = 2.

(i1) Discrete-time approximation modeling: Method (ii) uti-
lizes the discrete-time approximation. The entire time
interval [0,T] is divided into n equally-spaced time

bins {(tx—1,tx] : K = 1,...,n}, each of length T/n.

The observed point process {T';};cy is transformed

into sequences of bin counts {N;}tievik=1,..n. The

interaction parameters are estimated using a penalized

M -estimation similar to (52). However, in this case, a

Poisson distribution with rate A;(tx—1)T/n is assumed

for N; j at node i.

Discrete-time modeling with groups of connection param-

eters in [12]: Method (iii) is similar to method (ii),

differing in that the effect from node j to ¢ is modeled

by a group of parameters {3;,;,:¢=1,...,Q} instead
of a single parameter (3; ;. Here, ) is determined by the
integer part of ¢/(T/n).

SIE-GLM method in [11]: Method (iv) is an extension

of method (iii) that incorporates structural information in

the parameter space. It employs the sparse group lasso
penalty for parameter estimation.

(v) Bayesian method in [15]: Method (v) is a continuous-time
modeling approach that uses a default shape-function
log(1 + x) and the same loss function as our pro-
posed method (i). This method explores all subsets of
components in 3, and selects the best subset with the
maximum Bayesian posterior density. To ensure a fair
comparison, method (v) assumes a uniform prior (i.e.,
no prior information) for 3,.

(iii)

(iv)

To facilitate further discussion, we categorize all methods in
Table I. All methods which involve ¢ and g(-) for parameter
estimation adopt our empirical choices: ¢ = 1 and g(x) =
log(1 4+« A c), where the data-driven choice ¢ is given in (62),
unless stated otherwise. The coordinate descent algorithm [48]
is utilized to solve (52).

C. Simulation Results

We consider three different total time lengths: T €
{500, 1000, 2000}. For each i € V), the true baseline inten-
sity parameter is (3, = —0.8, resulting in a base rate of
approximately exp(—0.8) ~ 0.45. The true graph parameters
{B;; : 4,5 € V;j # i} are set as follows: (35, is 3 for the
excitatory effect, —(3 for the inhibitory effect, and 0 for no
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effect from node j to node 4. Here, 5 € {0.4, 0.5} reflects the
magnitude of the connection strength.

The performance of each method is evaluated using the
following criterion measures: Corret_All (correctly detected
number of excitatory and inhibitory effects), Detected A
(correctly detected number of excitatory effects), Detected_B
(correctly detected number of inhibitory effects), and Cor-
rect_NC (correctly detected number of non-effects). For com-
parison, Corret_All, Detected_A, and Detected_B reflect the
sensitivity level, which is defined as the percentage of correctly
identified effects. It measures how sensitive each method
is in detecting excitatory or inhibitory effects. Additionally,
Correct_NC indicates the specificity level, defined as the
percentage of correctly identified non-effects. It represents the
ability of the method to correctly identify the absence of an
effect.

1) Complex Network: For complex network Network-3, we
first compare the performance of each method under different
connection strengths 3 € {0.4, 0.5} in Table II. Most methods
are successful in detecting the sparse structure of the network,
correctly identifying most true non-effects and achieving a
good level of specificity. However, the sensitivity results are
relatively worse compared to specificity. All methods with
0 = 0.5 exhibit better sensitivity results compared to 3 = 0.4.
This is expected since a larger connection strength parameter
implies stronger interaction between nodes, making detection
easier. In both strength parameter settings, continuous-time
methods (Continuous_L1 and Continuous_wL1) outperform
the discrete-time approximation methods (Discrete_L1, Dis-
crete_wL1, bin € {0.5, 0.25, 0.1}) in terms of sensitivity.
It is worth noting that for Discrete_L1 and Discrete_wlL1, a
smaller bin width yields better results but does not surpass the
corresponding continuous-time methods Continuous_L1 and
Continuous_wL1. This observation suggests that continuous-
time modeling can be considered as a limiting case of
discrete-time modeling when the bin width approaches zero,
thus providing the most accurate results. Regarding the
penalty choices in methods (i) and (ii), consistently using the
weighted-L, penalty yields better results than using the L-
penalty when the same loss function is employed. Methods (iii)
(Zhao_2012, bin € {0.5, 0.25}) and (iv) (SIE-GLM, bin €
{0.5, 0.25}) exhibit relatively reduced sensitivity performance
compared to other methods, with Correct_All being less than
38 out of 60. As for method (v) (Raj_2005, parent = 2),
to reduce the computational cost of searching all possible
subsets of parents for each node, only subsets with a maximum
size of 2 are considered. Since the true network is sparse
with a degree no greater than 2 for each node, this setting
is most favorable for method (v). Nevertheless, method (v)
only performs well in terms of sensitivity and significantly
underperforms in terms of specificity compared to other
methods. In summary, our proposed continuous-time method
(Continuous_wL1) with the weighted-L; penalty demon-
strates the best overall performance across 3 € {0.4, 0.5}.

We next present Table III to compare the results using
different values of the total time length T € {1000, 2000}.
It is evident that T = 2000 outperforms T = 1000 for all
methods. This aligns with expectations since larger datasets
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TABLE I
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(SIMULATION STUDY: Network-3 WITH CONNECTION STRENGTH 3 € {0.4, 0.5})THE TIME LENGTH Is T = 2000.RESULTS ARE AVERAGED OVER

100 REPLICATIONS, WITH STANDARD ERRORS DENOTED IN PARENTHESES

Correct_All Detected_A Detected_B Correct_NC
strength 0 = 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5
Discrete_L1 bin=0.5 21.18 (0.42)  42.55 (0.33) | 13.71 (0.26)  24.92 (0.17) 7.47 (0.25)  17.63 (0.26) | 2385.87 (0.26)  2379.92 (0.33)
bin=0.25 | 36.21 (0.45) 53.39 (0.25) | 21.29 (0.25) 28.83 (0.10) | 14.92 (0.30) 24.56 (0.21) | 2382.13 (0.33) 2376.73 (0.42)
bin=0.1 44.04 (0.41) 56.95 (0.17) | 24.76 (0.18)  29.67 (0.05) | 19.28 (0.29) 27.28 (0.15) | 2379.40 (0.38)  2375.46 (0.38)
Continuous_L1 51.86 (0.33)  58.44 (0.14) | 27.33 (0.15) 29.87 (0.03) | 24.53 (0.26)  28.57 (0.12) | 2368.23 (0.60) 2367.52 (0.43)
Discrete_wL1 bin=0.5 40.02 (0.39)  54.05 (0.25) | 22.69 (0.22)  28.86 (0.11) | 17.32(0.29)  25.19 (0.20) | 2380.52 (0.39)  2379.92 (0.36)
bin=0.25 | 50.60 (0.28) 58.55 (0.11) | 27.05 (0.17)  29.83 (0.03) | 23.55 (0.21) 28.72 (0.09) | 2380.32 (0.39) 2381.44 (0.34)
bin=0.1 54.81 (0.22) 59.44 (0.07) | 28.51 (0.12) 29.97 (0.01) | 26.30 (0.18)  29.47 (0.06) | 2380.07 (0.36) 2382.73 (0.30)
Continuous_wL1 56.80 (0.21)  59.72 (0.05) | 29.08 (0.11)  30.00 (0.00) | 27.72 (0.17)  29.72 (0.05) | 2380.71 (0.34)  2383.44 (0.25)
Zhao_2012 bin=0.5 10.08 (0.29)  26.42 (0.37) 6.36 (0.20) 16.46 (0.24) 3.72 (0.16) 9.96 (0.19) | 2388.66 (0.13)  2385.15 (0.29)
bin=0.25 3.62 (0.17) 9.41 (0.26) 3.28 (0.16) 8.08 (0.22) 0.34 (0.06) 1.33 (0.11) | 2389.66 (0.05) 2388.86 (0.14)
SIE-GLM bin=0.5 19.88 (0.40)  39.28 (0.33) | 14.00 (0.26)  24.54 (0.18) 5.88 (0.22)  14.74 (0.25) | 2387.55 (0.18)  2384.09 (0.28)
bin=0.25 17.43 (0.35) 37.24 (0.31) | 13.29 (0.23) 24.28 (0.20) 4.13 (0.20)  12.96 (0.22) | 2388.23 (0.13)  2384.84 (0.25)
Raj_2005 parent=2 | 57.34 (0.08) 57.91 (0.02) | 29.37 (0.07) 29.45 (0.06) | 27.97 (0.09) 28.46 (0.06) | 2347.34 (0.08) 2347.91 (0.02)
true 60 30 30 2390
TABLE IIT

(SIMULATION STUDY: Network-3 WITH TIME LENGTH T € {1000, 2000})THE CONNECTION STRENGTH IS 3 = 0.5.RESULTS ARE AVERAGED OVER

100 REPLICATIONS, WITH STANDARD ERRORS DENOTED IN PARENTHESES

Correct_All Detected_A Detected_B Correct_NC
time length T = 1000 2000 1000 2000 1000 2000 1000 2000
Discrete_L1 bin=0.5 16.75 (0.39)  42.55 (0.33) | 11.74 (0.26)  24.92 (0.17) 5.01 (0.22)  17.63 (0.26) | 2385.84 (0.23)  2379.92 (0.33)
bin=0.25 | 28.24 (0.40) 53.39 (0.25) | 18.19 (0.24) 28.83 (0.10) | 10.05 (0.25) 24.56 (0.21) | 2383.26 (0.30) 2376.73 (0.42)
bin=0.1 35.75 (0.41)  56.95 (0.17) | 21.91 (0.24)  29.67 (0.05) | 13.84 (0.26) 27.28 (0.15) | 2379.78 (0.34)  2375.46 (0.38)
Continuous_L1 48.79 (0.33)  58.44 (0.14) | 27.84 (0.12)  29.87 (0.03) | 20.95 (0.28)  28.57 (0.12) | 2359.78 (0.81)  2367.52 (0.43)
Discrete_wL1 bin=0.5 33.18 (0.45)  54.05 (0.25) | 19.69 (0.26) 28.86 (0.11) | 13.49 (0.30)  25.19 (0.20) | 2376.73 (0.42)  2379.92 (0.36)
bin=0.25 | 44.57 (0.34) 58.55 (0.11) | 25.04 (0.19) 29.83 (0.03) | 19.53 (0.26) 28.72 (0.09) | 2377.19 (0.42) 2381.44 (0.34)
bin=0.1 49.88 (0.30)  59.44 (0.07) | 27.24 (0.15) 29.97 (0.01) | 22.64 (0.25) 29.47 (0.06) | 2376.29 (0.41) 2382.73 (0.30)
Continuous_wL1 52.61 (0.26)  59.72 (0.05) | 28.06 (0.12)  30.00 (0.00) | 24.55 (0.21)  29.72 (0.05) | 2375.96 (0.42)  2383.44 (0.25)
Zhao_2012 bin=0.5 6.15 (0.25)  26.42 (0.37) 4.33(0.20) 16.46 (0.24) 1.82 (0.13) 9.96 (0.19) | 2388.78 (0.12)  2385.15 (0.29)
bin=0.25 2.84 (0.17) 9.41 (0.26) 2.60 (0.16) 8.08 (0.22) 0.24 (0.04) 1.33 (0.11) | 2389.59 (0.08) 2388.86 (0.14)
SIE-GLM bin=0.5 15.07 (0.36)  39.28 (0.33) | 11.77 (0.27)  24.54 (0.18) 3.30 (0.18)  14.74 (0.25) | 2387.59 (0.18)  2384.09 (0.28)
bin=0.25 12.24 (0.36)  37.24 (0.31) | 10.30 (0.29)  24.28 (0.20) 1.94 (0.15) 1296 (0.22) | 2388.46 (0.12)  2384.84 (0.25)
Raj_2005 parent=2 | 55.44 (0.16) 57.91 (0.02) | 28.96 (0.09) 29.45 (0.06) | 26.48 (0.13) 28.46 (0.06) | 2345.44 (0.16) 2347.91 (0.02)
true 60 30 30 2390

provide more information and lead to more accurate esti-
mations. This finding is also consistent with our theoretical
result of network recovery consistency stated in Corollary 1

model, with the true CIF:

Aj(t | F1) = exp{fg,+

of Section V-C, which indicates that the detected network diev ffoo B, 10 <t—u < 1)dN;(u)}, (60)
becomes closer to the true network as the time length T

increases. Under each T setting, the pattern of results is similar ~ for ¢ € V. In this model, we set 35, = —0.8, 37, = 3 for
to that in Table II. Continuous_wL1 maintains the best overall  the excitatory effect, 37, = —3 for the inhibitory effect, and

performance.

To assess the robustness of our method to misspecified
time-lags for the true time-lag ¢ (equal to 1), we utilize
specified time-lag values, ¢, € {0.5, 1, 1.5}, in the estimation
procedure. The results are provided in Table IV. As antic-
ipated, ¢, = 1 exhibits the most favorable performance.
The misspecified ¢, values of {0.5, 1.5} do not significantly
impact specificity but do decrease sensitivity across most of
the listed methods. Among the listed methods, the continuous-
time approaches (Continuous_L1 and Continuous_wL1) still
demonstrate the most robust overall performance. Particularly,
the sensitivity of Continuous_L1 diminishes by less than
15% under both misspecified time-lag scenarios, indicating
a degree of resilience of our method against this type of
misspecification.

To assess the robustness of our methods against misspecified
models for CIFs \;(t | .%;), we conducted a separate simu-
lation study on data generated from the non-linear Hawkes

*

i = 0 for no effect from node j to node . The results in
Table V indicate that the performances of each method largely
agrees with the results reflected in Tables II, III, and IV. Our
proposed method, Continuous_wL1, continues to exhibit the
best overall performance. In summary, this simulation result
demonstrates the robustness of our estimation method against
model misspecification. Our method performs well even when
the shape-function g is unbounded in the true model. This
indicates that our estimation method and theoretical results are
applicable to a broader range of models beyond the non-linear
Hawkes process.

2) Simple and Medium-Complex Networks: For Network-1
and Network-2, we conducted the same simulation evaluation
as for Network-3. The results of the two networks, comparing
connection strength, time length and time-lag width, resemble
those obtained for Network-3 and have been omitted for
brevity. Among all the methods, Continuous_wL1 consis-
tently exhibits the best overall performance in each setting.
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TABLE IV
(SIMULATION STUDY: Network-3 PARAMETER ESTIMATION USING SPECIFIED TIME-LAGS ¢, € {0.5, 1, 1.5} FOR THE TRUE TIME-LAG ¢ = 1)
THE CONNECTION STRENGTH IS 3 = 0.5, AND THE TIME LENGTH Is T = 2000. RESULTS ARE AVERAGED OVER 100 REPLICATIONS, WITH

STANDARD ERRORS DENOTED IN PARENTHESES

Correct_All Detected_A Detected_B Correct_NC
time-lag ¢q = 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
Discrete_L1 bin=0.5 37.10 (0.36) 42,55 (0.33)  23.29 (0.45) | 22.57 (0.19) 24.92 (0.17) 1542 (0.28) | 14.53 (0.25) 17.63 (0.26) 7.87 (0.27) | 238226 (0.31)  2379.92 (0.33)  2384.75 (0.25)
bin=0.25 | 37.11 (0.42) 53.39 (0.25) 37.15(0.43) | 22.70 (0.25) 28.83 (0.10)  22.39 (0.25) | 14.41 (0.25) 24.56 (0.21) 14.76 (0.27) | 2381.75 (0.30)  2376.73 (0.42)  2381.04 (0.32)
bin=0.1 36.77 (0.42)  56.95 (0.17)  44.89 (0.38) | 22.26 (0.21) 29.67 (0.05) 25.88 (0.19) | 14.51 (0.29) 27.28 (0.15)  19.01 (0.28) | 2382.06 (0.29)  2375.46 (0.38)  2379.39 (0.34)
Continuous_L1 43.90 (0.32)  58.44 (0.14)  54.26 (0.26) | 25.70 (0.17)  29.87 (0.03)  28.06 (0.14) | 18.20 (0.25) 28.57 (0.12)  26.20 (0.19) | 2362.46 (0.60)  2367.52 (0.43)  2369.17 (0.60)
Discrete_wL1 bin=0.5 51.83 (0.25) 54.05(0.25) 40.63 (0.36) | 27.70 (0.13)  28.86 (0.11)  23.83 (0.21) | 24.13 (0.19)  25.19 (0.20)  16.80 (0.27) | 2380.07 (0.42)  2379.92 (0.36)  2380.05 (0.36)
bin=0.25 | 51.52(0.29) 58.55 (0.11)  50.86 (0.28) | 27.60 (0.15)  29.83 (0.03) 27.85 (0.11) | 23.92 (0.24)  28.72 (0.09)  23.01 (0.23) | 2379.61 (0.34)  2381.44 (0.34)  2380.12 (0.40)
bin=0.1 51.44 (0.28) 59.44 (0.07) 54.72 (0.23) | 27.56 (0.13)  29.97 (0.01)  29.10 (0.08) | 23.88 (0.22) 29.47 (0.06)  25.62 (0.20) | 2380.21 (0.34)  2382.73 (0.30)  2380.28 (0.35)
Continuous_wL1 51.05(0.28)  59.72 (0.05)  56.49 (0.17) | 27.58 (0.15)  30.00 (0.00) 29.43 (0.07) | 23.47 (0.21) 29.72 (0.05)  27.06 (0.15) | 2380.23 (0.36)  2383.44 (0.25)  2381.25 (0.35)
Zhao_2012 bin=0.5 34.61 (0.35) 2642 (0.37)  23.51 (0.37) | 20.62 (0.20) 16.46 (0.24)  14.86 (0.25) | 14.00 (0.23) 9.96 (0.19) 8.65 (0.18) | 2383.59 (0.33)  2385.15 (0.29)  2386.07 (0.21)
bin=0.25 10.59 (0.31) 9.41 (0.26) 8.53 (0.26) 8.76 (0.25) 8.08 (0.22) 7.41 (0.23) 1.83 (0.13) 1.33 (0.11) 1.12 (0.11) | 2388.87 (0.12)  2388.86 (0.14)  2388.94 (0.12)
SIE-GLM bin=0.5 36.04 (0.32)  39.28 (0.33)  35.00 (0.32) | 22.71 (0.18) 24.54 (0.18) 22.95(0.20) | 13.33 (0.22) 14.74 (0.25)  12.05 (0.23) | 2385.73 (0.21)  2384.09 (0.28)  2384.92 (0.25)
bin=0.25 | 25.84 (0.39) 37.24 (0.31)  29.83 (0.35) | 18.60 (0.25) 24.28 (0.20)  21.09 (0.22) 7.24 (0.22) 1296 (0.22) 8.74 (0.21) | 2387.31 (0.17) 2384.84 (0.25)  2386.44 (0.21)
Raj_2005 parent=2 | 5534 (0.14)  57.91 (0.02)  57.16 (0.08) | 28.99 (0.09) 29.45 (0.06) 29.44 (0.06) | 26.35 (0.15)  28.46 (0.06) 27.72 (0.09) | 2345.34 (0.14) 234791 (0.02)  2347.16 (0.08)
true 60 30 30 2390
TABLE V

(SIMULATION STUDY: Network-3 FOR DATA FROM A NON-LINEAR
HAWKES MODEL WITH CIF IN (60)) THE TIME LENGTH Is T = 1000.
RESULTS ARE AVERAGED OVER 100 REPLICATIONS, WITH STANDARD
ERRORS DENOTED IN PARENTHESES

Correct_All Detected_A Detected_B Correct_NC

Discrete_L1 bin=0.5 19.32 (0.37) | 14.27 (0.28) 5.05 (0.21) | 2385.11 (0.27)
bin=0.25 | 29.47 (0.41) | 20.03 (0.25) 9.44 (0.28) | 2382.94 (0.36)

bin=0.1 36.04 (0.37) | 23.17 (0.21) | 12.87 (0.26) | 2380.29 (0.33)

Continuous_L1 48.70 (0.28) | 28.13 (0.11) | 20.57 (0.25) | 2359.48 (0.88)
Discrete_wL1 bin=0.5 35.11 (0.37) | 22.21 (0.22) | 12.91 (0.28) | 2376.48 (0.43)
bin=0.25 | 45.04 (0.34) | 26.27 (0.17) | 18.77 (0.27) | 2375.78 (0.45)

bin=0.1 49.84 (0.27) | 27.96 (0.13) | 21.88 (0.24) | 2376.30 (0.44)

Continuous_wL1 52.58 (0.23) | 28.70 (0.10) | 23.88 (0.22) | 2376.53 (0.42)
Zhao_2012 bin=0.5 9.41 (0.32) 7.27 (0.24) 2.14 (0.14) | 2388.17 (0.16)
bin=0.25 4.95 (0.20) 4.69 (0.19) 0.26 (0.05) | 2389.42 (0.07)

SIE-GLM bin=0.5 19.03 (0.31) | 15.65 (0.25) 3.38 (0.15) | 2387.44 (0.20)
bin=0.25 | 17.70 (0.33) | 15.43 (0.28) 2.27 (0.13) | 2387.73 (0.18)

Raj_2005 parent=2 | 55.33 (0.15) | 29.19 (0.08) | 26.14 (0.15) | 2345.33 (0.15)

true 60 30 30 2390

This finding indicates that our conclusions are consistent
across different types of true networks.

In summary, all of these simulation results confirm the
superiority of our proposed continuous-time method over the
other methods, regardless of the complexity level of the true
network structure.

VII. REAL DATA ANALYSIS

In this section, we apply our method to real-world mul-
tivariate point process data, obtained from the prefrontal
cortex spike train dataset ‘pfc-6’ on CRCNS, accessible at
https://crcens.org/data-sets/pfc/pfc-6/about-pfc-6. This dataset
comprises neuronal ensemble recordings from the medial pre-
frontal cortex, primarily the prelimbic cortex, of freely moving
rats using tetrodes. The recordings were conducted during the
rats’ execution of a behavioral contingency task, as well as
during sleep periods before and after the task. This dataset
consists of 90 sessions, each representing an experiment.
We choose the specific session folder 181020 for our analysis.
Within this selected session, we have spike train data collected
from 55 neurons spanning a duration of 6500 seconds. This
data is stored in the file ‘181020_SpikeData.dat,” encom-
passing a total of 1,309,619 spikes from the 55 neurons.

We apply our continuous-time modeling method, Continu-
ous_wL1, to this dataset, with the tuning parameter selected
using the BIC. Similar to the simulation studies, our estima-
tion procedure adopts the empirical choices of ¢ = 1 and

g(x) = log(1 + x A ¢), where the data-driven choice for ¢
is given in (62). Previous studies in neuroscience [5], [10]
have indicated that a neuron’s spiking activity may influence
other neurons primarily within a short period, often less than
1 second, known as the refractory-recovery period. Taking
this into account, we empirically choose ¢ = 1 to capture
short-term interactions among neurons while considering the
refractory-recovery period. The estimated network structure
is presented in Figure 5 (left panel). We identify a total
of 579 connections, including 352 excitatory effects and
227 inhibitory effects. Several interesting findings emerge
from this study. For instance, pairs of neurons {6, 7}, {24, 34},
{38,42}, {25,27}, {21,23} demonstrate strong mutual exci-
tatory effects, suggesting close functional connectivity and
similarity within these pairs. Neuron 13 exhibits 34 excitatory
effects on other neurons, which is significantly higher than
any other neuron, while it does not impose any inhibitory
effect. This suggests that neuron 13 may potentially serve
as a hub neuron, playing a crucial role in triggering the
activities of the entire neuron ensemble. To compare with BIC,
we also incorporate the Generalized Information Criterion
(GIC) [47] with a penalty perm aT = V log(T) to select the
tuning parameter. The resulting network, shown in Figure 5
(right panel), is sparser and includes a number of isolated
neurons that are disconnected with others. In this regard,
GIC fails to capture all potential interactions compared to
BIC in our experiment. It is important to note that the
recovered connections, obtained through either the BIC or
GIC method, represent the estimated statistical dependencies
between neurons. However, these estimated connections do not
necessarily imply the existence of real neuronal connections
in the brain. Nevertheless, our results are valuable in assisting
further neurological research.

We also employ two additional modeling methods for
this dataset: (a) the Discrete wL1 method with the BIC
criterion and a bin size of 0.25; and (b) the linear Hawkes
process (HK) modeling method [18]. The resulting estimated
networks are displayed in Figure 6. The Discrete_wL1
method identifies a total of 479 effects, among which 448 are
also identified by the Continuous_wL1 method with BIC.
This reveals a significant overlap between the network esti-
mated by the Discrete_wL1 and Continuous_wL1 methods,
as expected since the Discrete_wlL1 method approximates
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Fig. 5. (Real Data: Estimated Networks Using the Continuous-Time Modeling Method with Weighted-L, Penalty) Red arrows denote excitatory effects,
while blue arrows indicate inhibitory effects. Thicker arrows represent stronger interactions. Top-left panel: BIC criterion (in circular layout); bottom-left
panel: BIC criterion (in equilibrium layout); top-right panel: GIC criterion (in circular layout); bottom-right panel: GIC criterion (in equilibrium layout).

the Continuous_wWL1 method when the bin size is suffi-
ciently small. However, we assert that the Continuous_wL1
method is more accurate than the Discrete_ wlL1 method,
particularly when the real physical intensity of neuronal spikes
evolves in continuous-time. This claim finds support in our
simulation results in Section VI. Regarding the HK method,
it detected only 353 excitatory effects and no inhibitory
effects. This limitation arises from the inherent nature of
the linear Hawkes process, which is primarily self-exciting
and does not accommodate negative parameterizations in its
kernel function. In contrast, our Continuous_wL1 method
can identify both excitatory and inhibitory interactions among
neurons, providing a more comprehensive estimation of the
potential network of functional connections among this group
of neurons.

VIII. DISCUSSION

Motivated by the crucial task of inferring neural connec-
tivity from ensemble neural spike train data in neuroscience

research, this paper aims to uncover the network-structured
dependence underlying a class of non-stationary multivariate
point process models. To achieve this goal, we propose a novel
continuous-time stochastic model for the CIFs. We formulate
the associated theoretical framework and derive probabilis-
tic properties that are essential for learning the statistical
properties of the proposed penalized M -estimator for graph
parameters. These parameters are crucial for identifying the
causal relationships among nodes in the network. In our
approach, we develop new technical tools, including the
marked point process with explicit conditional distributions,
recurrence time points, and cyclicity property. These tools
prove instrumental in analyzing the probabilistic properties of
a wide range of continuous-time models for point processes.
Furthermore, they play a central role in the statistical learning
of network structure.

Our proposed framework extends beyond the learning of
interaction effects among nodes. It has the flexibility to
incorporate other factors, such as autoregressive effects, exper-
imental units, and other extrinsic conditions, into model (12).
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Linear Hawkes process

Fig. 6.

47

(Real Data: Estimated Networks Using Discrete-Time Modeling and Linear Hawkes Process Modeling Methods) Red arrows represent

excitatory effects, while blue arrows signify inhibitory effects; thicker arrows indicate stronger interactions. Top-left panel: Discrete-time modeling (plot in
circular layout); bottom-left panel: Discrete-time modeling (plot in equilibrium layout); top-right panel: Linear Hawkes process (plot in circular layout);

bottom-right panel: Linear Hawkes process (plot in equilibrium layout).

Furthermore, acknowledging potential variations in interaction
time-lags among nodes, we can also allow the lag-width ¢
in the covariate x;(t), as illustrated in (16)-(17), to vary
according to the node j. While these additional extensions hold
potential for enhancing our understanding of complex systems,
a comprehensive exploration of these aspects is beyond the
scope of this paper. However, investigating these factors in
future research would be valuable and could provide further
insights into the dynamics of network structures.

APPENDIX A
PRACTICAL ISSUES AND SUPPLEMENTARY SIMULATIONS

A. Practical Issues on Selecting ¢ and g( - ) in (16) and (17)

In practice, there are various methods for choosing the
time-lag ¢ and the shape-function g(-), employing either prior
knowledge or data-driven methods. Below, we provide some
suggestions.

1) Selection of ¢: The time-lag ¢ can be chosen in line
with the number n of time bins with the bin-width T/n.

Alternatively, our empirical choices fix ¢ = 1 (a unit of time,
also used in [15]). Moreover, ¢ could be selected using a data-
driven algorithm as outlined below.

(1). Choose a sufficiently large ¢,.x, guided by domain
knowledge or prior information.

(2). Iterate for each k& = 0,1,2,...,kpax using ¢p =
GmaxC¥, where ¢ € (0,1) represents a step length, and

kmax > 1 is the maximulg )iteration number. Obtain
=Pk

penalized M-estimators {3; };cy by minimizing (52)

with ¢ replaced by ¢x.

(3). Compute the joint negative log-likelihood L, =

=Pk
Y ey Ez(k%(ﬁl ), where Ez(kT)() resembles LC; ()
in (48), replacing ¢ with ¢y. R
(4). For k=0,1,..., kmax — 1, identify the first kK = k where
Ly > Ly TerminAate the algorithm upon finding k. If k£
is nonexistent, let k& = ky,,x. Our selected lag-width is
~(¢pz

=9z
¢z, and the corresponding estimators are {3;  }icy.
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TABLE VI
(SIMULATION STUDY: Network-1 WITH DATA-DRIVEN ¢E) THE CONNECTION STRENGTH IS 8 = 0.5. THE CONTINUOUS_L1 AND
CONTINUOUS_WL1 METHODS USE THE DATA-DRIVEN TIME-LAG ¢, FOLLOWING THE ALGORITHM IN APPENDIX A-A, WITH ¢max = 3, ¢ = 0.7,
AND kmax = 8. PARAMETER ESTIMATION INVOLVES g(z) = log(1 4+ = A ¢), WITH DATA-DRIVEN ¢ FROM (62). RESULTS ARE AVERAGED OVER 100
REPLICATIONS, WITH STANDARD ERRORS DENOTED IN PARENTHESES

Correct_All Detected_A Detected_B Correct_NC
time length T = 500 1000 500 1000 500 1000 500 1000
Discrete_L1 bin=0.5 2.39 (0.15) 5.69 (0.16) | 1.81 (0.12) 3.88 (0.11) | 0.57 (0.07) 1.81 (0.08) | 79.48 (0.08) 78.94 (0.11)
bin=0.25 | 3.63 (0.16) 7.46 (0.14) | 2.69 (0.11) 4.88 (0.09) | 0.94 (0.08) 2.58 (0.09) | 79.18 (0.10) 78.48 (0.14)
bin=0.1 4.63 (0.17) 8.40 (0.12) | 3.32(0.11) 5.37 (0.07) | 1.31(0.09) 3.03 (0.08) | 78.91 (0.14)  78.47 (0.13)
Continuous_L1 5.85(0.19) 9.41(0.08) | 3.80 (0.13) 5.77 (0.05) | 2.04 (0.10) 3.64 (0.06) | 75.87 (0.24) 76.41 (0.21)
Discrete_wL1 bin=0.5 392 (0.15) 7.34 (0.14) | 2.75(0.12) 4.76 (0.10) | 1.17 (0.08) 2.58 (0.09) | 78.98 (0.10)  78.95 (0.11)
bin=0.25 | 5.34 (0.16) 8.69 (0.11) | 3.65 (0.11) 5.51 (0.06) | 1.69 (0.09) 3.18 (0.08) | 78.91 (0.12)  79.11 (0.10)
bin=0.1 6.51 (0.15)  9.25 (0.08) | 4.34 (0.10) 5.76 (0.04) | 2.17 (0.10) 3.49 (0.07) | 78.80 (0.12)  79.18 (0.09)
Continuous_wL1 6.50 (0.22) 9.38 (0.08) | 4.18 (0.14) 5.82 (0.03) | 2.31 (0.11) 3.56 (0.07) | 78.19 (0.15) 79.01 (0.11)
Zhao_2012 bin=0.5 0.83 (0.08) 2.84 (0.16) | 0.67 (0.07) 1.92 (0.12) | 0.16 (0.03) 0.92 (0.07) | 79.83 (0.04) 79.52 (0.07)
bin=0.25 | 0.63 (0.06) 1.19 (0.09) | 0.60 (0.06) 1.06 (0.08) | 0.03 (0.01) 0.13 (0.03) | 79.95 (0.01) 79.91 (0.03)
bin=0.1 0.20 (0.04)  0.32 (0.05) | 0.20 (0.04) 0.32 (0.05) | 0.00 (0.00) 0.00 (0.00) | 79.95 (0.01) 79.95 (0.02)
SIE-GLM bin=0.5 2.00 (0.13) 5.12(0.17) | 1.63 (0.11) 3.67 (0.11) | 0.38 (0.05) 1.45(0.09) | 79.69 (0.06) 79.20 (0.11)
bin=0.25 1.81 (0.11)  4.63 (0.15) | 1.61 (0.10) 3.51 (0.10) | 0.20 (0.04) 1.12 (0.09) | 79.68 (0.06)  79.39 (0.08)
bin=0.1 0.82 (0.08) 2.50 (0.13) | 0.80 (0.08) 2.27 (0.11) | 0.02 (0.01) 0.22 (0.04) | 79.94 (0.02) 79.68 (0.10)
Raj_2005 parent=3 | 9.68 (0.04) 9.97 (0.01) | 5.85(0.03) 5.99 (0.00) | 3.83 (0.04) 3.98 (0.01) | 60.15 (0.08) 63.78 (0.20)
true 10 6 4 80

The algorithm primarily focuses on backtracking to deter-

mine ¢, aiming to attain the highest likelihood value among
=(¢)
all ¢’s for the corresponding estimators {3; }icy. Table VI

presents simulation results on Network-1 employing data-
driven ¢E for estimation. It’s evident that our methods,
Continuous_L1 and Continuous_wL1, consistently outper-
form other methods, even without precise knowledge of the
true time-lag ¢.

2) Selection of g( - ): We define ¢(-) as bounded functions,
e.g.,

gx) =log(l+xzAc), or g(x)=xAc, (61)

with a constant ¢ € (0, c0). For practical applications, we rec-
ommend the data-driven selection of ¢ using:

c = the 90th percentile of

{ max (N((t = 0.1/} - j € V.

(62)
te[0,T

This approach ensures that the covariates {x;(t)};ecv:te(o,T]

closely reflect the empirical rates, maintaining numerical sta-

bility without increasing computational costs.

In practical demonstrations, we’ve included a simulation
scenario in Table VII using the unbounded function g(z) =
log(1 + x) for both generating synthetic data and estimating
model parameters. These results demonstrate that even with
an unbounded g, the proposed network modeling and recovery
method remains effective.

Additionally, a simulation scenario has been added where
both ¢ and g(-) are misspecified; the results are presented
in Table VIII. These outcomes demonstrate that our proposed
methods, Continuous_L1 and Continuous_wL1, consistently
outperform other approaches, showcasing a certain level of
robustness against misspecified ¢ and g(-).

B. Explicit Procedure for Implementing BIC Criterion in
Simulation

In Method (i) of the simulation, we determine the tuning
parameter 7 (or nT) by minimizing the BIC function:

~
= ~

BIC(8;) = 2L 1(B;) + df(B;) - log(T)/T.

Here, Ei,TQ is defined in (48), and df(8,)
Zjev;j#I(ﬁm # 0) represents the count of non-zero

elements in ,@Z Notably, BIC(B

) is viewed as a function
=(n)
Bi
We identify the minimizing value n of BIC(83,) by exploiting
the set of grid points {Nmaxh® : k = 0,1,...,12}, where
n)

~

i

of 7, given that ,@Z depends on 7, denoted as B, =

Mmax = sup{n : df(8; ) > 0}, and h € (0,1) represents
a constant. Specifically, we employ h = 0.7 across all our
numerical experiments.

C. Incorporating DAG Constraint

As previously mentioned in Section VI-A, our Network-1 is
a directed acyclic graph (DAG) intended to depict the informa-
tion flow transferred among neurons. From a causal inference
standpoint, this DAG configuration naturally represents a
Granger causal graph [49], and learning this DAG plays a vital
role in causal recovery. Motivated by this aspect, we further
develop a DAG-informed network learning method by adding
a DAG structural constraint into our penalized M -estimation
scheme (52). Let B = (B3;.:)vxv € RV*Y be the weighted
adjacency matrix, and let By = (Bo.1,-..,B0.v) € RY be
the vector of baseline parameters. A DAG B is recovered by
solving the constrained minimization problem:

min

B,B,) = Lr(B, B)},
(B, By) argBeRVX‘/;,BOeRV{ 1(B, By) + Pr(B)}
subject to B representing a DAG,

where L1 (B, 3,) Zievﬁi,T@i) is the loss func-
tion, and Pr(B) = > ey ey} Wii T B is the
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TABLE VII
(SIMULATION STUDY: Network-1 WITH UNBOUNDED g(-)) THE CONNECTION STRENGTH IS 8 = 0.5. WE USE g(z) = log(1 + z) IN BOTH
SYNTHETIC DATA GENERATION AND PARAMETER ESTIMATION. RESULTS ARE AVERAGED OVER 100 REPLICATIONS,

WITH STANDARD ERRORS DENOTED IN PARENTHESES

Correct_All Detected_A Detected_B Correct_NC
time length T = 500 1000 500 1000 500 1000 500 1000
Discrete_L1 bin=0.5 2.39 (0.15) 5.69 (0.16) | 1.81 (0.12) 3.88 (0.11) | 0.57 (0.07) 1.81 (0.08) | 79.48 (0.08) 78.94 (0.11)
bin=0.25 | 3.63 (0.16) 7.46 (0.14) | 2.69 (0.11) 4.88 (0.09) | 0.94 (0.08) 2.58 (0.09) | 79.18 (0.10) 78.48 (0.14)
bin=0.1 4.63 (0.17) 8.40 (0.12) | 3.32(0.11) 5.37 (0.07) | 1.31(0.09) 3.03 (0.08) | 78.91 (0.14)  78.47 (0.13)
Continuous_L1 6.56 (0.14) 9.44 (0.07) | 4.24 (0.09) 5.80 (0.04) | 2.31 (0.09) 3.65 (0.05) | 76.58 (0.21)  76.48 (0.21)
Discrete_wL1 bin=0.5 392 (0.15) 7.34 (0.14) | 2.75(0.12) 4.76 (0.10) | 1.17 (0.08) 2.58 (0.09) | 78.98 (0.10)  78.95 (0.11)
bin=0.25 | 5.34 (0.16) 8.69 (0.11) | 3.65 (0.11) 5.51 (0.06) | 1.69 (0.09) 3.18 (0.08) | 78.91 (0.12)  79.11 (0.10)
bin=0.1 6.51 (0.15)  9.25 (0.08) | 4.34 (0.10) 5.76 (0.04) | 2.17 (0.10) 3.49 (0.07) | 78.80 (0.12)  79.18 (0.09)
Continuous_wL1 744 (0.14)  9.52 (0.06) | 4.80 (0.09) 5.90 (0.03) | 2.64 (0.08) 3.62 (0.06) | 78.67 (0.11)  79.03 (0.10)
Zhao_2012 bin=0.5 0.83 (0.08) 2.84 (0.16) | 0.67 (0.07) 1.92 (0.12) | 0.16 (0.03) 0.92 (0.07) | 79.83 (0.04) 79.52 (0.07)
bin=0.25 | 0.63 (0.06) 1.19 (0.09) | 0.60 (0.06) 1.06 (0.08) | 0.03 (0.01) 0.13 (0.03) | 79.95 (0.01) 79.91 (0.03)
bin=0.1 0.20 (0.04)  0.32 (0.05) | 0.20 (0.04) 0.32 (0.05) | 0.00 (0.00) 0.00 (0.00) | 79.95 (0.01) 79.95 (0.02)
SIE-GLM bin=0.5 2.00 (0.13) 5.12(0.17) | 1.63 (0.11)  3.67 (0.11) | 0.38 (0.05) 1.45(0.09) | 79.69 (0.06) 79.20 (0.11)
bin=0.25 1.81 (0.11)  4.63 (0.15) | 1.61 (0.10) 3.51 (0.10) | 0.20 (0.04) 1.12 (0.09) | 79.68 (0.06)  79.39 (0.08)
bin=0.1 0.82 (0.08) 2.50 (0.13) | 0.80 (0.08) 2.27 (0.11) | 0.02 (0.01) 0.22 (0.04) | 79.94 (0.02) 79.68 (0.10)
Raj_2005 parent=3 | 9.68 (0.04) 9.97 (0.01) | 5.85(0.03) 5.99 (0.00) | 3.83 (0.04) 3.98 (0.01) | 60.15 (0.08) 63.78 (0.20)
true 10 6 4 80
TABLE VIII

(SIMULATION STUDY: Network-1 WITH MISSPECIFIED ¢ AND g(-))THE CONNECTION STRENGTH IS 8 = 0.5. IN THE TRUE MODEL, THE TIME-LAG
IS¢ = 1, AND THE SHAPE-FUNCTION IS g(x) = log(1 4+ x A 10). IN THE ESTIMATION PROCESS, A MISSPECIFIED ¢)q = 0.5 IS USED ALONGSIDE
ga(x) = & A ¢, INCORPORATING THE DATA-DRIVEN ¢ FROM (62). RESULTS ARE AVERAGED OVER 100 REPLICATIONS, WITH STANDARD ERRORS
DENOTED IN PARENTHESES

Correct_All Detected_A Detected_B Correct_NC
time length T = 500 1000 500 1000 500 1000 500 1000
Discrete_L1 bin=0.5 2.12 (0.13)  4.68 (0.17) | 1.67 (0.11)  3.40 (0.12) | 0.45(0.06) 1.28 (0.09) | 79.19 (0.11)  79.59 (0.07)
bin=0.25 | 2.00 (0.12) 4.73 (0.16) | 1.57 (0.10) 3.40 (0.11) | 0.44 (0.05) 1.33 (0.09) | 79.36 (0.09) 79.67 (0.05)
bin=0.1 2.08 (0.12) 497 (0.17) | 1.60 (0.10)  3.54 (0.12) | 0.48 (0.05) 1.43(0.09) | 79.25 (0.10)  79.63 (0.06)
Continuous_L1 4.30 (0.15)  6.75(0.17) | 2.99 (0.11) 4.22 (0.12) | 1.32 (0.09) 2.52 (0.09) | 76.90 (0.21)  75.56 (0.21)
Discrete_wL1 bin=0.5 343 (0.15) 6.47 (0.15) | 2.44 (0.11) 4.28 (0.11) | 0.99 (0.08) 2.19 (0.09) | 78.98 (0.10)  79.19 (0.09)
bin=0.25 | 3.28 (0.16) 6.40 (0.15) | 2.24 (0.12) 4.23 (0.11) | 1.04 (0.08) 2.17 (0.10) | 79.09 (0.10)  79.06 (0.09)
bin=0.1 3.37 (0.15) 6.43 (0.16) | 2.29 (0.11) 4.21 (0.10) | 1.08 (0.08) 2.22 (0.10) | 79.23 (0.08)  78.93 (0.11)
Continuous_wL1 3.37 (0.16) 6.37 (0.16) | 2.20 (0.12) 4.16 (0.11) | 1.17 (0.07)  2.21 (0.09) | 79.06 (0.09)  78.91 (0.11)
Zhao_2012 bin=0.5 1.50 (0.12)  3.99 (0.18) | 1.12 (0.10) 2.73 (0.13) | 0.38 (0.05) 1.26 (0.09) | 79.28 (0.09)  79.70 (0.06)
bin=0.25 | 0.66 (0.07) 1.35(0.09) | 0.61 (0.07) 1.11 (0.08) | 0.05 (0.02) 0.24 (0.04) | 79.92 (0.03) 79.94 (0.02)
bin=0.1 0.23 (0.04) 0.27 (0.04) | 0.23 (0.04) 0.27 (0.04) | 0.00 (0.00) 0.00 (0.00) | 79.95 (0.02) 79.92 (0.03)
SIE-GLM bin=0.5 1.89 (0.13)  4.47 (0.18) | 1.51 (0.11) 3.25(0.13) | 0.38 (0.05) 1.22 (0.09) | 79.55 (0.07)  79.78 (0.04)
bin=0.25 1.22 (0.10)  3.22 (0.14) | 1.09 (0.09) 2.54 (0.11) | 0.13 (0.03) 0.68 (0.07) | 79.75 (0.06)  79.84 (0.04)
bin=0.1 0.53 (0.06) 1.49 (0.09) | 0.53 (0.06) 1.38 (0.09) | 0.00 (0.00) 0.11 (0.03) | 79.84 (0.03) 79.89 (0.03)
Raj_2005 parent=3 | 8.39 (0.11) 9.68 (0.05) | 5.20 (0.07) 5.84 (0.03) | 3.19 (0.07) 3.84 (0.04) | 64.48 (0.21) 59.41 (0.15)
true 10 6 80

TABLE IX
(SIMULATION STUDY: Network-1 WITH COMPARISONS TO
DAG-CONSTRAINED METHOD)THE TIME LENGTH Is T = 1000. THE
CONNECTION STRENGTH IS 0.5. FOR ALL METHODS, PARAMETER
ESTIMATION INVOLVES g(z) = log(1 + x A ¢), WITH DATA-DRIVEN ¢
FROM (62). RESULTS ARE AVERAGED OVER 100 REPLICATIONS, WITH

weighted-L; penalty. The above optimization problem can be
effectively solved by using the method in [50]. Table IX shows
some preliminary simulation results for Network-1, compar-
ing the DAG-constrained method with the non-constrained
continuous-modeling Method (i). For both methods, we adopt
two scenarios for the penalty functions: the L;-penalty and

weighted-L; penalty. Under each setting of penalty func- STANDARD ERRORS DENOTED IN PARENTHESES

tion, the DAG-constrained method achieves better overall Correct_All | Detected_A | Detected_B | Correct_NC
. . Continuous_L1 9.49 (0.06) | 5.81 (0.04) | 3.68 (0.05) | 76.47 (021
performance than the non-constrained method. This indicates Continuous_L1+DAG 0.56 20‘07; 5ol 50'03; 365 20_06; 7901 20.12;
that adding the DAG constraint can effectively enhance the Continuous_wL1 9.53 (0.06) | 5.90(0.03) | 3.64 (0.05) [ 79.03 (0.10)
. Continuous_wL1+DAG | 9.66 (0.05) | 5.91 (0.02) | 3.75 (0.05) | 79.02 (0.10)

network recovery accuracy if it is known that the true network frue 10 3 3 30

is a DAG.

APPENDIX B

PROOFS OF MAIN RESULTS the event A \ B denotes A N B. For an event A, we write

o(F,A) = o(F,1(A)). Let a Vb = max(a,b) and a A b =
min(a,b). Let C = 0 denote a positive definite matrix C.
For a vector b = (by,...,bq)", ||bllx Z;l:l |b;|, and

6]l = [Ibll2 = (0, 62)1/2.
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A. Notations in the Proof

For an event A in the sample space (2, the event A
denotes the complement of A. For two events A and B,
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B. Conditions

The conditions aren’t the weakest possible but are conducive
to the derivations.
Al. The number of nodes V' > 2 is a fixed integer. In the mul-
tivariate point process, event time points {7} }icv e>1
satisfy 0 < Tj 1 <Tj o < --- foreachi c V.
The multivariate counting process satisfies
lima o A™ 1P( (t+ A = NOH+1 | FH) =
lima o AT'P(N; (¢ + A) # Ny(t) | F) ass. for every
1€V and t > 0.
The multivariate counting process N (¢) satisfies the OM
condition as defined in Definition 1.
There exists a random variable Z > 0 with E(Z) < oo,
such that for any constant A € (0, ¢p) where ¢ € (0, 1),
and any t > 0, P(N(t+ A) # N(t) | #)/A < Z as..
In (16), the shape-function g(-) : [0, 00) — [0, o0) is con-
tinuous, non-negative, monotonically increasing, bounded
above, with g(0) = 0, and sup,¢jg o) 9(z) < Co for
some constant Cy € (0, 00).
AG6. For all ¢ € V, the true self-effect parameter
AT7. The true edge set £* # @.
AS8. The edge set £ in (13) satisfies £ # @.

Condition A1l pertains to the basic definition of a multi-
variate point process. Condition A2 aligns with the regular
point process as defined in [30] and is explicitly discussed
in our Remark 1. Condition A3 is explicitly presented in
our Definition 1. Condition A4 resembles conditions (2)—(3)
n [30], ensuring the applicability of the dominated conver-
gence theorem. Condition A5 guarantees the boundedness
property of the CIFs {\;(t | -%:)}icy in our model (12).
Condition A6 excludes self-effects in model (12), preventing
the presence of a ‘self-loop’ in the corresponding network
structure G. Conditions A7 and A8 are imposed to ensure that
our multivariate point process does not reduce to the trivial
case of a homogeneous Poisson process.

A2.

A3.

Ad.

A5,

*
i O

C. Proof of the Statement in Remark 1

We aim to prove the statement: any multivariate regular
point process also has identical limits (9) and (10).

From the definition of a multivariate regular point process
N (t), we have: lima o AT'P(N;(t+A) = N;(8)+1 | F) =
lima o AT'P(N, (t+A)7éN()|</f), ,foranyi eV
and t > 0. Since {N;(t + A) = ()+1}C{N(t+A)7é

N;(t)}, we further get:

lim A_IP({NZ-(t +A) £ Ni(t)}

\{Ni(t+A) = +1}]f/"t) =0, as. (63)
Thus,
0<lmA™ [p(N(t +A) £ N() | F)
—P(U{NH—A) Ni(t) +1}‘</t>}
i€V
<Z€v£ul%A P({Ni(t + A) # Ni(t)}
\{Ni(t + A) = Ni(t) + 1} ’ 9}) —0, as.,
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where the last equality is from (63). Hence, we obtain:

limajo A7TP(Uien{Ni(t + A) = Ni(t) + 1} | F) =
limajo AT'P(N(t + A) # N(t) | Z1),a.s.. This completes
the proof. ]
D. Proof of Lemma 1

Define the events A; o = {N;(t + A) = N;(¢) + 1}. Then:

(U{Nt+A) Ni(t)+ 1} | 72) = P( Aia | 7).
%

By the inclusion-exclusion formula, we have that

P( U A A ‘ 9})

z A | f/t
i=1
\4
DG DI (N O I ‘%)
k=2 {i1,.., i }CV ISP Ty
(64)

For mutually distinct {i1,...,
condition (11) implies:

P( N 4a|?) <PAnandnal #)

j€{in, . yin}

ipy with & > 2, the OM

=A%\, (t] F) Ny (L] F) +0(1)},  as. (65)
as A | 0. Plugging (65) into (64), we obtain:
1 1
Ap(g Aia| 7)) = 3 ; P(Aia | 71)+O(A)
v
= Z)\Z(t | ﬁt) + 0(1), a.s.
i=1
as A | 0. It follows that A“™(¢ | %) =
lima o A P(UievAia | F) = SV Nt | ). This
completes the proof. ]

E. Proof of Lemma 4

Let’s first establish part (i). Utilizing [37] (Theorem 2.4.7, p.
84) and given that \;(t | .%;) in (12) is finite, our event time
points {Tj¢}jev,e>1 are totally inaccessible stopping times.
This, combmed with [37] (Proposition 2.4.6, p. 83), indicates
that P(T; , = T},) = 0, for any distinct nodes ¢,j € V, and
any integers k > 1 and r > 1. Consequently:

P(Té €{Tix}i>1, Ty € {Tj 1} e>1)

< P(Uis1 Ui {Tip =T }) = 0 (66)
Now, to prove part (ii), we use a similar reasoning as in (66).
For any ¢ € V, we have:
P(T; € {Tintiz1, To € {Tjs + di>1)
< P(Ups1 Upsi{Ti =Tjr + ¢}) = 0
for any 7 € V, and thus

P(Te e {Tiryus1, To € {Tjp + P}iev, k>1)
< ZP(Tz E{Tixti>1, To € {Tji + te>1) = 0.
jev
The proof is completed. ]

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 16,2024 at 19:30:33 UTC from IEEE Xplore. Restrictions apply.
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FE. Proof of Theorem 1

Before proving Theorem 1, we first establish Lemmas B.1
and B.2 based on Definition 4.

Definition 4 (E(X || #,A)): Let (Q,%,P) represent a
probability space. Consider .% C ¢ as a sub o-field, and
A € ¢ as an event where A ¢ % and P(A | .%) > 0 almost
surely. For any random variable X in (Q2,%,P), define

EX || .#,A) =E{XI(4) | #}/P(A| Z). (67)
(Remark: when % = {Q, @}, the expression E(X || %, A)
in (67) simplifies to E(X | A) = E{XI(A)}/P(A); when
X is independent of both .% and A, the term E(X || .#, A)
in (67) simplifies to E(X).)

Lemma B.1 (Conditional Probability P(N(t) = N(s) |

Fs)): Assume conditions Al, A2, A3, A4, and A5 in
Appendix B. Then for t > s > 0,

t
PV = NG | 5) = e { - [ N0 5 ).
‘ (68)

with

AU F) = BE{NY(t | Fy) || Fs, N(t) = N(s)}, (69)
where "™ (¢ | .%;) denotes the total CIF in (9) and (10).
(Remark: A*"™(¢; %) in (69) is inspired by the definition
An)(t, Bs) in Lemma 1 of [30], and (68) is motivated by
Corollary 1 in [30].)

Proof: For t > s > 0 and A > 0, note that
[N(t+A) = N(s)} = {N((s,¢ + A]) = 0}

CA{N((s,t]) =0} ={N(t) = N(s)},

which implies

P(N(t)=N(s) | Zs) —P(N(t+A) = N(s) | F)

=P(N(t+A)# N(t), N(t) = N(s) | Z).

Combining this with the fact that .%; C .%;, and using (10),
(67), (69), we obtain

OP(N(t) = N(s)| Z)/0t
= ~lim AT'E{P(N(t+A) # N(t) | F)

x I(N(t) = N(s)) | 7.}
= lim A™'P(N(t +4) # N(1) | 7)

< I(N(t) = N(s)) | ﬁ‘} (70)

_ _)\sum(t;gzs) P(N(t) = N(S) | ﬁs)7

where the interchange of limit and expectation in (70) follows
from the dominated convergence theorem and condition A4.
Solving the resulting differential equation completes the proof
of (68). ]
Lemma B.2 (E{\;(S | Fs) | Zs, N(S) = N(s)}):
Assume conditions A1, A2, A3, A4, and A5 in Appendix B.
Define 7, = Ujev{t € (s,s + ¢] : N;({t — ¢}) =1}, and

Io {min(’];), if T, # @,

71
0, if 7, =@, D

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

for a fixed time point s € [0, c0). Then, for any stopping time
S satistfying s < § < T, we have

E{\(S | Fs) || Zs,N(S) = N(s)} = \i(s | F),

for all © € V.
Proof: For S = s, (72) obviously holds. It suffices to
prove (72) for s < S < T?. First, we establish:
for s < S < T2, N(S)= N(s) implies
Ujey{t € (S,S} : NJ({t}) = 1} =y
and Ujey {t € (5,5]: N;({t — ¢}) =1} = @.
Let By = UjEV{t S (S,S] : NJ({t}) = 1} and By =
Ujev{t € (s,5] : N;j({t—¢}) = 1}. Note that N (S) = N (s)
directly implies B1 = &. To prove (73), it suffices to show
By = @, which is divided into cases whether 7; # @ or not.
If 7, # o, then (71) implies s < min(7;), indicating
Ujep{t € (s,min(7)) : N;({t — ¢}) = 1} = @. This,
along with s < S < min(7;), concludes By = @.
If 7, = @, we obtain:

By € {Ujev {t € (s,s + ] : N;({t — ¢}) = 1}}
U{Ujev {t € ((s+¢) A S, 8] N;({t — o})=1}}
C 7, U{B1 + ¢}
= Q’
where By + ¢ ={t+¢:t € By }.

Combining both cases confirms (73).

Next, we prove Lemma B.2. If N(S) = N(s), then (73)
indicates that the CIFs {\;(t | .%#;)}icy are continuous in
(s, S]. For piecewise-constant functions {\;(t | %)}y, if
N(S) = N(s), then \;(S | Fg) = A\i(s | %5), which implies:
where A denotes the event {IN(S) = N (s)}. Combining this
with (67), we obtain:

(72)

(73)

B(A(S | F) | £, A} = ST AR L
_E{i(s | F) - 1(A) | Z}
P(A| Z)
= Ai(s | Fs).

This completes the proof. ]

Now, we prove Theorem 1. We start by demonstrating part
(i). As per the definition in (22), T, < T, 741 holds for any
integer ¢ > 1. It suffices to prove TgH <Trp. It 7, = g,
then 7T = oo in (27), which completes the proof. If 7, # @,
then any ¢, € 7, in (26) indicates that t, = T; ;, + ¢ for some
integers ¢ € V and k > 1, and Tg <ty =Tir+¢< T( + ¢.
Also, ty = T + ¢ € {Tl,Tg,...}. This, combined with
T, < Tg+1, implies Tg+1 < ty. Hence, Tg+1 < min{ty : ty €
7;} = min(7,) =T

Before proving parts (ii) and (iii), let’s prepare (a), (b), (c),
and (d) below.

(@) Since Fy, = a{(TO,IO),...,(Tvg,Ig)}, it suffices to
demonstrate that (28)—(30) hold conditional on each realization

{(To. o), (0 1)} = {(osio). .., (i)} }

—ec Ty, (74)

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 16,2024 at 19:30:33 UTC from IEEE Xplore. Restrictions apply.
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Note that the realization e in (74) is known from the history
up to time fg. Following the notation .%; in (5), we also have
e € 7;,, and thus for a random variable X : 2 — R, which is
measurable with respect to either 7, or .F;,, denote by X (e)
the value of X at the realization e. For example, we can write
Ty(e) = t; and Ip(e) = iy.

(b) Comparing the random variables 7, in (27) and T°
in (71) (with s = tg) we observe that they have the same
value t; at the realization e, i.e.,

f; = T7 (o) = T3 (o),

(¢) Also, we verify the following equation for ¢ € (i, t;):

P(N(t) = N(io) | #,)(e)
= exp{=A""(te | 7, ) (o) - (t — te)}-
Using (68) (with s = fg) yields:
P(N(t) = N(le) | #,)

t
- exp{ — / AU (s Ty ) du}, for t > t,. (76)
te

and £, < t}.

(75)

Since both sides of (76) are ﬁg{ -measurable random variables,
it follows that:

P(N(t) = N(is) | #,)(e)

t
= exp{ —/ AU (u; Ty
11

4

,)(e) du}7 for t > &,. (77)

For t € (f,t}), define a random variable S such that S(e) = ¢
and %, <S<T0 (e.g., if T} < oo, thenletSznfg—i—(l—

)Ty, with 1 = (te t)/(ts —t0) € (0,1); if T} = oo, then
let § — to - [(TP < o0) +1t- LT} = oo), where S(e) =t
due to Ty (e) =17, and fy < S < T¢ holds due to te < TP).
Applying Lemma B.2 (with s = ¢;), we have:

E{Xi(S | Fs) | Fy,, N(S) = N(t)}
= \i(fe | Fy,), forallieV. (78)

Similar to (69), for i € V and t > s > 0, define:
Ai(t; Fs) = E{\(t | F) || s, N(t) = N(s)}. (79)

For t € (fy,t}), using the definition (79) (with s = #;), the
fact S(e) = ¢, and (78), we obtain:

Ai(t; Fy,)(e)

=E{N(t].7) || %NN N(to)} ()

=E{X(S | Fs) | Fi, N(t) = N(fe) } (o)

= N\i(fo | Fy,)(e) for all i € V. (80)
Summing over ¢ € V on both sides of (80) gives us:

Nt Ty, ) (0) = N (Ee | T, ) (o). (81)

By (81), we simplify (77) to be:
P(N(t) = N(t) | #;,)(e)

- exp{ - /; AU (y | Z,)(o) du}

1

= exp{—A\"""(f, | Fi,)(e) - (t - i)},
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which proves (75).
(d) We demonstrate the following statement:
for t € (T, T)),
{N(t) = N(T})} is equivalent to {Ty; >t}. (82)

The sufficiency part’s proof resembles that of (73). For the
necessity part, if N(t) # N (T;), then there exists T €
(Tg, t] for some integers i € V and k > 1. Also, T and
T/+1 are two consecutive discontinuity points in the set (22),
implying that U;cy Uk>1 {Thk - T, < Tir < T£+1} = .
Comblmng this with the fact that T} € (Tp, t], we deduce
Tg<Tg+1<Tk<t thusTg+1<t
We’ll now proceed to prove parts (ii) and (iii) of Theorem 1.
Proof of Part (ii): For T} < oo, using the similar proof
as (82), we establish that NV ((TZ,T@ )) = 0 is equivalent to
Tyy1 > Ty Also, the result Ty € (Ty, Ty] in part (i) implies
that Tg+1 > T} is equivalent to T, r+1 = T}. Consequently,
P(Tr = T7 | F) = P(Tins = T7 | )
=P(N((Ty, T})) =0 | Fy,). (83)

Evaluating both sides of (83) given the realization e and using
t; =T (e), we derive:

P(Teﬂ =17 | ]::;12)(0)
~ L P(N () = N(E) | 7,)(0)
= Pﬁn exp{=A""(ly | Fy,)(0) - (t —10)} (84)

= exp { = ATy | Fy,) - (T7 = To) } (o),

where (84) is derived from (75) with ¢t € (tbt}‘). This
proves (28). By using ty = Ty(e), (82), and (75), for t €
(Te, T ), we have:

Pty O6)

_ —OP(N(t) = N(i) | F,)(s)
ot
= NUN(Ty | Fi,)(0) - exp{=A" (T | F,) - (6= To) Ho),

(85)

which verifies (29). For T,/ = oo, following the same proof as
that of (85), we have that (Ty41 — 1) | F, ~ Exp(Au (T} |
Fi,))-

Proof of part (iii): For T} < oo, if Ty = T, then (26)
and (27) imply that 7, # @ and Tg.i,_l =T, € 7;. In other
words, Tg.i,_l = T; 1 + ¢ for some integers ¢ € V and k£ >
1. This, combined with (23), leads to Iy11 = 0, and thus
P(Ig_;,_l =1 ‘ CT(]'-T ,Tg+1)) =0fori e V. IfTZ—O—l € (Tg,Te )
then fori € YV and t € (TbT[ ), using iy = Tg( ), Fy, C© Fu,
(8), (79), (80), and (75), we obtain:

8P(Tz+1 <t lpp1=1| ‘FT@)(.)

ot
_hmA 'E{P(N;(t+ A) # Ni(t) | F)
I(N(t) = N(fe)) | F,}(o)

{hmA 'P(Ni(t+ A) # Ni(t) | F1)
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XI(N() = N(@)) | 7, }(o) (86)
= Xi(To | Fp,)(®) - exp{=N""(T; | Fy,) - (t — Ty)}e),

where the interchange of limit and expectation in (86) follows
from the dominated convergence theorem and condition A4.
This implies:

OP(Tpyr <t, Ipp1 =i | Fy,)

= N(T¢ | 5%) exp{=A"N(Ty | Fr,) - (t = To)}. (87)
Let t € (4,t}), where t; = T, (e) is defined in preparation
(b). Similarly to (74), define the realization
o=eN{Tp1 =1t}
{{(To,1o), -, (To, Io), Tes1 } = {(fo 50), - - -, (e, ic), 1} }
€ U(FTZ,T[_i_l).

Combining the fact Ty, 1 (o) = ¢, (87), and (85), for i € V,
we have:
P(Ity =i | o(Fp,, Tra1)) (o)
B P(Ippy =4, Top1 =t | Fiz,)(0)
P =t Fy)0)
N Fy)()
(T | Fr)(0)
This proves (30). For T = oo, followin% the same prvoof
as (88), we obtain: P(Ip11 = i | o(Fy,, Tet1)) = (T2 |

Fy)/Xm(Ty | Fy,). for i € V and Tyyy € (Iy,00). The
proof is completed. (]

(88)

G. Proofs of Lemmas 5-7, and Theorem 2

The proofs are divided into three parts as follows:

e Part 1 introduces Definition 5, which defines a class of
marked point processes, called the Exponential Marked
Point Process (EMPP). This generalizes the ‘marked
point process (T, I) for intensity discontinuities’ in Defi-
nition 2 and facilitates derivations. Lemmas B.3-B.5 will
present the probabilistic properties of the EMPP.

o Part 2 presents Definition 6, which introduces the concept
of t-truncated EMPP. Lemmas B.6—B.8 will present the
probabilistic properties of the t-truncated EMPP.

o Part 3 uses the results from Parts 1 and 2 to the ‘marked
point process (T, I) for intensity discontinuities’ to pro-
vide the proofs of Lemmas 5-7 and Theorem 2.

1) Part 1: EMPP and Its Probabilistic Properties:

Definition 5 (Exponential Marked Point Process (EMPP)

(T, I)): Let the node set V = {1,...,V}, and let the mark
set be VU {0}. Set Ty = 0, Iy = 0, and Fr, = {Q, 0}
Define {Fr, }s>0 as the filtration generated by a marked point
process (T, 1) = ({Te}exo, {Ie}e=0) € ([0,00), VU {0}),
where 0 < Ty < Tp < ---. We term (T, I) an Exponential
Marked Point Process (EMPP) if, for each integer ¢ > 0,
there exist Fr,-measurable random variables A, € [0, 0o] and
{Aie}iev € (0,00) such that the distributions of Tp1; and
I, satisfy the following conditions:
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(i) (Support of Tpi1) P(Ty < Tpy1 < Ty + Ag) = 1.
(ii) (Conditional distribution of Ty11) If Ay < oo, then T4 1
conditional on F7, has a mixed-type distribution with the

p-m.f.
P(Top1 =Tr+ D¢ | Fr,) = exp(—=A7" - Ay)  (89)
at Ty + Ay, and the p.d.f.
Sy )7, (@ | Fr,) =00 - exp{=A)"" - (z — T1)},
(90)

for = € (Ty, Ty + Ag), where A = SV N o If Ay =
oo, then (Ty41 — Ty) | Fr, ~ Exp(AJ™™).
(Conditional distribution of I,1) If Ay < oo, then Ip4q
has the conditional distribution: for 7 € V,

P(Ipy1 =1 o(Fr,, Tes1))
0, if Trp1 — Ty = Ay,

(iii)

= . ©n
)\i,é//\zum, if 0 < Tg+1 Ty < Ag.
If Ay = oo, then (91) reduces to P(Ij41 = i |
o(Fr,s Ter1)) = Nig/ N, for i € V and Ty €
(TE7OO).

Remark 6: The Exponential Marked Point Process (EMPP)
(T, I) in Definition 5 generalizes the class of ‘marked point
process (’f’,I ) for intensity discontinuities’ in Definition 2
which followu the distribution in Theorem 1,uacc0rding to
(T,I) = (T,1), Fr, = fn, Aip = )\i(T€ | fn) =
exp{ﬁo;i + Zjevﬁj,i J,‘J(Tg)}, Ag = TE* — Tg. To prove
Lemmas 5-7, we will first show probabilistic properties of
EMPP (T,I) which then apply to our (’f, I) for intensity
discontinuities.

For clarity, we introduce some notations similar to (31)
and (32). The duration 7, between consecutive time points
is defined as:

=Ty —Ty_1, £>1. (92)
The event counts M; ¢ at node ¢ € V are calculated as:
Mig=0, Myy=Y,_I(Ix=1i), (>1. (93

Lemma B.3 presents the conditional expectation and vari-
ance of 7 and I(I}, = i).

Lemma B.3 (Conditional Expectation and Variance Related
to an EMPP (T, I)): Consider an EMPP (T, I) as defined
in Definition 5. For integers k£ > 1 and ¢ € V, we have

V&I"{I(Ik = l) - >\1',,k—1 * Tk ‘ ka—l}
=E{I(Iy =) | Fr,_, } = Xix—1E(m | Fr,_,). (94)

Proof: For Aj_1 < oo, the conditional distribution of
Tk 1s given by (89) and (90), and the conditional distribution
of I(I;, = i) is given by (91). Direct calculations yield the
following equations (95)—(97):

ENik-17k | Fry)
= )\i,kq{AkqP(Tk =Ap_1 | Fro_y)

A1
+/ mf7k|ka_1(x|FTk71)dx}
0
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i k-1 —AgumA
= 7'um ' (1 —e Tkl kil)
AR
= B{I(Ir =4) | Fr,_, }, (95)
together with
E{)\i,kfl Tk I(Ik = Z) ‘ ‘7:Tk—1}
ARt e
= )\i,k—l/ )\;iml Ikal]-"Tk71 (‘T | ‘FTk—l)d:C
0 k—1
Aifml = (AR A A
(96)

and
2 2
E(/\ik 1% | Fro_y)
=X {Ai—le AT Ak

Ak71 sum
+ / 2 AU A dx}
0

)\ k 1 sum
_ zum {2 _ 2)\<um Alc 1 4 2) = A A 1}
COgm)?
CH)
Combining (96) and (97), we have:
E{N 78— 2N (I =4) | Fry_ ) =0. (98)

For A,_1 = oo, the conditional distributions of 7, and
I(Ix = i) are given in parts (ii) and (iii) of Definition 5. Using
this alongside similar calculations as in (95)-(98), we verify
that (95) and (98) hold for A,_; = oo as well. From (95)
and (98), we derive:

var{I(ly = i) — Xig—1- 7 | Fr_, }
= E{I(Ix = 1) | Fr,_, }-

Combining (95) and (99) completes the proof of (94). U

Lemma B.4 follows directly from Lemma B.3.

Lemma B.4 (Martingale Property for EMPP): In an
EMPP (T,I), for each i@ € V), the random process
{M;,— Eizl i k—1 - Tk Je>1 1S a martingale with respect to
{Frotes1

Proof: Using (94), for each integer k£ > 1, we have:

E{I(I; = i) —

99)

Xik—1-Tk | Fro_,} = 0. (100)

This completes the proof. ]

Lemma B.5 derives the variance of the martingale.

Lemma B.5 (Variance of the Martingale {M,;, —
S Aik_1-Tk}es1): Inan EMPP (T, I), for integers i € V
and ¢ > 1, we have var(M, , — Zf;:l Xik—1-Tk) = E(M,; ).

Proof: Using (100), for any indices r and k such that
1 <r <k, we get:

B{I(, = i) = X1 - 7} {T(Tk =) = Nig—1 - 7 }]
=E{I(I, =i) = Xiy—1 -7}

x E{I(Ix =) = Xig—1- 7 | Fro_, 1]
o (101)
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For any index ¢ > 1, applying (101), (94), and (99) yields:

B{(Me— Y heion))

This completes the proof. |

2) Part 2: t-Truncated EMPP and Its Probabilistic Prop-
erties: Next, we derive the probabilistic results of the EMPP
(T, I) when the point process T = {Tp, Ty, ...} reaches a
pre-specified time point ¢ € (0, 00). Definition 6 introduces
the notion of t¢-truncated EMPP.

Definition 6 (t-Truncated EMPP): Consider an EMPP
(T.I) = ({Te}e>0,{Le}ez0). Let t € (0,00) be a given
deterministic time point. Define the marked point process
(T8, 1%y = (T 450, {17} 150), where

W =T,nt, TP =L1T, <t). (102)

We call (T, 11" the t-truncated EMPP derived from (T, I?.

Lemma B.6 states that any double sequence (T[t],I [t)
defined in (102) is an EMPP.

Lemma B.6: Let (T,I) = ({Tg}[zo, {Ig}gzo) be an
EMPP defined in Definition 5 associated with {A; ¢}icy
and A, in (89)=(91). For t € (0,00), let (T, 1) be the
corresponding t-truncated EMPP as in Definition 6. Then the
probability distributions of TH and I M) meet the conditions
(1) and (ii) in Definition 5 associated with {X; ¢}y and Ay
(instead of Ay), where

Ag’t = A/ A (t — TKM),

and thus (T, 1") is an EMPP.

Proof: To prove Lemma B.6, it suffices to show that
for each integer ¢ > 0, (Te[ﬂp I El) follows the conditional
distribution in (89)—(91) with T} and A, replaced by T\ and
Ay . We proceed by cases of Tem

Case (i): Tl[t] <t — Ay. From (102) and (103), we observe
that T1") = T, and Ay, = A,. Also, as per (89) and (90),
we know that Ty < Tp+ Ay < t. Thus, (Te!v Iﬂl)
(Ty1 ANty Lo l(Tyorr < t)) = (Tog1, Io41), following
the conditional distribution in (89)—(91).

Case (ii): t— Ay < Te[t] < t. Using (102) and (103), we have
T/ = T, and Agy = t — T,. Employing (89) and (90),
we get

P((Teya At) =t | Fr,) = exp{=Xg"" - (t = To)},

(103)

and

f(Tg+1/\t)“FTl, ('r | ‘7:TZ)

= XU exp{—AMM . (z —T})}, for z € (Ty,t).
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This implies that Tf[ﬂl = Ty41 At follows the distribution
in (89) and (90) with Ty and A, replaced by T\ = T,
and Ay =t —Ty. Also, by checking (91), we have that
I Hl = Ip411(Ty41 < t) conditional on Tz[ Jll, follows the
distribution in (91).

Case (iii): 7)" = ¢. Considering (103), we know Az, = 0.
Then (Tfﬂl,lﬂl) = (t,0) follows the distribution in
(89)—(91) with T; and A, replaced by 7\ = ¢ and
Agy=0.

Summing up these cases completes the proof. O

Similar to (92) and (93), we employ notations TK[] and

M Z[t; for the ‘duration’ and ‘event counts’, respectively, of the

t-truncated EMPP (T[t], I [t]), denoted as follows:

nl=rfl -1, >1, a0
4
M =0, MT=N10=10), ¢>1. (105
k=1
We define M[’] = limy_, Mlt; Let Ly = Y 2 (T, < t).
From (102),
[ee] L,
M =31 = i) = S U = i) = Mg, (106)
k=1 k=1

which represents the total event counts of node ¢ in the time
interval [0,¢]. Lemma B.7 establishes an upper bound for
(ML),

Lemma B.7 (Upper Bound for E(M )) Let (T,I) be
an EMPP, and (T[t],I [t }) be the correspondmg t-truncated
EMPP from (T',I) as defined in Definition 6. Assume that
SUp; ey g0 iy < ¢ for a constant ¢ € (0,00). Then:

E(MY)

4,00

Proof: Lemma B.6 has verified that (T I") is an
EMPP. Applying Lemma B.4 to (T 1) yields that for
each integer £ > 1, E(Ml[t;) = B Mk -T,Lt]). Note
that MZ.[% and Zizl Aik—1 -T,Et] are monotonically increasing
in ¢. By the Monotone Convergence Theorem, we obtain:

< ct. (107)

E(M") (Z)\ pop T ) (108)
<cE 3 T[t] < ct.
()
This completes the proof. (]

Lemma B.8 (Upper Bound for var{d> 2, Xj_11 (I[ I =
1 Xk—1 A k-1 'Tk }) Let (T,I) be an EMPP,
and fﬁ T [f] be the corresponding ¢-truncated EMPP from
(T, I) as in Deﬁn1t1on 6. Assume that Sup;cy y>0 Ai,e < c for
a constant ¢ € (0, 00). Let {X,},>( be a sequence of random
variables such that X, > 0 is measurable with respect to Fr,

for each integer ¢ > 0, and SUpy>g Xy < ¢ a.s. for a constant
¢z € (0,00). Then:

E{iXk_lI(I,[f] :i)fixk_m,k - T,U} —0, (109)
k=1 k=1
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and

Var{ Zkal (1) =) - ZXkA Aik—1 - T;Lt]}
k=1 k=1
{3 xt 10l =i} <cdr.

k=1

(110)

Proof: An argument similar to (108) gives us:

E{ng_ll(I,[f] - }_ lim E{ZXk 11l —z)}

£— 00

- i (5 e )

k=1
o]

= E( ZXk-—l Aik—1 T;Et])7
k=1

which proves (109). Using a similar proof as Lemma B.5,
we have:

STPSTARTI SPARNY

k=1

_E{ZXk 1 kt —Z)}

Note that

hm ZXk 1I(I k =1)

(111)

ZXk 1I(71 k fz) a.s.

and

ZXk A1 T
< ZCCQTE]
k=1

=ccat < 00, a.s..

{—o00

1
lim ZXk*l )\zk‘ 1° Tk
1

It follows that

ZXk (T
ZXk (T

as ¢ — oo. Also, for each 1nteger ¢ > 1, we have

(- v
(S =)+ (X xn A’
k=1

k=1
< (ea MIL)? + (ceat)?.

14

)= > Xio1 Xig—1 - 7}
k=1

ZXk Akt T,
k=1

(112)

(113)

By (111), (112), (113), and the dominated convergence theo-
rem, we have:

E{(}iXk_l I(II[:] =) — iXk_l Aik—1- T;Lt])Q}

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 16,2024 at 19:30:33 UTC from IEEE Xplore. Restrictions apply.



GAO et al.: LEARNING NETWORK-STRUCTURED DEPENDENCE FROM NON-STATIONARY MULTIVARIATE POINT PROCESS DATA

—E{ZXk 11 kt fz)}

< c2E<M}fio> < cdt,

where the last inequality is from (107). Thus, (110) is
proved. (]

3) Part 3: Proofs of Lemmas 5-7 and Theorem 2: Remark 6
verifies that the marked point process (T',I) for intensity
discontinuities is an EMPP. Let (T[t],I Y be the ¢-truncated
EMPP from (T, IP as defined in Definition 6, i.e., for each
integer ¢ > 1, (7, 4 IH) (Ty A t, I, I(T, < t)). Recall
that M [t] defined in (105) represents the event counts corre-
sponding to (7", 119, and M = lim, o, M. Recall L,

defined in (36). Using (25), (32) and (106), N( ) has the
equivalent expressions:

L

Ni(t) = Mg, = > (I =
k=1

i) = M. (114)
Following (104), let Ty] = Tz[t] —Tl[tjl be the duration between
two consecutive time points T[t] , and T[t] It is easily verified
that this TZ[] is identical to that defined in (37). Using (33)
and (37), the integral fo (u | Z,)du has the following
equivalent expressions:

Li+1

/ i(u | Zy) du-Z)\Zlek le,l o

(115)

After clarifying the above facts, we will proceed to prove
Lemmas 5-7 and Theorem 2.
4) Proof of Lemma 5: Lemma 5 is directly obtained from

Lemmas B.3 and B.5. O
5) Proof of Lemma 6: Lemma 6 is directly derived from
Lemma B 4. O

6) Proof of Lemma 7: From (102), (105), and (115),
we have Y5 Xy (1 = i) = S0°, X o (I = ),
and ZLtJrl Xk 1 )\zk: 1 Tlgt] = Zl?;l Xk,1 )\Z'_’kfl . Tlgt].
Consequently, all the results in Lemma 7 could be directly
derived from Lemma B.8. (Il

7) Proof of Theorem 2: Recall N;(t) = M, , in (114)
and [y Ni(u | F,)du = ggw,k_l 7 in (115). For
each integer ¢ > 0, consider X, = x(Tg). This leads us to
[7w(u=) dN;(u) = Srt, Xpor I(Ix = i) and [ @(u) \i(u |
Fu)du = LtH Xk 1)\Zk 1 T,Lt]. Consequently, (40)
and (42) in Theorem 2 directly stem from (38) and (39),
respectively, in Lemma 7. Additionally, the finiteness of IN (t)
in (41) directly follows from (40). (Il

H. Proof of Non-Stationarity of N(t) in Section IV-B

Lemma B.9 (N (t) Is Not Strict-Sense Stationary): Under
conditions Al, A2, A3, A4, A5, and A8 in Appendix B,
there exists a node ig € V such that N;,(t) is not strict-sense
stationary. Hence, the multivariate counting process N (t) is
not strict-sense stationary.

Before proving Lemma B.9, we first present Lemma B.10.

5959

Lemma B.10 (Probabilistic Inequalities for \;(t | %) in
Our (12)): Assume conditions Al, A2, A3, A4, A5, and A8
in Appendix B. Let {A;(t | #:)}icy denote the CIFs defined
in (12). For any distinct ¢, j € V, there exist constants cg, ci,
o, ¢3 € (0,00) such that for any ¢t € (0, ¢), the following
assertions hold:

P(Ai(t | F1) = exp(Bo;i))

> exp(—cot), (116)
P(Xi(t | ) = exp{Bo. + By - 9(1/9)})
> c¢p-exp(—cat) - {1 —exp(—c3t)}. (117)

Proof: For any t € (0, ¢), equations (12), (16), and (17)
imply that {IN(¢) = 0} C {\(t | #) = exp(Bo,)} and
{N;(t) = 1 and N(t) = 0forall k € V\ {j}} € {\i(t |

Ft) = exp(Bo;i + B,i - 9(1/8))}. To verify (116) and (117),
it suffices to show that for any ¢ € (0, ¢):

P(N(t) =0) = exp(—cot), (118)
P(N;(t) =1, and Ni(t) =0 for all k € V' \ {j})
> ¢1-exp(—cat) - {1 —exp(—cst)}. (119)

Recall that in Theorem 1, we have the following facts:
Ty =0, F, = Fo = {22} Ty = @ and Tj = 0.
By Theorem 1(ii) and the fact that 7j = oo, we have that
T, is a continuous random variable with the p-d.f.:

fr, () = A77(0) - exp{=A""(0) - 2}, @ € (0,

where AS™(0) = A0 | ) = YL, M(0) =
Zyzl exp(Bo;s). On the other hand, it is easy to verify
from (22) that the first discontinuity point Tl = min{Tj, :
j €V, £ > 1} is exactly the first event time point, i.e.,

o), (120)

N(t)=0 ifandonlyif 0<t<T;. 121)

Combining (120) and (121), we have P(N(t) = 0) =
exp{—As"m( 02/ t}. This proves (118) with a constant ¢y =

AT(0) = 35— exp(fBosi)-
Similarly, parts (ii) and (iii) of Theorem 3 yield that:

P(N;(t) =1, and Ny (t) =0 for all k € V' \ {;j})

_ ! sum expd — \sum A )‘j(o)
= [ et -2} 2

t
< i 7/ Ay | )
x exp{—A""(x | F,) - (u— :E)}du] dz
{)\1 {exp(—As3-t) —exp(—Az- t)}

if )\2 7é )‘37
if Ay = As.,

A2—A3

(122)
)\1 t- exp( >\2 t)a

where Ay = X;(0) = exp(fo; ), A2 = A"(0) =
Zi“;l exp(Bo;i), and X" (z | %) reduces to A3 =
> iz1exp{Bo;i + Bji g(1/9)}.
For Ay # As, if Ao — A3 = & > 0, then (122) gives that:
P(N;(t) =1, and Ni(t) =0 for all k € V\ {j})
=X/ exp(—As-t){1 —exp(—d¢)}.
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Thus, (119) holds with ¢; = )\1/5, ¢y = A3, and c3 = 4.
Due to the symmetry between Ay and A3 in (122), the similar
argument holds when Ay — A3 < 0.

For Ay = A3, (122) yields that:

P(N;(t) =1, and Ny(t) =0 for all k € V\ {j})
= A1 -t-exp(=Az2-t) > Ap -exp(=Ag - t) - {1 —exp(—t)}.

Hence, (119) holds with ¢; = A1, ¢ = A9, and c¢3 = 1. This
completes the proof. O

Next, we prove Lemma B.9 using proof by contradiction.
For any (jo,i0) € & with §j,;, # 0, if {N;(¢)}i>0 is
stationary, then property (P1) implies that the CIF \; (¢ | %)
has the same distribution for all ¢ € (0, ¢). Thus, for the two
possible values exp(fBo.i,) and exp{Bo.i, + Bjo.io - 9(1/0)}
of X, (t | Z), there exist constants ¢4 and c¢5 in the range
[0,1] such that P(A;,(t | %) = exp(foyi,)) = ca and
P( lo(t | ‘/t) - exp{ﬁ() o T ﬁ]o,zo ’ (1/¢)}) = ¢5 hold
for any t € (0, ¢). Combining this with (116) and (117), for
any t € (0,¢), we have:

P(/\lo (t | yt) = eXp(ﬂO;io)a
or )"io (t | yt) = eXP{ﬁo;ig + 6]'0,2'0 : g(l/¢)})

=cq4+C5

> sup {exp(—co t)}
t€(0,9)
+ sup {c1-exp(—cat) - {1 —exp(—c3t)}}
t€(0,9)
> 1+er-exp(—cy-¢/2) - {1 —exp(—c3-¢/2)} > 1.
This obviously contradicts. This completes the proof. (]

L. Proof of Lemma 8

From (43), for each integer ¢ > 1, we have R, = min(lf),
where Uy = {t > Ry_1+ ¢ : N((t — ¢,t]) = 0}. Thus, R,
exists if and only if the following two conditions hold:

(i) Uy # @. (Since U, is bounded below, this indicates
inf(Uy) exists.)
(ii) inf(Uy) € Uy. (This indicates min(Uy) = inf(Uy).)

We start by proving the existence of R;. We first prove that

condition (i) holds with probability one for U4;. Note that I/ #

@ if and only if there exists ¢t > ¢ such that N ((t— ¢, t]) = 0.
It suffices to show that
P(U {N((t—¢,t])=0}> =1 (123)

t>¢

By condition A5, there exists some constant ¢ € (0, 00) such
that A\s*™(¢ | %) < c. This together with (69) gives that
AU (¢ Z,) < c. Then, by (68), for t > s > 0, we have:

o [ 3

> exp{—c-(t—9)}

pacy
2
I
2
S
%
I

)du}
(124)

For each integer k > 1, plugging s = (k—1)¢ and t = k ¢
into (124), we obtain

P(A; | F-1)

) = exp(—c9), (125)
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where the event
i = {N(((k— 1) 6,k ]) = 0}
={N((k-1)¢) =N(ko)}.
Letting £ = 1 in (125) yields:

P(4]) > exp(—cd).

Also for integers k > 2, by (125) and the fact that
{ﬂm VAnY € Fuo1yg we haver P(AL | NELAR) >
exp(—c ¢). Combining this with (126), for any integer ¢ > 2,
we have:

(126)

- 11e(7| ) 7)

< {1—exp(: #)". (127)
This gives:
14 J4
P< U A;;) =1 P( N A;;) > 1—{1—exp(—co)}.
k=1 k=1

Letting ¢ — oo in the above inequality yields P(U;—, Af) =
1. It follows that:

P( U (N -¢,1) = 0})

t>¢

>P<U{N

k>1
= P( U A;) =1,
k=1

which proves (123).

We then prove that condition (ii) holds for U/; using a proof
by contradiction. Let R} = inf(U;). If R} ¢ U, then there
exists a sequence of time points {uy }r>1 € Uy such that uy >
ug > -+ and limg_, up = R}. Note that u; € U implies
that N (ug) — N (ur, — ¢) = N((ur — ¢, ug]) = 0. Using this
and the fact that IN (¢) is right-continuous in ¢ > 0, we have:

R; — 6, R}]) = N(R}) - N(R} - ¢)
= Tim {N(ue) = N(ux — 9)} = 0,

k=1)6,kd]) = 0})

(128)

N((

which contradicts R} ¢ U;.

Next, for each integer ¢ > 2, we prove that R, exists with
probability one. Following the same proof of condition (ii) for
the case of U1, we can verify that condition (ii) also holds for
U, with integers ¢ > 2. Now, we prove condition (i) holds with
probability one for U, with ¢ > 2. Similar to (123), it suffices
to show that

P( U {N((t-¢,t]):o}):1.

t>R;_1+¢

(129)

For each integer £ > 1 and real number r > 0, define the
event

A = {N(((k
= {N((k

—1)¢+r,ko+7]) =0}
—1)</>+7°):N(k:¢)+7°)}.
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Using the same proof as that of (125)—(128), we obtain
P(UpZy Af,) = 1, and

P(U {N(-01)=0})

t>r+¢

>P<U{N

E>1
oo
= P( U A;;’,,> =
k=1
It follows that for each realization R,_; = r, we have

(U (N(t-00)= o}lRH =) =1,

t>Re_1+¢
which proves (129). (I

k—1)¢+ 1 ko +r]) :0}>

J. Proof of Theorem 3

1) Proof of Part (i): Before proving part (i), we first present
Lemma B.11.

Lemma B.11: Assume conditions Al, A2, A3, A4, and
A5 in Appendix B. Let R € [¢,00) be a stopping time with
respect to the filtered probability space (€2, %, {%;}i>0,P),
satisfying N((R — ¢,R]) = 0. Then for each ¢ > 0,
N(t + R) — N(R) is independent of Fg, where Fg is the
stopping time o-algebra with respect to R.

Proof: Recall the sequence of discontinuity points
{Ti}e>o defined in (22). Let g = max{{ > 0
T, < R}. Define the time-shifted-by-R marked point process
({Tg}gzo, {Ig}gzo) as follows:

Ty=R, I =0,

and fg =Ty, ]_'é =TIy, forfl>1.

The CIFs {\;(t | Z:)}icy are clearly piecewise-constant
within the time interval ¢ € [R, c0), with their discontinuity
points belonging to the set {ﬁz}ezl- For ¢ > 0, define
={Ae.Z: An{T; <t} € F foreveryt > 0}
as the stopping time o-algebra with respect to fg Then we
have the following fact.
_(Theorem 1"y The statements 1n Theorem 1 still hold if
(Tz7 Iy, F,) is replaced by (Ty, I, F,) for each integer £ >

For simplicity, we’ll refer to this new version of The-
orem 1 (modified for (Tg,]g, e)) as Theorem 1’. The
proof of Theorem 1’ is similar to that of Theorem I.
We just need to replace (74) by {{(To, Io), ..., (Top, Irs)} =
{(#0,0),- - -, (te,i0)}} = o € Fg ,» and the remaining
proof of Theorem 1’ follows the 51m11ar arguments as those
in (75)—(88).

Next, we prove that

(E—‘rl - Evl_’;—l—lv A(TK—FI | ffl{+1))
is independent of Fr, for each integer £ > 0,
where A(t | #;) = (M(t | F),..., \v(t | F))T denotes
the vector of CIFs. We start by proving the case of ¢ = 0.

Using the facts that Té = R and N((R— ¢, R]) = 0, we have
To = Usev {t € (T0,To + ¢] : Ni({t — ¢}) = 1} = 2,

(130)
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implying that fg = 0o (where TZ‘ is the modified version of
Te in (27)) Following result (il) in Theorem 1/, we have that
(Ty — Tp) | Fg, ~ Exp(A"(Ty | Fjp )). Combining (12),
(16), (17), and the fact that N((R — ¢,R]) = 0 gives
that A (T | Fp,) = Zzev exp(fo;;) is a non-random
constant. It follows that Ty — Ty ~ EXP(Ezev exp(Bo;i)) is
independent of Fz Usmg result (iii) in Theorem 1/, we have
P(I, =i | o(Fp, Th)) = M(To | Fi) )/ X"™(Ty | Fp) =
exp(ﬁo i)/ dev exp(ﬁoj) for each i € V. This 1mphes that
(T —T, I) is independent of Fy,- Using N((R—¢, R]) = 0,
it is easy to show that A(T} | Fz 1) deterministically depends
on (T} — Ty, I). Therefore, we prove that (Ty — Ty, Iy, (T} |
F.) is independent of Fz; = Fr.

Suppose that (130) holds for 0,1,...,¢ — 1, with ¢ > 1.
By induction, it suffices to prove the case of ¢ for (130).
Usmg the fact that N((R — ¢,R]) = 0, we have that

— R deterministically depends on {(T;C Tk 1,1 k)} k=1
Wthh is independent of Fr. Also, A(T; | Fz,) i
pendent of Fp. By results (ii) and (iii) in Theorem 1/, the
distribution of (Ty1 — Ty, Ir4+1) conditional on F. 7, deter-
T; — R), and thus is
independent of Fp. Finally, since A(Ty41 | T,

istically depends on {(Tk — Tt Ii) Yie 1,....0+1, We prove
that (Tyiq — Ty, Ty, M(Tosr | Fi, 1)) is 1ndependent of Fp.
This proved (130).

Using similar arguments as in (24) and (25), we know that
the counting process {IN(t+ R) — N (R)}+>0 and the marked
point process {(T}H — fg, feﬂ)}ezo are equivalent to each
other. Therefore, from (130), we conclude that N (¢ + R) —
N (R) is independent of Fp for each ¢ > 0. This completes
the proof. ]

Now, we prove part (i) of Theorem 3. Recall the random
processes X;(t | %) in (7) and r;4(t) in (17). Define
At | Z) = Wt | F)yo o Av(t | F))T and ry(t) =
(r1,6(t),...,7v.6(t)) " as the vectors of these random pro-
cesses. For ¢t > 0, define the following time-shifted-by-R,
random processes:

N(t) = N(t+ Ry) = (N1(2),.. .,
Xt | F) =Xt + Ry | Ferr,)
= (Xl(t | %), . 'aXV(t | %))T,

.....

ministically depends on (A(T; | F. %)
1) determin-

Nv ()T

’F¢(t) = T‘¢(t+ Rz) = (F1’¢(t), .. .,Fv,qb(t))—r. (131)
Here, %, = Firr, = {A € F Aﬂit—i—Rz Sy}
F, for every u > t}. Also, fors<t let N;((s,t]) = Ni(tV

0) — N, (5 Y O) We have the three facts below:
Fact (a): (¢ | Jt) is the CIF of N;(t). This is because
it | g:t)
= )\z(t + R[ | ftJrR,/)

= 1im AT'P(N;(t+Ry+A) = Ni(t+Re) + 1| Fiyr,)
1
= = >
RE%A P(Ni(t+A) = Ny(t) + 1| .#), t>0,

agreeing with the definition in (7) of a CIF.
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Fact (b): Xi(t | %), 7j,6(t), and ]\7]' (t) follow the same
model as in (12), (16), and (17). This could be seen from
the following identities:

Xz‘(t | jt) = exp {50;1‘ + Zﬁj,iﬂﬁ@(f + Re))}
jev

= exp {ﬁo;z‘ +)Big(76(1) } t=>0,

JEV

(132)
which is identical to (12) and (16), and

To(t) = N ((t + Re — ¢, t + Ril) /o
= N;(((t+ Re — ¢) V Ry, t+ Ry)) /¢ (133)
=N;((t—9¢,1)/¢. t=0,
which is identical to (17). Here, (133) follows from the
fact that N;((R, — ¢, R¢]) = 0, which is implied by (43).
Fact (c): The following mappings are deterministic, where
M1 = M1/, M2 = M2/, M3 = M3/, M4 = M4/, and
M5 = M5
(M1) from {N(t+ R¢) — N(R¢) }i>0
to {N(t + R@) — N((t + Ry — ¢) V Rg)}tzo
M2) from {N(t + Rg) — N(RZ)}tZO to {’l_’:¢(t)}t20.

(
(M3) from {N(t+R;)—N(R¢)}i>0 to {X(t \ t%)}tz(%
(
(

)

)
M4) from {N(t+ Ry) — N(R¢) >0 to Rey1 — Ry
M5) from {IN (t+R;)—N(R¢)}i>0 to N((Re, Res1])-

And
(MY') from {N(t)}>0 to {N(t) — N(t—¢)}i>o0-
(M) from {N(t)}iz0 10 {ro()}z0.
(M?)/) from {N(t)}tzo to {)\(t | 9} }tZO-
(M4/) from {N(t)}tzo to Ry.
(M5')  from {N(t)}>0 to N(Ry).

To show this, note that for any ¢ > 0, the following two
identities hold:

N({+Ry) —N((t+Re— @)V Ry)
={N(t+ Ry) — N(R)}
—{N((t+ Re—¢) V Re) — N(Ry)}
={N(u+ R¢) — N(R¢)}u=t
—{N(u+ R¢) = N(Re)}Hu=(t-¢)vo

N(t) = N(t = ¢) = N(w)lu=t = N()|u=@—g)vo,

which implies that the mapping M1 is deterministic,
and M1 = M1’. This, combined with (133) and (17),
gives that the mappings M2 = M2’ are deterministic.
By using (132), (12), (16), and the fact that the map-
pings M2 = M2’ are deterministic, we conclude that
the mappings M3 = M3’ are deterministic. From (43),
we observe that

Ry =min{t > ¢ : N(t) — N(t — ¢) = 0},
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Rit1 — Ry =min{t > ¢ :
N(t+R)—N((t+ R, — ¢) V R;) = 0}.

This, together with the fact that M1 = M1’ are deter-
ministic, yields that the mappings M4 = M4’ are
deterministic. From

N((R¢, Rey1]) = N((Re1 — Re) + Ry) — N(Ry),

we infer that the mapping from ({N(t + R,;) —
N(R@)}tzo, Rit1 — Re) to N((Rg, Rey1]) is deter-
ministic and identical to that from ({IN(¢)}i>0, R1) to
N(R;). This, along with M4 = M4’, concludes that
M5 = M5’ are deterministic.

Fact (a) confirms that X(¢ | .%,) represents the vector
of CIFs of N(t). Leveraging Fact (c), which establishes
deterministic mappings M3 = M3’, we deduce that (N (¢t +
Re) — N(Re),X(t | 7)) 2 (N (1), A(t | F)) for any ¢ > 0.
This demonstrates N (¢t + Ry) — N (Ry) 2 N (t). Moreover,
from (132) and (133), it’s evident that for any ¢ > 0, X(t | ﬁ;)
is a deterministic function of {IN(s + R;) — N(R¢) bo<s<t-
Utilizing Lemma B.11, we establish that N (t+ R;) — N (Ry)
is independent of Fp, for any ¢ > 0. This, coupled with
the deterministic nature of the mapping M3, validates that
X(t | .%,) is also independent of Fp,. This concludes the
proof of part (i). O

2) Proof of Part (ii): Utilizing the deterministic nature
of the mappings M5 = M5’ and the result from The-
orem 3 (i) stating N(t + Ry) — N(Ry) D N (t) for
any t > 0, we derive IN((Ry¢, Ret1]) il N(R;). Thus,
{N((Re¢,Rp41])}e>0 forms a sequence of identically dis-
tributed random vectors. On the other hand, given that N (¢ +
R¢) — N(Ry) is independent of Fg, and the mapping M5 is
deterministic, we infer that N ((Ry, Ry41]) is independent of
Fr,. Furthermore, N ((Ry, Ri+1]) is Fr,-measurable for any
0 <k </¢—1. As aresult, N((Ry, Ret1]) is independent
of {IN((Rk, Ri+1])}o<k<e—1. Hence, {N((Re, Ret1])}e>o
constitutes a sequence of independent random vectors. This
completes the proof. (]

3) Proof of Part (iii): Before proving part (iii), we’ll
establish Lemmas B.12 and B.13.

Lemma B.12: Assume conditions Al, A2, A3, A4, and
A5 in Appendix B. Let Ry be the first recurrence time point
as defined in (43) with £ = 1. Then E(R?) < cc.

Proof: Consider the random variable L* = min{k > 1 :
I(A}) = 1}, where the event A} = {N(((k—1) ¢,k ¢]) =0}
is defined in (125). According to (127), for any integer ¢ > 2,
we have:

-1
P(L* > () = P( N AT:) < {1—exp(—co)} "
k=1

Thus, the tail probability of L* is bounded by that of
the geometric distribution with a constant success prob-
ability of exp(—c¢). As the geometric distribution has
finite first and second moments, we derive E{(L*)?} <
0o. Moreover, I(A5.) = 1 implies that N(((L* —
1) ¢, L* ¢]) = 0. This, combined with (43), yield Ry < L* ¢.
Consequently:
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E(RY) < B{(L"¢)*} = ¢"E{(L")*} < .

This completes the proof.

Lemma B.13: Assume conditions Al, A2, A3, A4, and
A5 in Appendix B. Let h(-) : R?Y — R be a continuous
function. For each integer ¢ > 1, define the random variable:

R,
S, = /
Ry

Then {S¢}¢>1 is a sequence of i.i.d. random variables.
Proof: Following the notations in (131), for £ > 1, we get:

h(A(t | F0), (1)) dt. (134)

Roya
Sz+1=/ WOME | ), 7 (t)) dt
R,
Rep1—Rye . .
_ / WA | F)), 7)) dt. (135)
0

By comparing (135) with S; = Rl h(A(t | F),re(t))dt
and using the fact that the mapplngs M2 = M2/, M3 = M3/,
and M4 = M4’ are deterministic, we deduce that the mappings

from {N(t + R[) — N(R@)}tzo to Sg+1,
from {IN(t)};>0 to Sy,

(M6)
(M6")

are both deterministic, with M6 = M6’. Combining this with
the fact that N (t+ R;) — N (Ry) 2 N (t) for any ¢ > 0 from
Theorem 3 (i), we obtain S 2 S1. Thus, {S¢}s>1 is a
sequence of identically distributed random variables. On the
other hand, using the facts that N (¢t + Ry) — N(Ry) is
independent of Fpr, and the mapping M6 is deterministic,
we conclude that Syy; is independent of Fp,. Also, Sy is
Fr,-measurable for 1 < k < {. Hence, {S;},>1 is a sequence
of independent variables. This completes the proof. (I

Now, we prove part (iii) of Theorem 3. Note that D, =
Ry, — Ry_1 is a special case of Sy in equation (134) with
h(-) = 1. By applying Lemma B.13, we deduce that {Dy}¢>1
forms a sequence of i.i.d. random variables. Furthermore,
Lemma B.12 proved that D; = R; has a finite second
moment. This finalizes the proof. (]

K. Proof of Theorem 4

Before proving Theorem 4, we establish Lemma B.14.
Lemma B.14 (Asymptotic Convergence of A;(t) =
fo (u | #,)du): Assume conditions Al, A2, A3, A4, and
A5 in Appendlx B. For each ¢ € V), consider the random
process A;(t) = fo (u | #,)du for t > 0. Then there
exists a constant ¢ € (O 00) such that
Ai(B)/t = i

as t — oo.

(136)

Proof: Let the increment of A;(t) in the /th recurrence
cycle (Ry—1, Ry] be denoted as

Ry
Sie = Ni(Ry) — Aij(Ry—q) = /

Ry
Applying h(A(t | F),re(t)) = Ni(t | F) to (134) in
Lemma B.13 indicates that {S;¢}¢>1 is a sequence of i.i.d.
random variables.

Ait | F)dt

5963

Under condition A5, there exists a constant ¢ € (0, 00) such
that:

R,
Sie = /
Re—1

where D, = R; — Ry—;. Combining Lemma B.12 and
equation (137) implies that the second moments of D, and S; ,
are finite. Applying the strong law of large numbers, we derive:

gzszk_’E

Thus, for arbitrarily small § > 0 and € > 0, there exists a
sufficiently large C; such that:

P( sup max{’% é Sik — E(Si,l)‘a
k=1

>C1q
6) < 4.

1 4
‘ZZDk—E(Dl)‘} >
k=1

On the other hand, for any time point ¢ > 0, let L, =
sup{¢ > 0: R, < t} be the number of recurrence time points
up to t. We have:

Li+1 Li+1

ZSk<A ZSW ZDk<t<ZD’w

which directly yields:

Ly
1 Sig _ Ni(t) <
t+1 Dk t -

R,

cdt = ¢Dy, (137)

Ai(t] F)dt < /

Ry_1

ZDk—>ED1 as ¢ — oc.

(138)

Li+1
ktl Szk

2 Dy

(139)

Since E(D?) < oo, it’s straightforward to show that L, L
as t — oo. Thus, for arbitrarily small d > 0 and large Cy >
(1, there exists to > 0 such that for all ¢t > to, P(L; > Cs) >
1 — 9. Combining (138) and (139), the following (140) holds
with probability at least 1 — § — 05 for ¢ > ¢o:

Co{ESin) —ef M) _ (Co+ 1) {E(Sin) +¢}
(Co+ D) {E(D1)+€} — ¢ — Cy{E(Dy) —€¢}
(140)

Since €, 6, and &y are arbitrarily small and C5 is arbitrarily
large, (140) implies that

As(t)/t 2 E(Si1)/E(Dy), ast — oo.

We complete the proof by setting ¢; = E(S;1)/E(D1)
in (136). 0

Now, we prove Theorem 4. According to Theo-
rem 2, for each ¢ € V and t € (0,00), we have
var{(N;(t) — A;(t))/t} < ¢1/t. This, together with Lemma 7,
implies that

{Ni(t) = As()}/t 2 0,
Utilizing Lemma B.14 and (141), we derive
N(t)/t = e,

where ¢g = (E(S1.1),...,E(Sv.1)) T /E(D1). This completes
the proof. (]

as t — oo. (141)

as t — oo,
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L. Proof of Theorem 5

Before proving Theorem 5, we establish Lemmas B.15,
B.16, and B.17.

Lemma B.15: Assume conditions Al, A2, A3, A4, and
A5 in Appendix B. Let f(-) : RY — [0, 00) be a non-negative
continuous function bounded above by ¢q € (0, 00). For t > 0,
let Y(t) = f(rys(t)), where ry(t) is defined above (131).
Let Ry be the first recurrence trme point defined in (43) with
¢ = 1. Assume that E{ f t)dt} > 0. Then, there exists a
constant ¢; € (0,00) such that

t
/)\i(u|§u)Y(u)du/tE>ci, as 1 — 0o,
0

Proof: For each integer ¢ > 1, define

Ry
* j—
-
Re—1

Applying Lemma B.13 with h(A(t | Z), 74 (t | F#1)) = Ni(t |
F)f(re(t)) = Ni(t | Z1) Y (t), we have that {S},}¢>1 is a
sequence of i.i.d. random variables. By condition A5, there
exist constants ¢z and c¢3 in (0,00) such that ca < X\;(¢ |
F1) < c3 for any ¢ € [0, 00). We obtain the following moment
inequalities:

E(S;,) = E{ /ORl N(t| F)Y(2) dt}

CQE{ /Rl Y(t)dt} > 0,
0

Ry

B(s1?h =E[{ [ a1 F v} ]
2 cAE(R?) < oo

N(t | F) Y (1) dt.

v

IN

Applying a similar proof as Lemma B.14 with S5, = S}, one
can demonstrate that:

JoXi(u| )Y () du ® E{fy™ Aiu | 20) Y (w) du}
t E(Ry)
E(S71)
_E(Rl) >0, ast— oo.
This completes the proof. (]

Lemma B.16: Assume conditions Al, A2, A3, A4, and
A5 in Appendix B. For i € V, let z;(t) = g(r;,4(t)) be
the covariate defined in (16), and z¢(t) = 1 . Then, for any
i,7 € VU{0} (not necessarily distinct), we have:

E{ /OR1 x;(u) du} > 0,
E{ /OR1 x;(u) zj(w) du} >0

Proof: If i = 0, then (142) obviously holds. If either ¢ or j is
zero, then (143) reduces to (142). Thus, to prove Lemma B.16,
it suffices to verify (142) and (143) for the case of ¢, € V.

By a proof similar to that below (121), for any ¢ > 0,
we have:

P(Ni(t) > 1) = 1 - P(Ni(t
= 1—exp{—

(142)

(143)

)=0)
Ai(0) -t} > 0. (144)
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The OM condition (11) implies that:

P(N;(t) Nj(t) > 1) = X\i(0) A\j(0) t* + o(t?), as t — 0,

and thus, there exists ¢y € (0, ¢) such that:
P(Ni(to) Nj(to) > 1) > 0. (145)

For ¢t € (0, ¢), observing that r; 4(t) = N;((t — ¢,t])/¢ =
N;(t)/¢, we deduce that r; 4(t) is increasing in t € (0, ¢).
This implies z;(t) = g(r; (t)) is also increasing in t € (0, ®).
Along with (144), (145), and considering R; > ¢ > to,
we derive:

of | ) du) > Efai(to) - (6 - 1)) > 0,
Ry
B{ [ et du} > Bad(t) - (0= )} >0
Ry
E{/O () z;(u) du} > B{as(to) z;(to) - (6 — to)} > 0.

These complete the proof. (]

Lemma B.17: Assume conditions Al, A2, A3, A4, and
A5 in Appendix B. Let Z(t) = (1,z1(t), z2(t),...,2v(#)) "
be the vector of covariates defined in (16). Then, for any
u € RV+! with |lal > 0,

E[/OR B0 Tay’at >o.

Proof: Let u = (ug, uy,...,uy) "
ug-
Case (i): up # 0. Consider to € (0, ¢). By (124), we have

P(N(tg) =0) > exp{—c-(tp —0)} > 0.  (146)

Note that N (ty) = 0 implies that Z(¢)"& = ug for t €
[0, tp]. Combining (146) and the fact that Ry > ¢ > to,
we obtain:

E /Rl {5@)%}%4
> [ a0ma)

=touZP(N(ty) = 0) > 0.

. We proceed by cases of

o) = 0)dt

Case (ii): ug = 0. Since ||| > 0 and ug = 0, there exists
i € V such that u; # 0. We have:

P(N;(t) =0 for alljeV\{'} Ni( )=1)
> P(N; — > P(Ni(t) =1,N;(t) = 1)
jev\{i}
- > P(N;(t)>1)
jev\{i}
=X(0)t+o(t) = D {X(0)X;(0) % +o(?)}
jev\{i}
—o(t) (147)

=X(0)t+o(t), as t — 0,

where (147) is derived from (7), (8), and (11). Hence,
there exists to € (0, ¢) such that

P(N;(to) =0 for all j € V\ {¢}, Ni(to) =1) > 0(148)
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Let t1 € (to, ¢). From (124) and (148), we have:

P(Nj(tl)zo for all RS V\{Z}7 Nl(to):Nl(tl) = ].)
= P(N(t1) = N(to) |
N;(to)=0 for all jeV\ {i}, Ni(to)=1)
xP(N;(tg)=0 for all jeV\ {i}, N;(to) =1)
> exp{—c- (t — fo)}
XP(NJ(to):O for all ]EV\{Z}, Nz(to)zl)
> 0. (149)

Note that the event {N,(t;) = Oforallj € V\
{i}, and N;(tg) = N;(t;) = 1} implies that z(t)Tu =
xi(t)u; = g(1/¢)u; for t € (to,t1). Along with (149)
and the fact that Ry > ¢ > t1, we obtain:

Ry
E[ {%(t)Ta}th}
0
> (t1 —t0) g°(1/¢) ui x P(N;(t1) =0
forall j €V \ {i},Ni(to) = Ni(tl) = 1) > 0.

Combining the results of Cases (i) and (ii) completes the
proof. (]
Now, we prove Theorem 5. Recall (48):

Lir(B;)
T - ~
:%A hmﬁﬁfmﬂwﬁmpﬁ@mmw]

With some algebra, we obtain the gradient vector and Hessian
matrix of £; v(3;):

~ 1 [T
v‘cl’T(ﬂz) = T/ [wz exp {xz ﬂ }dt
0
— &i(t-) ANi(1)] (150)
~ 1 T
V2Li1(8;) = T/ Ti(t)@i(t) " x exp {@;(t) " B, } dt.
0
(151)
Let z; ;(t) denote the jth component of x;(t):
1, if j=1,
Tij(t) = S i1 (t), if 1<j <4, (152)
z(t), fi<j<V

For each j € V, employing (38) in Lemma 7 yields:
1 [t
E(T/ [xl ;(t) exp {a:l ﬂ }dt T ;( )dNi(t)D
0
=0. (153)
Also, using (42) in Theorem 2, we have:
T
1 ~
var(f/ [3:” exp {wl /6 }dt Z; ;(t )dNZ-(t)D
0
< /T, (154)

where ¢; € (0,00) is a constant. By Chebyshev’s inequality,
(153), and (154), we conclude:

I =
= / (@ (1) exp {7:0) B, } dt — (1) AN (1)]
— Op(\/T/T). (155)

This confirms (49) in part (i).
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Next, we prove part (ii). Define H; 1 = V2L, T(,@ ). For
any j,k € V, from (151) and (152), the (j, k)th entry of H,
is given by:

1t
H;r(j k) = T/ Fig (1) Toe(t) exp {@:(t) T B; } dt.
0
Let Yl( ) = T,,(t)%;x(t). Lemma B.16 proved that
E{ f t)dt} > 0. This allows us to apply Lemma B.15
with Y( ) Y1 (t), yielding:

) I _ P
H;r(j,k) = f/o Ty () Ty (0) A (| F) At — ¢k,
as T — oo, where ¢, € (0,00) is some constant. Denote by
C; = (¢jk)vxv, a matrix with all positive entries. It follows
that:
—x P
v2£i,T(,3i) - Hi,T - Cia

as T — oo. (156)

This proves the asymptotic convergence in (50).

Next, we aim to demonstrate C; > 0 using a proof by
contradiction. Suppose C; is not positive definite, implying the
existence of a vector & with ||&|| > 0 such that &' C;u < 0.
Then, from (156), we have:

@' H;1u > u Cu<0, asT — oo. (157)

Yg( ) = {z;(t)"u}% Lemma B.17 confirms
(t)dt} > 0. Consequently, Lemma B.15 implies
(0,00) such that:

Let

E{Jy"

the ex1stence of a constant ¢; €

T I N P T P

u H,ru= T {Z;(t) a}* N (¢t | F)dt = ¢; >0,
0

as T — oo, which contradicts (157). This concludes the
proof. |

M. Proof of Theorem 6

Before proving Theorem 6, we first present Lemma B.18.

Lemma B.18 (Consistency of M-Estimator): Assume con-
ditions A1, A2, A3, A4, A5, A6, and A7 inAAppendix B.
As T — oo, there exists a local minimizer ﬁl of the loss
function £; 1(3;) in (48) such that ||3; —BjH = Op(y/1/T).

Proof: Let 77 = +/1/T and u € RY. Following the
arguments of Theorem 1 in [51], it suffices to show that for
any given € > 0, there exists a sufficiently large constant
C¢ € (0,00) such that for sufficiently large T, the following
holds:

P(H Jnf Lin(B, +rra) > EZT(B*)> >1—e
Let 8, = TT U+ E: and ||u|| = C.. By Taylor’s expansion
of £L;1(-) at B;, we get:

ﬁi,T(Ei)—ﬁzT(,@ Y=L+ Lo+ s, (158)

with
(. T, o~ =~ (\T3"
IM:T/ [a:z(t) rTuexp{wi(t) ,Bi}dt
0
— %i(t—)—r’f’r ﬁle(t)],
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Iio=— / {zZ;(t) r u}2 exp {i(t) B*} dt
1,2 2T 7 T 7 7 )

I3 =— / {z;(t)'r ﬁ}?’ ex {?i(t) B**} dt
1,3 6T i T p [ i 5

where ,@: " lies between B: and ,Bl
For the term I; 1, using (49) from Theorem 5:

|11 < H%/T [@;(t) exp {@;(t)
—z;(t—) dV;(t

= Op(V1/T)rr [[ul].

For the term I 2, (50) from Theorem 5 implies:

Bi}di
)|

(159)

1172 = ’/‘% ETVQEZ,T(Br)ﬁ
= 124 {C; + op(1)}u.

For the term I; 3, under condition A5, each component of
@;(t) is bounded above by a positive constant. Hence:

(160)

11 3] < eripllal®, (161)

where ¢ € (0,00) is a constant.
Combining (158), (159), (160), and (161), we obtain:

Lin(B:) — Lo (B;)
= Op(v/1/T) x|
o3 (@ G+ op (V) [P} + e |l
= 2{0p() ] + @ Cia
+op (1) [l +op (1) ]} (162)

By (162), we can choose a sufficiently large C., such that all
terms within the brackets in (162) are dominated by the term
ﬁTCiﬂ, which is positive due to the fact that C; > 0 from
Theorem 5. This completes the proof. ([

Now, we prove Theorem 6. Let 0 = 1/1/T and u =

(UO, ULy eveyUje 1y Uig 1y - ,’U,V)—r (S RY. Denote by ‘&,’,T(,Bi)
the objective function in (52) expressed as:
EzT(ﬁ) = LzT Z w]lT|6j’L‘ (163)

jev\{i}

Similar to the proof of Lemma B.18, it suffices to show that
for any given € > 0, there exists a sufficiently large constant
C. € (0,00) such that, for large T:

P(H lllnf /; T(,B +7’Tu) > &T(,@*)) >1—e
Starting from (163), we obtain:
6;r(B; +rra) — 6.r(B;)
> {Lir(B; +rra) — Lir(B;)}
+ > wiam - (185 + rouy| —

jePa* (i)
= Il + .[2.

185,41

For the term I, using (162), we derive:

1 - - - - -~
I = T{OP(UHUH +u' Ci+ op(1)[@]? + op (1)]|a]*}.
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For the term Is, applying the triangle inequality and condi-
tion (55), we have:
LI< Y wiarrrful
jePa* (i)
< rpfufy max w;;r = Op(1/T) |ul,
jEPa*(7)

which is dominated by @' C;& /T for a sufficiently large C..
Hence, we conclude that I5 is dominated by /;. The remaining
proof is the same as that of Lemma B.18. ([

N. Proof of Theorem 7
For a y/1/T-consistent estimator Bl of B: , for any € > 0,

there exists a constant C, such that for sufficiently large T,
P(IB; = Bill < rrCe) > 1. (164)

Let rp = 4/1/T. Recall condition A5 implies that &;(¢)
is bounded above. This, together with (151), yields that there
exists a constant ¢ € (0,00) such that

) 0*L;1(B;)

sup ——

BollB—B; l<rrc, | OP3:000

] Lir(8;)

sup ——

BB~ I<rrc, | 0B5i0Pk.i

Combining this with Taylor’s expansion, (150), and (155), for
j € V\ {i}, we have:

‘aﬁi,T(ﬁi)

0Bj.i

<ec, forany j € V\ {i},

<c¢, for any j,k € V\ {i}.

sup
51H51 _El* HSTTCe

<| oL v(B;)

0B .

PLir(By)

+Ei:uﬁfgfp||<mc { Wgﬁm
s

= Op(\/ l/T) + O(TT) = Op(\/ l/T).

Consider 3; in the ball {8, : |3, — Zi:” < rp C.}. For
j e V\{Pa"(i) Ui}, if 8;; > 0, then (57) and (165) imply:

(165)

3%;:7?2) = acé’;;?l) + w; ;.7 sign(5;,:)
S sup ’aci,T(/Bi)
BB, B l<rec. | OB
+ . min o wm,T
jeV\{Pa* (i)ui}
> 0, (166)

with probability tending to 1 as T — oo. Likewise, if 8;,; < 0,
then:
i (By) _
0B;.i

dL;1(B;)
9B}

+ wjqT Slgn(ﬁj z)
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< sup oL;1(B;) ’
BB, B <rrc. | 9B
— min wj;T
JEV\{Pa*(i)Ui}
<0, (167)

with probability tending to 1 as T — oo.

By (166) and (167), the following argument holds with
probablhty tending to 1 as T — oc: For all 8; with || ﬁ
ﬁ || <rpCeandall j € V\{Pa"(i)Ui}, 9¢; (B Z)/@ﬁj,Z has
the same mgrl\ as (3;;. Together with (164) and the first-order

condition of LN")'Z», it follows that

P(Bj; =0, forall j € V\ {Pa*(i) Ui}) >1—2¢ (168)

holds for sufficiently large T. Since ¢ is arbitrary, letting ¢ —
0 in (168) yields that

P(B3;; =0, forall j € V\ {Pa*(i)Ui}) — 1, (169)

(11
as T'— oco. Note that the vector ﬁz(- ) collects all the compo-
nents in 3; whose indices belong to the set V' \ {Pa*(i) Ui}.
~ (11
Hence, (169) implies that P(ﬂl(. _ 0) — 1, as T — oo. This

completes the proof. O

O. Proof of Corollary 1

Recall that the true edge set is non-empty (£* # @), implied
by condition A8. To prove Corollary 1, it suffices to show that
for each pair of distinct nodes (,7) € V x V,

~

P((j,1) € &4) — 1, if (4,9) € &7,
P((j,i)eg’_)—>17 if (j,i) e &*, as T — oo.
P((Gi) ¢ &) =1, if (i) ¢ €7,

If (j,i) € &%, then (14) implies that 37, > 0. By Theo-
rem 6, we have BJZ L B;; > 0. Thus, P((j,9) € g =
(ﬁ]2>0)—>1 as T — oo.
Similarly, if (j,i) € £*, then we have P((j,1)
P(@,i <0)—1,a T — oo.
,1) ¢ £*, then (13) implies Elat B = 0. By (58) in
Theorem 7, we obtain P((j,7) ¢ £) = P(8;; = 0) — 1
as T — oo. This completes the proof. (]

~
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