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Comment
Jianqing FAN and Chunming ZHANG

Adjusting for nonignorable drop-out is an interesting and
challenging topic in statistics that has significant impact on
statistical decision and policy making. Because results can
be altered significantly by different assumptions on drop-
out time, any conclusions based on adjustments should be
drawn with care. Assumptions should be checked rigor-
ously. Adjusting for nonignorable responses is arguably one
of the most debatable subjects in statistics. We welcome the
opportunity to make a few comments.

Scharfstein, Rotnitzky, and Robins are to be congratu-
lated for this excellent article on adjusting for nonignor-
able drop-out using semiparametric nonresponse models. It
elegantly lays out a semiparametric framework and offers
useful tools for sensitivity analyses. It provides insightful
and convenient models for assessing nonresponse biases. In
contrast with the missing-at-random assumption, this arti-
cle allows one to explore how conclusions can be affected
if data are not missing at random.

1. CAN DROP-OUT BIASES BE ADJUSTED FAIRLY?

This is a fair question one naturally asks. The answer de-
pends on how well one can relate a response variable with
observable variables. To account for possible nonresponse
biases, an assumption on how subjects dropped out during a
study must be made. Without such a critical assumption, it
is not possible to assess the drop-out biases with reasonably
good accuracy. Indeed, to some extent, adjustments depend
purely on the assumptions on the drop-out process. Differ-
ent assumptions can result in completely different conclu-
sions. This leads to final conclusions that are inevitably sub-
jective and disputable. The authors hinted repeatedly that
subject matter experts can be consulted on the choice of
models for the drop-out process. This is indeed very helpful
for ruling out some unrealistic models. However, chances
are that subject matter experts themselves cannot be certain
why drop-out occurs during a study and hence might not
feel comfortable with adjustments if such adjustments can-
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not be validated scientifically. Things can be worse when
political or emotional factors get involved in the selection
of adjustment methods. These kinds of “adjustment biases”
can be very severe in extreme cases. Thus model validation
is very important for an adjustment method. A question then
arises whether one should adjust at all for drop-out biases
if no reliable method is available for modeling the drop-out
time.

There are infinitely many possibilities for modeling drop-
out risk. To account for the nonignorable biases, it is as-
sumed that the drop-out risk follows the Cox proportional
hazards model. This assumption is the most important and
most arguable one in the article. The adjustments are basi-
cally reflections of this critical model assumption. One con-
cern is that the model is not driven by any physical law, and
is not derived from conceivable intuitions. There is always
the risk that the model is misspecified. This possibility can-
not be rescued simply by considering a few other classes of
models, such as additive hazards models or other parametric
forms r(t, α0; V̄(T ), Y ). The sensitivity to model specifica-
tions make adjustment procedures debatable.

The article offers few clues as to why the Cox propor-
tional hazards model is chosen for modeling the risk of
drop-out. It would be very helpful if the authors elucidated
it. One speculation is that it is a convenient model for han-
dling censored data. But there are also some costs entailed
in using this model. One needs to evaluate the baseline haz-
ard function at study termination time T . The value T can
be in the tail region of the distribution of drop-out time
Q. This tail probability usually cannot be estimated reli-
ably. Further, the authors assume that the drop-out time Q
is continuously observable. If Q is observed only at a few
prescheduled time periods of clinical evaluation, then the
variable Q is censored. The entire statistical analysis can
be far more complicated than the current setting.

That the sensitivity of adjustments depends critically on
model assumption is convincingly demonstrated by the au-
thors in their Figure 1. With a small change of assumption
on drop-out time done by varying a sensitivity parameter,
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mean CD4 counts can range from very small to very large.
This makes comparisons of several treatments very diffi-
cult. The authors compared two treatment arms for different
combinations of sensitivity parameters, based on the same
family of models on the drop-out time (see the authors’
Fig. 2). Although this method is very useful, it is conceiv-
ably possible that the drop-out risk for one treatment group
follows a family of stochastic models but follows a com-
pletely different one for the other treatment group. Thus as
long as there are no data available for validation of model
assumptions, there are always uncertainties on an adjust-
ment method.

2. VALIDATION OF ASSUMPTIONS ON
DROP-OUT TIME

Validation of model assumptions on drop-out time is par-
ticularly important for adjusting for nonignorable drop-out.
It reduces the chance of making erroneous adjustments. It
is, however, hard to check all aspects of model assumptions.
To attenuate the difficulty, the authors correctly pointed out
that one should consult with subjectmatter experts. One can
also use other information collected during the course of a
study to validate certain aspects of model assumptions.

There are several possible methods to accommodate side
information. Take clinical trial ACTG 175 AIDS, for in-
stance. One can use available CD4 measurements at earlier
weeks to predict missing measurements at week 56. The
results can then be used to calibrate the sensitivity analy-
sis for the data at week 56. This will validate the extent to
which the two adjustment methods are consistent.

A second possibility is to compute implied (model-based)
missing probability for different choices of the sensitivity
parameter α0. Despite α0 unidentifiable, this checking ver-
ifies how well unknown parameters and functions were es-
timated. Under model (1), the missing probability is given
by

P (∆ = 0) = E{1 − S(T |V̄(T ), Y )},

where S(t|V̄(T ), Y ) = exp(−Λ0(t|V̄(t)) exp(α0Y )). As in
Section 3 of the article, if V̄(t) is a time-homogeneous dis-
crete covariate, then the distribution of Y for each level
of V can be estimated. Hence an estimate of the implied
missing probability can be obtained. If the situation is more
complicated than the foregoing simple setting, then one can
use the crude estimate

P (∆ = 0) ≈ n−1
n∑
i=1

{1 − Ŝ(Ti|V̄i(T ), Ŷi)},

where for missing cases, V̄i(T ) is V̄i(Qi) and Ŷi is the
imputed response such as estimated population mean. The
implied missing probability can be estimated more carefully
than what is outlined. An estimated missing probability un-
der model (1) that is excessively larger or smaller than the
sample proportion of missing data provides evidence that
the drop-out model is inadequate.

A third possibility of model validation is to use the same
drop-out model to analyze the mean CD4 counts at an ear-

lier time, such as week 20, 32, or 44. For the ACTG 175
data, there are on average about 15.6%, 21.0%, and 25.7%
of drop-out. A low percentage of drop-out means that the
mean CD4 counts can be estimated more reliably even with-
out adjustments (missing at random). Applying the same
sensitivity analysis techniques to the data collected at these
earlier weeks, if a drop-out risk model is right and the range
of sensitivity parameter is reasonable, then the estimated
population mean should be less sensitive than at week 56.
Should the results contradict with this intuition, it would
be odd to accept the assumption that the drop-out risk is
modeled correctly. This gives us an idea to verify whether
the model is reasonable and the sensitivity parameter is in
a good range.

3. CHOICE OF SENSITIVITY PARAMETERS

We wholeheartedly endorse the notion that the sensitivity
parameter α0 should be varied to see how sensitive conclu-
sions depend on this parameter. It appears unclear, however,
what the scale of α0 is and what range of α0 should be used.
An extreme value of α0 can not only make resulting esti-
mates meaningless, but also cause some technical problems
and numerical instability.

Different values of α0 entail different implied missing
probabilities under a drop-out model. A possible choice of
the range of α0 is to make the model-based missing proba-
bilities consistent with empirical (observed) missing proba-
bility. An implied missing probability that is much too large
or too small provides evidence that the choice of α0 does
not fit available data. See Section 2 of this discussion for
a simple method of calculating the model-based missing
probability.

Another possibility for choosing a range of a sensitivity
parameter is to apply sensitivity analysis to the data col-
lected at an earlier stage of a longitudinal study where the
percentage of drop-out is smaller. The sensitivity parameter
can be chosen so that the resulting estimate is reasonably
close to the estimate deriving directly from the data col-
lected at that time point.

4. OTHER APPROACHES TO COMPARING
TWO TREATMENTS

Population mean is known to be not robust. It is not sur-
prising that estimates of a population mean depend sensi-
tively on the assumptions of how data were missing. Given
the risks of model misspecification and the difficulty of
model validation, it seems preferable to using a more ro-
bust functional of an underlying distribution, such as me-
dian, trimmed mean, or the distribution function itself. As
reported by the authors in Section 7.1, such robust func-
tionals are less sensitive to underlying models on drop-out
time. Hence they are more objective and less disputable for
assessing the efficacy of treatments.

When two treatments are compared, we are interested
not only in whether two estimates of population means are
significantly different, but also in how different the treat-
ment effects are. An illuminating method is to compare the
two distributions of the response variables. For estimation
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of a cumulative distribution F (y) under the authors’ frame-
work, one can solve an equation similar to (3) for each
given y. Namely, one could estimate F (y) by solving the
equation

n∑
i=1

h(Oi;F,Λ0; b) = 0

with

h(O;F,Λ0; b) =
∆

π(V̄(T ), Y )
[I(Y ≤ y) − F − E{(1 − ∆)

× b(V̄(Q), Q;F )|V̄(T ), Y )}] + (1 − ∆)b(V̄(Q), Q;F ).

The distributions can be informatively and visually com-
pared by computing their corresponding kernel density es-
timates (see, e.g., Fan and Gijbels 1996; Silverman 1986).
For a given bandwidth h and a kernel function K(·) (e.g., a
symmetric probability density function), the estimates can
be obtained via smoothing the estimated distribution func-
tions as follows:

f̂(y) =
∫ ∞

−∞

1
h
K

(
y − t

h

)
dF̂ (t).

Using the estimated densities, one can compare how the two
treatments differ from each other, not only in population
mean, but also in dispersion and other important functionals
(see Fan and Gijbels 1996, p. 49).

As an illustration, we plot the estimated densities for
the four treatment arms, using a boundary corrected ker-
nel density estimator. Subjects are assumed to be missing
at random for simplicity of computation. Figure 1 indicates
that all four treatment arms have similar-shaped densities of
CD4 counts. But the treatment using AZT has lower CD4
counts, and the other three treatment arms perform very
similarly.

Figure 1. Kernel Density Estimates for CD4 Counts for Four Sepa-
rate Treatment Arms, Assuming that Subjects Were Missing at Random.

, AZT; , AZT+ddl; · · ·, AZT+ddC; · - · - · -, ddl.

5. UNDERSTANDING ESTIMATING EQUATIONS

We now give a simple derivation for estimators given
in the article and relate them with the existing tech-
niques in the censored regression literature. Assume that
b(V̄(T ), t, µ) is independent of µ. Then (3) gives the solu-
tion

µ̂ = n−1
n∑
i=1

Y ∗
i ,

where

Y ∗=π(V̄(T ), Y )−1[Y − E{(1 − ∆)b(V̄(Q), Q)|V̄(T ), Y )}]

if not missing

= b(V̄(Q), Q) if missing.

This estimator looks complicated but can be simply de-
rived as follows. One naturally uses the available infor-
mation (V̄(Q), Q) to impute missing data, resulting in ad-
justment b0(V̄(Q), Q), for a given function b0. Correspond-
ingly, one adjusts a nonmissing case by b1(Y, V̄(T )), using
all collected information. Then the data after adjustments
become

Y ∗ = ∆b1(Y, V̄(T )) + (1 − ∆)b0(V̄(Q), Q).

For the sample average of the adjusted data to be unbiased,
it is required that

EY = EY ∗

= E[π(V̄(T ), Y )b1(Y, V̄(T ))

+ E{(1 − ∆)b0(V̄(Q), Q)|V̄(T ), Y }].

This equation is obviously satisfied if

Y = π(V̄(T ), Y )b1(Y, V̄(T ))

+ E{(1 − ∆)b0(V̄(Q), Q)|V̄(T ), Y },
or, equivalently,

b1(Y, V̄(T )) = π(V̄(T ), Y )−1

× [Y − E{(1 − ∆)b0(V̄(Q), Q)|V̄(T ), Y }].

This yields exactly the same procedure as that of the au-
thors.

The idea of the foregoing derivation appeared already in
the censored regression literature (see, e.g., Fan and Gijbels
1994; Zheng 1987). To get the best estimator after adjust-
ments, Fan and Gijbels (1994) argued that the function b0
should be chosen such that var(Y ∗) is minimized, among
a class of possible adjustment functions under considera-
tion. An intuitive and appealing transformation function is
to take

b1(Y, V̄(T )) = Y, b0(V̄(Q), Q) = E(Y |Q, V̄(Q),∆ = 0),

or, equivalently,

Y ∗ = E(Y |Q,∆,∆Y, V̄(Q)).
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This pair of adjustments of course satisfy the require-
ment EY = EY ∗ and are the best restoration in the
sense that it is closest to the original data Y . This
transformation is related to the Buckley–James (Buck-
ley and James 1979) method in the censored regression
setting.

The foregoing adjustment functions depend on unknown
parameters. To implement the idea in practice, one needs
to estimate these parameters using observable data. A
parametric model and a semiparametric model are pro-
posed by Scharfstein, Rotnitzky, and Robins for the pur-
pose of estimating these unknown parameters. The result-
ing estimator is the sample mean of the adjusted data.
The idea is also applicable to other linear functionals,
such as the cumulative distribution function at a point.

With the estimated cumulative distribution function, all
other functionals can easily be estimated via a plug-in
method.
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Comment
Mark VAN DER LAAN

Let me first compliment the authors on their two very
nice articles on sensitivity analysis. The article under dis-
cussion applies a nonparametric sensitivity analysis toward
a particular type of censored-data model of practical inter-
est. The methodology is completely general and thus can
be applied to any censored-data structure of a full-data ran-
dom variable X ; that is, when the observed data O can
be defined as O = Φ(X,C) for some given mapping Φ
and censoring variable C. A model of such a censored-data
structure is typically built up by a model for the full-data
random variable X and a model for the conditional distri-
bution C, given X , referred to as the censoring mechanism.
To make estimation of the full-data distribution or parame-
ters thereof tractable, one often assumes that the censoring
mechanism satisfies coarsening at random (CAR) as orig-
inally formulated by Heitjan and Rubin (1991) and gener-
alized by Jacobsen and Keiding (1995) and then by Gill,
van der Laan, and Robins (1997). Under CAR, the likeli-
hood factorizes into a likelihood for the full-data distribu-
tion and a likelihood for the censoring mechanism, so that
maximum likelihood estimation of the full-data distribution
can ignore the censoring likelihood. Intuitive understand-
ing of the CAR assumption is in general very hard, but in
monotone-censored data structures (i.e., one observes an in-
creasing sigma field Ft over time t up till the minimum of
C and the point at which the full data are completely ob-
served) it has a very appealing and easily understandable
interpretation. In these monotone-censored data problems,
the censoring mechanism satisfies CAR if and only if the
hazard of C at t, given the full data X , is only a function of
the data Ft that one has available at time t. The particular
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censored-data structure handled by the authors is mono-
tone. Thus to have CAR, one wants to collect over time
any variables that might be used in a “decision” to censor a
subject. An estimator that is consistent under CAR will ex-
trapolate a subject censored at time t by using uncensored
subjects who have the same observed history up until time
t. If one feels that in a particular application uncensored
and censored subjects at time t with the same observed his-
tory might not be exchangeable, then the CAR assumption
will need to be tested and/or a sensitivity analysis will be
appropriate.

In nonparametric CAR censored-data models in which
the full-data distribution is unspecified and the censoring
mechanism is only known to satisfy CAR, one cannot test
whether the censoring mechanism satisfies coarsening at
random, because the model is already nonparametric. How-
ever, to get a good sense about deviations from CAR, one
could assume a semiparametric CAR model for the cen-
soring mechanism and extend this with a one-dimensional
parameter α measuring a deviation from CAR. Now one
could try to estimate all unknown parameters including α,
which will then provide a test of CAR given the assumed
model. Under the latter extension of the CAR model, the
likelihood will not factorize anymore. As a consequence,
maximum likelihood estimation is typically less attractive
and also an estimating equation approach is harder (see Rot-
nitzky, Robins, and Scharfstein 1998).

In a nonparametric CAR model, one can still extend
the CAR model for the censoring mechanism with a one-
dimensional parameter α measuring the deviation from
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CAR, but now α will no longer be identifiable. The authors’
proposed methodology is developed for such nonparamet-
ric CAR models. They develop estimators and confidence
intervals for a range of given α’s, provide the implied sen-
sitivity plots, and mention that “when possible, one should
try to leave the laws of X and Λ0 completely unspecified
and perform a sensitivity analysis.” Thus the authors prefer
such a nonparametric sensitivity analysis assuming a more
parametric censoring or full-data model and estimating α
accordingly, because it is their belief that a secure scien-
tific basis for model assumptions is rarely available. How-
ever, they do want to rely on scientific experts to obtain a
plausible range of α values as needed in the nonparametric
sensitivity analysis.

I find the nonparametric sensitivity analysis attractive be-
cause it determines the sensitivity toward deviations from
CAR under minimal assumptions. But relying on the needed
scientific knowledge to obtain a plausible range of α values
might be more problematic than making certain model as-
sumptions on either the full data or the censoring law. The
other extreme is to assume a parametric model for the cen-
soring mechanism so that α is identifiable from the data, as
done by Rotnitzky et al. (1998). There is no win-win situ-
ation, because the latter method might yield biased infer-
ence due to misspecification of the censoring mechanism. I
propose using a lower-dimensional model for the censoring
mechanism to data adaptively obtain a plausible range of α
values for the nonparametric sensitivity analysis. This plau-
sible range will be correct if the lower-dimensional model
is correct and typically will be overly optimistic when the
lower-dimensional model is wrong, but still provides some-
thing to work with. To be concrete, I consider the ACTG
175 trial as analyzed in the article. I argue that to make this
nonparametric sensitivity analysis approach practical, one
will need to provide data-adaptive ways to provide such a
plausible range of α values.

In each of the four treatment arms of the ACTG 175
trial, each subject’s CD4 count process is observed up till
the minimum of 56 weeks and the subject’s drop out time
Q. In addition, one observes baseline covariates such as
the IV drug user status of the subject. The observed data
structure is a monotone censored-data structure in the sense
that the amount of information one observes on a subject
increases over time; formally, the sigma fields FQ gener-
ated by (Q ∧ 56, V̄(Q ∧ 56)) are increasing in Q. If one
is willing to assume coarsening at random—that is, that
ΛQ(dt|V̄(56)) = ΛQ(dt|V̄(t)) for t < Q—then the re-
sults in the appendixes of Robins (1993) and Robins and
Rotnitzky (1992) provide closed-form locally efficient es-
timators of, for example, the distribution function of Y =
CD4(56). These estimators rely on an estimator of the drop-
out mechanism ΛQ.

Would this analysis be appropriate? In other words, is it
reasonable to assume that the decision of a subject to drop
out of the study at time t only depends on the subject’s
past CD4 count history and possibly other measured vari-
ables? The latter assumption corresponds in the authors’
notation with model A(0). Because this assumption does

not strike me as unreasonable, I would have been satisfied
with a locally efficient data analysis assuming a Cox pro-
portional hazards model for the drop-out mechanism with
time-dependent covariates including subjects’ CD4 counts.
The authors’ nonparametric sensitivity analysis assumes for
a fixed known α that

ΛQ(t|V̄(τ)) = Λ0(t, V̄(t)) exp(αY )

for some unspecified Λ0, which corresponds with assuming
model A(α), and they estimate the distribution of Y under
this model A(α). This analysis is repeated for a plausible
range of values α. Because it is already very hard to un-
derstand why CAR would be violated in this application,
it will be much harder to determine a plausible range of α
values. However, it might be easy to reason that α’s smaller
than a given ε cannot be excluded as a possibility, so that
an extremely sensitive sensitivity plot would send a warn-
ing that I would have not known of without the sensitivity
analysis.

Each of the models A(α) identifies the distribution of
Y and is nonparametric. The advantage of nonparametri-
cally identified models is that the conclusions of a sensi-
tivity analysis are not affected by misspecification of the
observed data model. On the other hand, because all mod-
els A(α) for various α are nonparametric, the data cannot
distinguish between different A(α)’s. Thus in each applica-
tion one needs a certain type of expert who can provide a
plausible range of α values. This requires experts who can
tell to what degree a person with a given covariate history
up to time t bases his or her decision to drop out at time t
on his or her future CD4 count value. One might wonder if
such experts exist.

As pointed out by the authors, one can choose different
types of sensitivity models for the drop-out mechanism, and
it makes sense to choose the one that is easiest to interpret
with regard to α. However, whatever model one selects, the
experts’ minimal task will still be to determine with re-
spect to some measure to what degree subjects’ drop-out
time behavior deviates from CAR. In addition, because the
conclusions (the sensitivity plot) depend on the choice of
sensitivity model, in principle even the choice of sensitiv-
ity model should be determined by a so-called expert. The
true sensitivity parameter is not α, but in fact is the whole
function r(Y, V̄(t), α), which makes the task of the expert
even harder.

Finally, because the estimators of µ(α) are IPCW esti-
mators, even when one succeeds in determining a set of
plausible α values, the estimators might break down for
values of α within this range. In that case one would need
to conclude for these plausible values of α that µ(α) is not
identifiable (for the given sample size).

Thus in many applications it is likely that the desired
expert knowledge is not available. Then the data analyst
who is concerned about the censoring mechanism not being
ignorable will need other tools to get a plausible range of α
values in another manner. Assuming, as the authors need to
do to fight the curse of dimensionality, a Cox proportional
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hazards model for Λ0—that is,

Λ0(dt, V̄(t)) = Λ0(dt) exp(γZ(t)), (1)

with Z(t) a function of V̄(t))—the observed data model
with α known is not nonparametric anymore, so that for,
a sufficiently low-dimensional Z(t), α will be identifiable
from the data. For example, in the ACTG 175 trial it would
be of interest to estimate α when assuming model 1. Be-
cause α is only one-dimensional, the authors’ argument that
α might still be extremely hard to identify in the ACTG 175
trial needs to be proved and very well might not hold.

Consider this latter model with α being a parameter. The
class of estimating equations for (µ,γ, α) can be derived as
in the Appendix of the article by determining the orthogonal
complement of the nuisance tangent space of (µ,γ, α). In
fact, the authors already determined the orthogonal comple-
ment of the nuisance tangent space of (µ,γ) in the model
with α known. Thus one simply subtracts from each ele-
ment in this latter space the projection on the score of α
to obtain the class of estimating equations for (µ,γ). How-
ever, this does not yield yet the estimating equation for
α, but determining the orthogonal complement of the nui-
sance tangent space of α will not be a harder task than
the work the authors have already carried out. This results
in a set of estimating equations for (µ,γ, α) that still re-
quires estimating of the nuisance parameter Λ0. However,
for a given (γ, α), we can still estimate the baseline hazard
Λ0 as in the article. Thus this gives a complete set of esti-
mating equations for all unknown parameters (µ,γ, α,Λ0).
In this manner one can obtain an confidence interval for
the true α, and there would then be no need for expert
knowledge.

This approach is against the authors’ philosophy, because
they really want to aim at a nonparametric model for Λ0.
The only reason that they select in their data analysis a
Cox model for Λ0 is that it is needed to make estimators
available at all, but their goal is to choose the model as
nonparametric as sample size allows, though this philos-
ophy of selecting as nonparametric model as sample size
allows is not carried out in the data analysis, I believe. In
that case they should have modeled the effect of more com-
ponents of the past V̄(t). With such a nonparametric choice
of censoring model, they argue that α is still not practically
identified.

Suppose that the nonparametric model used in the sen-
sitivity analysis models the dependence of Λ0(t|V̄(t)) on
V̄(t) by extracting from the CD4 past several covariates.
Suppose now that we fit a lower-dimensional nested model
that simply sets the coefficients in front of several of these
covariates equal to 0; for example, this model might include
only CD4(t) as covariate. If this lower-dimensional model
is correct, then the corresponding confidence interval for
α gives a plausible range of α values for the more non-
parametric model. Because there is no perfect solution, it
makes sense to be satisfied with such a guessed plausible
range of α values. To make the analysis more sophisticated,
one could obtain such confidence intervals for α for a nested
sequence of models, so that one also obtains an idea about
how strong the confidence intervals of α depends on the
actual assumed model for Λ0(t, V̄(t)).

This suggests the following nonparametric sensitivity
analysis procedure.

1. Select a lower-dimensional model for Λ0(t, V̄(t))
nested in the actual used model for Λ0(t, V̄(t)).

2. Estimate (α, µ,γ) simultaneously. Use the .95% con-
fidence interval for α as the plausible range of α values in
the next step.

3. For the more nonparametric model for Λ0(t, V̄(t)),
carry out a sensitivity analysis as in the article.

Note that this data-adaptive approach of obtaining a plau-
sible range of α values still allows using expert knowledge.
Namely, if experts have strong knowledge on the censoring
mechanism, one can use that knowledge to select a lower-
dimensional model for Λ0(t|V̄ (t)) in step 1.
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Comment
Peter J. DIGGLE

I greatly admire the work embodied in this important ar-
ticle. The authors’ mathematical skill provides a solution
to a notoriously difficult methodological problem. Their
statistical insight raises a challenge to parametric model-
ers who advocate other, less robust solutions. In the fol-
lowing remarks I take the general point of view that in
comparing the semiparametric modeling approach of the
present article with a parametric modeling approach, we
are comparing shades of gray—both are modeling ap-
proaches, informed by a combination of scientific judg-
ment and statistical formalism, differing only in the ex-
tent to which they choose to constrain the family of
models under consideration and, by the same token, to
admit modeling assumptions that go beyond the empirically
verifiable.

In my experience, scientists are inveterate overoptimists.
They ask questions of their data that their data cannot an-
swer. Statisticians can either refuse to answer such ques-
tions, or they can explain what is needed over and above
the data to yield an answer and be properly cautious in re-
porting their results. Parametric models represent a formal
articulation of what I mean by “over and above the data.”
Sometimes the willingness to make untestable assumptions
opens up new scientific insights; other times, it generates
a misleading answer. To find out which of these two situ-
ations prevails might require independent confirmation by
follow-up studies. This is an integral part of the scientific
method (but perhaps sits uncomfortably alongside clinical
trial ethics). A counterpart to the authors’ “It is not what
you do not know that hurts you; it is the things you think
you know, but do not” is “We buy information with assump-
tions” (Coombs 1964).

What I like about the quotation from Coombs is its im-
plicit invitation to the reader to consider the possibility that
what is bought may be worth more or less than its price.
Put another way, the extent to which information or as-
sumptions over and above the data should be allowed to
impact on statistical inference may depend on the type of
question being asked. The more complicated the question
(in conceptual terms), the more the balance may move in
favor of parametric modeling. In the longitudinal setting
of the article, if I want to estimate a marginal population
mean (i.e., the average value that I would expect to see in
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been supported in part by National Institute of Mental Health grant R01
MH56639.

a drop-out–free population), then I would prefer to avoid
detailed assumptions about the longitudinal variation in the
data, and the semiparametric approach is very attractive. If
I want to look in more detail at longitudinal trajectories, ei-
ther population-averaged or especially subject-specific (e.g.,
to make clinical decisions on individual patients), and ad-
justed for the effects of measurement error on the observed
responses, then I think I am more or less forced to develop a
parametric model, quite likely involving time-varying ran-
dom effects to describe the individual subjects’ trajectories.
The data from the ACTG 175 trial, which the authors very
kindly passed on to me, contain much more longitudinal
information than the authors use to answer the simple but
very relevant question: What would have been the mean re-
sponse at 56 weeks in each treatment arm had there been
no drop-outs? Had the authors sought to address more de-
tailed questions about longitudinal trajectories, would their
methodology have moved closer toward a parametric mod-
eling approach?

At Lancaster, Rob Henderson and I are working on a
modeling approach to problems of this kind that is still
semiparametric but in a weaker sense than is used in the
article. We postulate a parametric linear model for a longi-
tudinal sequences of measurements Yij : j = 1, . . . , ni; i =
1, . . . ,m, where i indexes subjects, j indexes occasions
within subjects, and tij denotes the time at which the mea-
surement Yij is made. We assume that

Yij = x1(tij)′β + W1i(tij) + Zij , (1)

where the Zij ∼ N(0, τ2) are mutually independent mea-
surement errors, the W1i(·) are independent copies of a
nonstationary stochastic process, which is itself decompos-
able into a linear random-effects component and a serially
correlated stationary component, and x1(tij) is a possibly
time-varying vector of covariates for Yij . For the drop-out
model, or more generally for the intensity function of an
associated point process of recurrent events, we assume an
expression of the form

λi(tij) = λ0(tij) exp{x2(tij)′α+ W2i(tij)}, (2)

where λ0(·) is a nonparametrically specified baseline in-
tensity that is modulated by a log-linear regression includ-
ing both fixed and random components through the terms
x2(tij)′α and W2i(tij). In this model, association between
the measurement and recurrent event histories of an indi-
vidual subject is induced by dependence between the pro-
cesses W1i(·) and W2i(·). There is an emerging literature

c© 1999 American Statistical Association
Journal of the American Statistical Association

December 1999, Vol. 94, No. 448, Theory and Methods

1128



Diggle: Comment 1129

Table 1. Estimated Bias of µ̂ and Standard Error of the Estimated Bias,
From a Simulation Experiment With n = 100 Subjects, and 1,000

Simulated Replicates, for Each of Several Values of τ

τ2 .01 .1 .5 1.0 100.0
Bias −.0036 −.0230 −.0594 −.0910 −.1735
SE .0034 .0034 .0035 .0035 .0040

on semiparametric models of this general kind (for a recent
review, see Hogan and Laird 1997).

Within the specific context of the problem that this article
does address—estimating a marginal population mean—the
core of the semiparametric method is, I think, the unnum-
bered equation in Section 3,

Ê[l(Y )|V = v] =
1
nv

n∑
i=1

∆iI (Vi = v)l(Yi)
π̂(v, Yi)

(3)

The intuitive interpretation of (3) is that an unweighted
mean (which would give the required answer in a drop-out–
free population) is modified by weighting each observation
Yi inversely according to the estimated probability π(v, Yi)
that Yi is observed conditionally on its covariate value v.
The simulation studies in Section 5 of the article show that
this can give good results, both in terms of unbiased esti-
mation and accurate estimation of a standard error, in large
samples. As the authors themselves point out, it could lead
to difficulties if the π̂ can get close to 0, and my guess is
that these difficulties become relatively more acute in small
samples.

I am especially intrigued by the authors’ discussion in
Section 7.2.3, concerning the strategy of including addi-
tional covariates in the drop-out model. Their conclusion, if
I understand it correctly, that this does not help at all seems
counterintuitive. I wonder, therefore, whether the failure of
this strategy is a byproduct of the insistence on a fully
nonparametric formulation of the dropout mechanism. A
simple parametric counterexample would be to postulate a
model in which Y |U ∼ N(µ + U, σ2) and U ∼ N(0, 1).
The marginal mean of Y is µ. Now suppose that logitP(Y
missing|U) = α + βU . If U is unobserved, then this is an
informative drop-out model; if U is observed (without er-
ror) as a covariate, then the model becomes a completely
random drop-out covariate-dependent model (Little 1995),
and the analysis would be straightforward. Perhaps more
realistically, if in this model we observe not U itself, but
a covariate X that is correlated with U , an analysis based
on the (incorrect) assumption that drop-out is completely
random but dependent on X ; for example, that

logitP(Y missing|U) = α+ βX (4)

should alleviate to some extent the problem of dealing ade-
quately with the informative drop-out. I have carried out a

small simulation experiment using this model. The true val-
ues of the model parameters were µ = 0, σ = .1, α = −.5,
and β = .5. Hence the drop-out mechanism is such that
the probability of drop-out increases with Y , and an analy-
sis that treats the drop-outs as ignorable is liable to give a
negatively biased estimator for µ.

The observed covariate X was generated as X = U +Z,
where Z ∼ N(0, τ2); hence the correlation between U and
X is ρ = 1/

√
1 + τ2. Each experiment generates data from

n = 100 subjects, and the experiment was replicated 1,000
times for each of several values of τ . Table 1 shows Monte
Carlo estimates of the estimator µ̂ = n−1 ∑m

i=1 Yi/π̂i where
the estimates of πi = P(Yi observed) are obtained from the
incorrect drop-out model (4).

When τ2 ≈ 0 (so that ρ ≈ 1), the observed X is a near-
perfect surrogate for the unobserved U and the estimator
for µ is unbiased. As τ2 increases, negative bias develops
as predicted, but this development is progressive. Provided
that τ2 is small (i.e., a good surrogate can be found for the
random effect U ), the strictly incorrect analysis assuming
completely random, covariate-dependent drop-out can give
approximately correct inferences. At the opposite extreme,
when τ2 is large, the observed covariate X is unrelated to
the drop-out mechanism, and adjustment for it yields no
benefit.

Whatever modeling strategy is adopted, I think there
would be general agreement on all of the following:

• When informative drop-out cannot be ruled out, sen-
sitivity analyses are preferable to placing total faith in
a single fitted model.

• The question of plausible ranges for sensitivity anal-
ysis parameters is both important and difficult.

• The ideal outcome, that substantive inferences are ro-
bust to variation of sensitivity parameters over the
whole of their permissible ranges, may not be achieve-
able in practice.

These considerations lead me to conclude that sensitivity
parameters should, if possible, have an interpretation which
is readily explainable to the scientist whose data are be-
ing analyzed. This raises a (possibly tenuous), analogy with
the elicitation of prior distributions for Bayesian inference.
However, although it may be true that in practice, propo-
nents of Bayesian inference are also naturally attracted to
parametric modeling formulations, my own view is that the
question of whether parametric modeling based on assump-
tions “over and above the data” is a good modeling strategy
is quite separate from the issues that distinguish Bayesian
from non-Bayesian inference.

ADDITIONAL REFERENCE
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Comment
Roderick J. LITTLE and Donald B. RUBIN

1. INTRODUCTION

We appreciate the opportunity to comment on the article
by Scharfstein, Rotnitzky, and Robins (henceforth SRR),
which is an ambitious and thought-provoking attempt to
solve a difficult methodological problem with mathemati-
cal dexterity. In this comment we consider four aspects of
SRR’s work: the role of sensitivity analysis, the importance
of using all available data on drop-outs to reduce the impact
of nonignorable nonresponse, the form of the SRR model,
and methods of estimation and inference.

2. SENSITIVITY ANALYSES FOR
NONIGNORABLE NONRESPONSE

Nonignorable missing data (Rubin 1976) pose a diffi-
cult problem, because the data do not provide informa-
tion about parameters characterizing nonignorable aspects
of the missing-data mechanism, at least without making as-
sumptions untestable from the data at hand. Early work,
particularly in econometrics, attempted to estimate simulta-
neously parameters of the complete-data model and param-
eters characterizing nonignorable nonresponse (Amemiya
1984; Heckman 1976; Nelson 1977); a more recent appli-
cation of this approach in the repeated-measures setting is
that of Diggle and Kenward (1994). Many authors, however,
have criticized this approach (Copas and Li 1997; Glynn,
Laird, and Rubin 1993; Little 1985, 1994a; Rubin 1994;
Tukey 1986), because the models are identified purely on
the basis of normal distributional assumptions, or assump-
tions that particular regression coefficients are exactly 0.
The estimates from these models are highly sensitive to
minor deviations from assumptions, such as lack of nor-
mality or a particular regression coefficient being close to
0 rather than 0. For example, the application of a nonignor-
able selection model to income nonresponse in the Current
Population Survey (Lillard, Smith, and Welch 1986) yielded
predictions for the nonrespondents that differed drastically
from estimates based on independent data sources (David,
Little, Samuhel, and Triest 1986). We believe that statis-
ticians and economists have generally moved away from
these approaches.

We agree with SRR that a sensitivity analysis is a ratio-
nal approach to nonignorable nonresponse, and have advo-
cated this approach in our own work (Little 1994b; Little
and Rubin 1987; Little and Wang 1996; Rubin 1977). When
sufficiently transparent to be understandable by substantive
researchers, sensitivity analysis has also been used by these
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researchers to help elucidate possible consequences of non-
ignorable missing-data mechanisms; see, for example, the
application by Connors et al. (1996) of the sensitivity anal-
ysis methods of Rosenbaum and Rubin (1985).

Nevertheless, sensitivity analysis is not without problems.
First, in many practical settings users of statistics greatly
favor simplicity and concision in the presentation of re-
sults. It is often hard enough to convince them of the need
to go beyond point estimates and present confidence in-
tervals for estimands of interest, much less the need for
presenting a range of estimates with two different types of
uncertainty, sampling error within a particular model and
variability of estimates across models. Second, a sensitivity
analysis usually needs to be confined to a relatively small
number of parameters (say one or two), as otherwise the set
of answers obtained by simultaneously varying a set of pa-
rameters may become overwhelming. Third, many different
forms of sensitivity analysis can be contemplated and may
yield contradictory conclusions.

3. LIMITING THE SCOPE OF
NONIGNORABLE MODELING

Given the problems inherent in nonignorable modeling,
we have generally advocated trying to make the ignorability
assumption as plausible as possible by collecting as much
information about incomplete cases as possible, and then
including this information for inferences via model-based
analyses, such as by multiple imputation. In fact, we be-
lieve that in situations where good covariate information is
available and included in the analysis, the missing at random
(MAR) assumption may often be a reasonable approxima-
tion to reality, thus obviating the need for a sensitivity anal-
ysis to model nonignorable nonresponse. For example, both
David et al. (1986) and Rubin, Stern, and Vehovar (1996)
presented examples where the straightforward MAR model
predicts actual outcomes better than standard and arguably
plausible nonignorable models.

In the repeated-measures setting studied by SRR, a use-
ful positive feature for MAR modeling is the availability of
repeated measures on subjects prior to drop-out, which can
be used together with other covariate information to gen-
erate a predictive distribution for the missing values under
the MAR assumption. Thus our philosophy to modeling the
data is to make full use of this information to reduce the
partial association between drop-out and the outcome vari-
ables of interest. In cases where the information measured
for drop-outs is judged insufficient to account for differ-
ences between those cases and the cases that remain in the
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study, the MAR analysis can be supplemented by clearly
formulated sensitivity analyses based on scientifically plau-
sible nonignorable models.

It is here that we part company with SRR, who in their at-
tempt to minimize parametric assumptions effectively make
limited use of covariate information. This results in in-
creased sensitivity of inference to the nonignorable com-
ponent of the model, and possibly overly conservative in-
ferences. We agree in principle with SRR that there is
some interest in seeing how much uncertainty is engen-
dered by an analysis that makes minimal assumptions; how-
ever, assumptions are inevitable when handling missing data
in practice. Bounds based on a worst-case analysis (e.g.,
Cochran 1963, sec. 13.2; Horowitz and Manski 1998) are
usually too wide to be useful, except when the amount of
missing data is trivially small. Coding the repeated mea-
sures prior to drop-out as categorical covariates in SRR’s
model of (1) and including all interactions drastically lim-
its the number that can be accommodated. Hence the more
constrained SRR model of (2) seems much more practical
in repeated-measures settings. Even the model of (1) as-
sumes that there are no interactions between the effects of
the final outcome and the covariates on the probabilities of
drop-out.

4. SCIENTIFIC RATIONALE FOR THE
ADOPTED MODEL

When nonignorable models are applied, it is critical to
link the model for the missing-data mechanism to what-
ever science is known about the problem under study. Con-
sequently, we feel that it is imperative that nonignorable
modeling be as transparent as possible, in the sense that
the underlying assumptions can be readily appreciated by
users who understand the data but may not be professional
statisticians. To help understand the meaning of the SRR
model and link it to previously proposed models, we con-
sider their basic equation (1) for the special of monotone
missing data with T = 3 discrete evenly spaced times of
measurement, no between-subject covariates, and categori-
cal repeated measures. In that case, the full model can be
specified in terms of the joint distribution of Q,Y1, Y2 and
Y3 ≡ Y , where Q = j if a subject drops out between mea-
surement times j and j + 1 and Yj is the outcome at time
j. The discrete analog of the model (1) has the form

1 − pr(Q = 1|Y1, Y2, Y3) = (1 − pr(Q = 1|Y1))Ψ(α0Y3),

1 − pr(Q = 2|Y1, Y2, Y3, Q > 1)
= (1 − pr(Q = 2|Y1, Y2, Q > 1))Ψ(α0Y3),

and

pr(Q = 3|Y1, Y2, Y3, Q > 1)
= 1 − pr(Q = 2|Y1, Y2, Y3, Q > 1),

where Ψ(u) = exp(exp(u)) corresponds to a complemen-
tary log-log link function. This model implies that the prob-
ability of dropping out at time 2 (Q = 1) depends on the
outcomes at times 1 and 3 but not on the outcome at time
2, and the probability of dropping out at time 3 (Q = 2)
depends on the outcomes at times 1, 2, and 3. Furthermore,

the parameter α0 governing the dependence of drop-out on
the outcome at time 3 is constrained to have the same value
for both drop-out times. This formulation does not appear
to be a very plausible missing-data mechanism for any data
that we can think of. Moreover, because α0 is a parameter
whose meaning changes with every drop-out pattern, it is
very difficult to interpret sensitivity analyses with different
values of α0.

A more plausible form of the model might be

1 − pr(Q = 1|Y1, Y2, Y3) = (1 − pr(Q = 1|Y1))Ψ(α0Y2)

and

1 − pr(Q = 2|Y1, Y2, Y3, Q > 1)
= (1 − pr(Q = 2|Y2, Q > 1))Ψ(α0Y3),

where dropping out at a particular time point depends on
the value of the outcome at the time of drop-out and at the
previous time. A natural parametric form of this model is

1 − pr(Q = 1|Y1, Y2, Y3) = Ψ(γ1 + α0Y2 + α1Y1)

and

1 − pr(Q = 2|Y1, Y2, Y3, Q > 1) = Ψ(γ2 + α0Y3 + α1Y2),

which is closely related to the drop-out model of Diggle
and Kenward (1994), although differing in the choice of the
complementary log-log rather than the logistic link. Unlike
the estimation approach of Diggle and Kenward, we would
advocate a sensitivity analysis based on this model with
prespecified values of α0.

Given the large class of nonignorable models, we believe
that they need to be assessed in the context of particular
applications, and we have some comments about the spe-
cific application of the SRR model to the AIDS clinical
trial data. In particular, the analysis treats death and non-
compliance to treatment in the same way as other forms of
drop-out; for example, effectively imputing CD4 counts to
subjects after they have died. The scientific rationale for this
approach seems questionable. A more reasonable approach
to noncompliance is to distinguish subjects by underlying
compliance type under both treatment arms (Angrist, Im-
bens, and Rubin 1996); to deal with censoring due to death,
the key piece of information is the underlying true survival
type under both treatment arms (Rubin 1998, sec. 6). These
questions can both be usefully formulated as missing-data
problems, but they require different models for missing data
than the model for missing CD4 counts of those who sur-
vived and complied with treatment.

5. INFERENCE PROCEDURES UNDER THE
CHOSEN MODEL

Our work has typically adopted a standard likelihood-
based approach to inference, whereas SRR base estimation
on generalized estimating equations, whose basic form is
given in their (3). We first discuss this estimation approach
for the special case where the function b equals 0.
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Remark 1. If the data are missing completely at random
(MCAR), then (3) reduces to the complete-case mean and
hence discards the incomplete cases. Under MCAR, this
estimator is unbiased but involves a loss of efficiency, be-
cause the data in incomplete cases are ignored. In repeated-
measures settings the loss of information can be quite sig-
nificant, especially when the data on the covariates and out-
come data prior to drop-out are highly predictive of Y .

Remark 2. If the data are MAR, then (3) reduces to the
weighted mean of the complete cases, where the weights
are estimates of the inverse probabilities of drop-out given
the covariates and outcomes prior to drop-out. This esti-
mator is commonly applied to unit nonresponse in surveys
(Little and Rubin 1987, sec. 4.4) and is based on the ideas
underlying the Horvitz–Thompson estimate (Horvitz and
Thompson 1952). The method is also a weighting analog
of the multiple imputation method of Lavori, Dawson, and
Shera (1995), which is implemented in the first release of
SOLAS (Statistical Solutions, Inc. 1998). The incomplete
cases are used for bias adjustment but, as in the MCAR
case, are not used to predict missing values of Y . Thus,
whereas the SRR estimator is focused on bias reduction,
model-based approaches have the potential to reduce both
bias and variance, although they can be vulnerable to mis-
specification of the regression of the missing variables on
the observed outcomes and covariates.

Remark 3. If the data are not MAR, then the weights
in (3) are modified to yield consistent estimates under the
assumptions of (1). As in the MAR case, the information
in the incomplete cases is confined to bias adjustment, and
we suggest that (3) is inefficient when the outcomes ob-
served prior to drop-out are good predictors of the miss-
ing outcomes, appeals to semiparametric efficiency bounds
notwithstanding.

Perhaps the potential inefficiency of the estimator (3) with
b = 0 can be alleviated by the inclusion of a nonzero func-
tion b, which allows inclusion of the incomplete data in the
estimating equation. However, we have considerable diffi-
culty following the prescriptions described in the article for
choosing b, and the assumptions implicit in the choice. We
suggest that more work is needed to clarify the choice of
b, even in simple cases of the model.
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1. SELECTION MODELS

Selection models offer an intuitive approach to dealing
with the difficult problem of nonignorable nonresponse. It
has long been understood that both the data model and the
nonresponse model are not completely identifiable from
data, but there has been much difficulty in determining
which particular models can be be estimated from data, and,
for an estimable model, which aspects of the model are well
estimated from data and which aspects are sensitive to the
model assumptions.

The path taken by the authors is to be completely non-
parametric in estimating the mean response, assuming noth-
ing about the parametric distribution of outcome or how it
depends on the other variables, observed or unobserved;
they assume a semiparametric form for the nonresponse
model, where the part depending on the observables is al-
lowed, where feasible, to be unspecified and then posit a
model with known parameters for the dependence of nonre-
sponse on the unobserved variables. The attractive feature
of their approach, at least in relatively simple settings, is
that one fully utilizes the observed data to the maximum
extent possible, and the nonresponse parameter (and the as-
sumed model for nonresponse) can be varied to study sen-
sitivity to assumptions. In most real problems, it will not be
possible to fully specify the nonresponse model as a func-
tion of observables, and the authors suggest some simpli-
fication of the nonresponse model. However, they continue
to recommend to specify the parameter determining the de-
pendence of the nonresponse model on the unobserved out-
come, even though there is now some information in the
data about this parameter.

Several aspects of this approach are readily understood
by considering the very simple setting where all of the vari-
ables are categorical, only one variable is subject to nonre-
sponse, and there is only one time of nonresponse. For this
setting, it is straightforward to see that fitting a saturated
model for the data and a nonresponse model that is satu-
rated in the observed variables leaves 0 degrees of freedom
in the data for estimating dependence of nonresponse on
the outcome subject to missingness (Baker and Laird 1988).
Still leaving the data model saturated, but putting a struc-
ture on the nonresponse model that is not fully saturated in
the observed covariates, leaves positive degrees of freedom,
which permits estimation of all of the model parameters, al-
though in practice it can difficult to determine which models
are estimable, and the likelihoods may be quite flat. This is
analogous to the authors model B(α0), and we can appre-

Nan M. Laird is Professor, Department of Biostatistics, Harvard School
of Public Health, Boston, MA 02115. Donna K. Pauler is Assistant Pro-
fessor, Biostatistics Center, Massachusetts General Hospital, Boston, MA
02114.

ciate the point of view that one should continue to specify
and not estimate the parameter α0. But in the more realis-
tic case where the outcome interacts with covariates in the
nonresponse model, some strategy that combines sensitivity
analysis with estimation may be desired. To this end, with
categorical data at least, likelihoods are a very useful way
of exploring goodness of fit and model sensitivity, and we
feel that the present approach could benefit with some type
of objective function that could be used for this purpose.

Another feature of the proposed method also arises with
maximum likelihood (ML) estimation and categorical vari-
ables. Baker and Laird (1988) showed that when estimating
nonignorable nonresponse models for the 2×2×2 table, the
ML solution will sometime lie on a “boundary” in the sense
that all values of the outcome for the nonrespondents will
be “imputed” to be either 0 or 1. A similar phenomenon
was observed in larger tables. Here, even though the model
may be saturated in the sense that the number of parame-
ters equals the number of degrees of freedom, there is not
a perfect fit to the data, in the sense that (O − E) 6= 0 for
those margins that are observed.

Although the authors are very careful to note through-
out that the resulting estimators depend not only on the
sensitivity parameter, but also on the nonresponse model,
certain features of their analysis of the CD4 data invite the
reader to feel, as indeed the authors tell us to feel, that “this
conclusion is quite robust. Significant differential selection
biases would have to occur to alter this conclusion” (that
AZT + ddi is to be preferred over AZT). The point is, of
course, that within the context of the given model, the con-
clusion is robust. One particular feature of their methods
that invites this feeling of complacency about the conclu-
sions is the implicit assumption, discussed at length by the
authors, that the outcome for a nonresponder is bounded by
the outcomes of the responders. In many situations this may
not be a reasonable assumption. The other obvious feature
of the analysis that is not discussed is that the parameter α0
may be a vector, and the nonresponse model may depend
not only on the outcome, but also on its interaction with
observed covariates. Particularly in this example, it would
seem desirable to interact time of dropout with outcome in
the nonresponse model.

2. PATTERN-MIXTURE MODELS

An alternative factorization of the model for complete
data is the pattern-mixture model, which is briefly intro-
duced in Section 7.3.2 but perhaps deserving of more at-
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tention. Denoting the complete data for a subject by C =
(Y,V−

Q,V
+
Q, Q), where V+

Q denotes time-varying covariates
occurring after drop-out Q,V−

Q denotes those occurring be-
fore drop-out, and Y denotes the primary endpoint of in-
terest occurring at the end of the study, the pattern-mixture
model can be defined as

FC = FY |V+
Q
,V−
Q
,QFV+

Q
|V−
Q
,QFV−

Q
|QFQ. (1)

From this factorization, it is easy to see that FQ, all remain-
ing three pieces for completers, and the margins FV−

Q
|Q for

noncompleters are identifiable. The data contain no infor-
mation about the remaining portions of the model.

Various likelihood-based approaches for drawing infer-
ence from pattern-mixture models have been suggested.
Rubin (1977) discussed Bayesian techniques for utilizing
subjective information to relate effects of nonrespondents
in sample surveys to those of respondents. Little (1993)
obtained identifying restrictions in simple bivariate normal
samples by specifying restrictions corresponding to the pre-
sumed operational selection model. Hogan and Laird (1997)
handled the lack of identifiability by making specific as-
sumptions about the relationship of outcome in drop-outs
and completers.

In the likelihood case, an advantage of pattern-mixture
models is that they are not as sensitive to distributional as-
sumptions as selection models, where in the latter, estimates
of parameters for the complete data may not be robust to
misspecification of the selection mechanism or model for
the unobservables (Brown 1990; Glynn, Laird, and Rubin
1993; Little 1982, 1985), and estimates of the parameters of
the selection mechanism may be driven almost completely
by the assumed complete-data distribution (Little and Rubin
1987, chap. 11). From the Baker and Laird (1998) model, it
is clear that results in the selection model mechanism can
be equally driven by the assumed model for nonresponse. In
contrast, the model for the nonresponse in mixture models
can be estimated completely from observed data, as can the
model for the complete data, conditional on being a com-
pleter. Although (1) is expressed it terms of distributions,
if only the mean of Y is of interest, then the modeling as-
sumptions will be needed only for E(Y |V−

Q, Q). In some
settings it may be more natural to specify a model for this
conditional expectation rather than a model for the non-
response in terms of the outcome Y . As we illustrate in
the next section, the assumptions necessary to implement
the mixture model are considerably more transparent than
those needed for the selection model, and we find the results
easier to explain and interpret.

3. SIMPLE SEMIPARAMETRIC
PATTERN-MIXTURE MODELS

Based on expression (1), it is easy to derive crude but sim-
ple nonparametric estimators for the identifiable portions
of the model and to insert easily interpretable assumptions
about the nonidentifiable parts. Without much loss of infor-
mation, FQ may be estimated by grouping drop-out times
into bins, and FV−

Q
|Q may be estimated using the empir-

ical distribution function stratified across the bins. As in
the authors’ estimator, for Q and V of suitably low dimen-
sion, the approach can be completely nonparametric for all
identifiable portions of the model. We outline two exam-
ple to illustrate how linear estimators of the mean may be
formed.

Example 1. Suppose that T = 2 and drop-outs can oc-
cur only at T , so that Q = 1 denotes those who miss mea-
surement 2 and Q = 2 denotes completers. A covariate
V1 is collected at time 1 and the primary endpoint Y is
collected at time 2. Assume a linear model for the mean
of Y for completers, E(Y |V1, Q = 2) = β0 + β1V1 and
that the mean of those who drop out at time 1 differs by
the constant φ from the completers: E(Y |V1, Q = 1) =
E(Y |V1, Q = 2) + φ. Then, by averaging over the appro-
priate empirical distributions, the marginal mean of Y is
calculated as µ0 = E(Y ) = β0 + β1V̄AC

1 + πφ, where
the superscript AC denotes the mean over all available
cases and π is the proportion of subjects with Q = 1.
An estimate of µ0 is obtained by substituting estimated re-
gression coefficients β̂0 and β̂1 from the complete cases
and the sample proportion π̂ of drop-outs. Because µ̂0 is
a function of (β̂0, β̂1, V̄AC

1 , π̂), its variance may be calcu-
lated from the variance of these estimates using the delta
rule.

Example 2. One may generalize the model in Example
1 for the data from ACTG175 by discretizing the drop-
out times at weeks 8, 20, 32, 44, and 56 (completers)
and assuming a linear dependence of Y on covariates for
completers. There are many ways to relate the conditional
means of noncompleters, E(Y |Q = t), to that of com-
pleters, E(Y |Q = T ). We suggest using the authors’ re-
lationship (16), which compares the means of those who
drop out at time t to those who continue at time t. Alter-
natively, one may compare to those who drop out at time
t + 1, or to the completers directly. In the latter case, it is
sensible to include an interaction with time, because for a
given set of covariates, the means of those who drop out
later in the study should be more similar to the means of
completers than those who drop out earlier.

4. SUMMARY

If selection bias is suspect, then the statistician must col-
laborate with the investigator to form subjective notions
about the nature of the possible selection mechanism. This
article makes a valuable contribution by explicating which
parts of the operational selection model or pattern-mixture
model are estimable from the data and which are not, pre-
venting subjective opinion from imposing hidden biases.
However, being equipped with tools to determine sensitiv-
ity to selection bias does not free the investigator from the
need to try to design against nonignorable dropout in new
studies. Indeed, perhaps the real value in formal hypothet-
ical models for dropout lies in their ability to inform prac-
titioners of the dangers of selection bias.
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Rejoinder
Daniel O. SCHARFSTEIN, Andrea ROTNITZKY, and James M. ROBINS

1. INTRODUCTION

We thank the editor for organizing this discussion and the
discussants for their stimulating comments. In their discus-
sion, Fan and Zhang (FZ) elegantly point out the daunting
uncertainties that exist when there is substantial drop-out
and suggest that possibly “one should not adjust at all for
drop-out bias if no reliable method is available for mod-
eling the drop-out time.” Although sympathetic with this
viewpoint, we would not wish to discard costly and poten-
tially important data without first taking a careful look. So
what, if anything, can be done? For failure time outcomes
or outcomes with a bounded range (e.g., dichotomous out-
comes), the comparison of worst-case bounds is an obvious
first step. If these are too wide to be useful, then a nearly
nonparametric sensitivity analysis can help the investigators
examine the stability of their conclusions under varying as-
sumptions. As David Freedman concludes, “when substan-
tial amounts of data are missing, the only analysis that mat-
ters is often a sensitivity analysis.” Because the nonignor-
able selection bias function is at best only weakly identified,
subjective input from subject matter experts is needed. Van
der Laan fears that the task we have set for these experts
is undoable and proposes a different, but related approach.
Diggle endorses our approach for estimating simple func-
tionals such as the mean, but suggests a more parametric
approach when estimating complex functionals.

Laird and Pauler (LP) suggest an alternative approach
based on fitting regressions to several “pattern-mixture”
model variants. Little and Rubin (LR) agree that in some
cases a sensitivity analysis is important, but propose fit-
ting fully parametric models. They argue that the greater
efficiency outweighs the associated potential for bias. LR
even suggest that the sampling variability from a single
parametric model might often suffice as a measure of un-
certainty. We do not agree with LR’s view that the user’s
desire for “simplicity and concision” helps justify such a
limited inference. Our goal is to help scientists interpret
the evidence in their data. By ignoring model uncertainty,
we do a disservice to them, to the statistical profession,
and to the science. If Diggle is correct in his opinion
(which we share) that scientists are “inveterate overopti-

mists,” then sensitivity analysis may serve as an important
corrective.

If the only reason for censoring is loss to follow-up
(rather than death or departure from the treatment proto-
col), then there is a reliable (albeit expensive) way to validly
correct for selection bias. Specifically, just after the time at
which the outcome of interest is to be measured, an exten-
sive effort can be made to find and measure the outcome on
a random sample of the drop-outs. We discuss this approach
further in Section 3.4.

2. RESPONSE TO DISCUSSANTS

2.1 Freedman

Freedman considers the discrete time, single-occasion
version of our nonparametric selection model (1). He pro-
vides an elegant, rigorous derivation and explicit charac-
terization of the map that takes the law of the observed
data and the nonidentified selection bias parameter to the
unique law of the full data. In Section 5 of a related work,
Robins et al. (1999), and Appendix A of our article, we
provide less elegant derivations of this map in the discrete
time multiple-occasion and continuous-time versions of the
model.

2.2 Fan and Zhang

FZ are concerned that our selection model may be re-
strictive because it assumes a proportional hazards model
for dropout. But this concern is unnecessary, because the
general form (13) of our model includes all nonresponse
mechanisms for some choice of the selection function r in
(13). However, FZ make the further point, with which we
agree and address further in Section 2.5.4, that it is difficult
to choose among the possible selection functions, because
the data offer no guidance; the selection function repre-
sents selection bias due to unmeasured factors and thus is
not identified, unless we were to impose further, possibly
incorrect, a priori restrictions such as (2). FZ hone in on
this key point when they inquire about the possibility of
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using the data to test the fit of our model (1), which is
equivalent to testing whether the true selection function has
the (log) linear form α0Y . As we discuss in Section 2.3 of
the article, whatever the true selection function, the (log)
linear model (1) always fits the data perfectly and cannot
be rejected by any statistical test. This is nonidentifiability.
Because of this nonidentifiability, the observed data cannot
help determine the magnitude or form of selection bias due
to unmeasured factors without additional knowledge.

2.3 van der Laan

To circumvent the need for expert input, van der Laan
proposes temporarily using a lower-dimensional semipara-
metric model to estimate a “plausible” range for the selec-
tion bias parameter α0. Although this approach is ingenious,
we have reservations about it. If the lower-dimensional
model restrictions are not too strong, then α0 will be weakly
identified; as a result, in moderate-sized samples the result-
ing confidence interval for α0 will be too wide to provide
any useful guidance. Furthermore, in our experience it will
be difficult to find a solution to the joint set of estimating
equations. With stronger model restrictions, a solution can
be found, but the resulting confidence interval for α0 may
be centered inappropriately and be misleadingly narrow be-
cause of incorrect functional form restrictions. In summary,
although sympathetic with van der Laan’s desire to circum-
vent expert input, we do not believe it possible.

2.4 Diggle

2.4.1 Complex Questions. We agree with Diggle’s
comments. In particular, we agree that the use of nonpara-
metric or near-nonparametric sensitivity analysis should not
preclude reporting the results of additional analyses based
on more restrictive models, as long as one comments on the
consistency of the results and on the strength and weakness
of each approach. As discussed further in Section 3.2.8, our
approach easily generalizes to include arbitrarily complex
models for the law of the complete data, including ran-
dom effects and semiparametric models. However, in our
approach it is necessary to encode nonignorability by mod-
eling the nonresponse probabilities (i.e., the hazard of cen-
soring) as a function of the data (such as the outcome Y ),
rather than as a function of never-observed random effects.

2.4.2 Usefulness of Additional Covariates. Although
we used the same symbol, the meaning of the sensitivity pa-
rameter α0 in (1) changes as we change the covariates V̄(t).
Our Section 7.2.3 concerns itself with how to map a plausi-
ble range for the selection bias parameter of a model with
many covariates to a range for the parameter of a model
with fewer covariates. Due to somewhat poor exposition
on our part, Diggle misinterpreted us as having concluded
that the additional covariates do not help in estimating the
mean µ0 of Y . In fact, the availability of additional data will
generally serve to decrease uncertainty and narrow bounds.
Figures 1 and 3 serve as empirical examples. We use the
asymptotes of the curves to approximate the bounds. When
we have data only on IV drug user status, the approximate

bounds in Figure 1 are 280 ≤ µ0 ≤ 510 in the ddI arm;
with the inclusion of additional covariates in Figure 3, the
bounds narrow to 300 ≤ µ0 ≤ 470. Similar narrowing oc-
curs for other treatments.

2.5 Little and Rubin

2.5.1 Bounds. LR argue against reporting bounds
based on worst-case analyses because “except when the
amount of missing data is trivially small, these bounds are
usually too wide to be useful.” But, we view this problem as
the reason for reporting bounds (in conjunction with other
analyses): Wide bounds make clear the degree to which
health decisions are dependent on combining the data ev-
idence with prior beliefs. Indeed, by varying α0, analyses
based on either a nonparametric selection model or a near-
nonparametric selection model have the potential to merge
the worst-case bounds analysis (α0 = ∞ or α0 = −∞) with
nonignorable estimates (α0 6= 0 but finite) and ignorable es-
timates (α0 = 0), while adjusting for measured covariates
V(t) that explain drop-out.

2.5.2 Inference Procedures Under the Chosen Model.
In their section 3 LR argue that in an attempt to minimize
parametric assumptions, we are not making effective use of
covariate information. This is incorrect, because locally ef-
ficient semiparametric estimators optimally combine the in-
formation contained in all of the data (covariates included)
with the a priori restrictions on the distribution of the data
encoded in the semiparametric model. The only way to ob-
tain greater efficiency is to assume that the distribution of
the complete data follows a parametric model. The prob-
lem is that imposing a parametric model results in bias if
(as will essentially always be the case) the parametric model
for the joint distribution of the measured covariates and the
outcome Y is misspecified.

LR demonstrate that in the model characterized by (1)
and (2), the augmented inverse probability of censoring
weighted (AIPCW) estimator µ̂(b̂) with augmentation func-
tion b̂ identically 0 is similar to the Horvitz–Thompson
estimator and, like the Horvitz–Thompson estimator, can
be quite inefficient. They then appear to suggest that all
AIPCW estimators will be quite inefficient, “appeals to
semiparametric efficiency notwithstanding.” But this argu-
ment is specious, because, as LR acknowledge in the final
paragraph of their section 4, a locally efficient semiparamet-
ric estimator is an AIPCW estimator with a nonzero optimal
augmentation function. Indeed, Robins et al. (1994) previ-
ously noted the relationship of the unaugmented IPCW es-
timator to the Horvitz–Thompson estimator and introduced
augmented IPCW estimators specifically for the purpose
of improving efficiency. As one example, Robins and Wang
(1998) reanalyzed a dataset with missingness by design pro-
vided by Clayton, Spiegelhalter, Dunn, and Pickles (1998)
and found that the estimated relative efficiency of a locally
efficient semiparametric AIPCW estimator compared to a
fully parametric maximum likelihood estimator (MLE) was
.85, whereas that of the estimator with augmentation func-
tion identically 0 was only .16. Theoretical efficiency cal-
culations show that, in conflict with the speculations of LR,
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such results often can be expected when the observed co-
variates are highly correlated with missing outcomes. Per-
haps the ultimate proof that AIPCW estimators can be ef-
ficient is that, as we show in Section 3.2.7 here, the MLE
in a fully parametric model is itself an AIPCW estimator.

LR state in their section 4 that parametric “model-based
approaches have the potential to reduce both bias and vari-
ance.” We disagree. Variance reduction is offset by an in-
creased potential for bias due to model misspecification.
Specifically, in Section 3.2 here we show that in non-
ignorable models, whenever either the parametric MLE or
Rubin’s parametric multiple imputation estimator are con-
sistent, then all AIPCW estimators are also consistent, but
the converse is false. Furthermore, we show that in ignor-
able models the preceding statement is true for locally ef-
ficient AIPCW estimators.

Interestingly, in ignorable models, the above statement
need not hold for inefficient AIPCW estimators. Thus,
somewhat surprisingly, in ignorable models locally efficient
AIPCW estimators prevent bias as well as increase effi-
ciency relative to other AIPCW estimators. The adaptive
AIPCW estimator proposed in Section 4.3 and Appendix C
of our paper is locally efficient under ignorability.

2.5.3 Limiting the Scope of Nonignorable Models. LR
state that when good covariate information is available and
included in the analysis, “the MAR assumption may of-
ten be a reasonable approximation to reality, thus obviating
the need for a sensitivity analysis to model nonignorable
nonresponse.” We disagree. It seldom would be possible to
determine when the missing at random (MAR) assumption
is a reasonable approximation, as there may be important
unmeasured common causes of drop-out and the outcome.
Hence reasonable people may disagree as to whether the
sensitivity parameter α0 is close to its MAR value of 0. In
fact, the logic of LR’s argument is unchanged if we replace
LR’s quoted words with the words “ignorability of treat-
ment assignment conditional on covariates may often be a
reasonable approximation to reality, obviating the need for
a randomized trial.” Many epidemiologists have made this
argument with regard to the apparent protective effect of
beta carotene on lung cancer seen in many observational
studies. But recent randomized trials have shown that beta
carotene causes, rather than protects against, lung cancer.
Of course, a sensitivity analysis, unlike a randomized ex-
periment, cannot provide a definitive answer; rather, it is
but a sober warning that the true uncertainty may be much
greater than the sampling variability associated with a sin-
gle ignorable model. See Section 3.5.1. for further discus-
sion of these issues.

2.5.4 Scientific Rationale for the Adopted Model.
Choice of Functional Form. LR and LP criticize our choice
in (1) of the linear form α0Y for the selection function.
They say our choice assumes (a) that drop-out at t only de-
pends on the possibly unobserved future through the final
observation Y , (b) no interactions of Y with other covariates
are included, and (c) the selection parameter α0 is a scalar.
However, as we explained near the end of our Section 7.2.2,

we chose α0Y to illustrate the proposed methodology not
because “we thought it substantively plausible, but rather
because it is the usual default choice . . .” More substan-
tively motivated choices would be necessary for a complete
analysis of the data.

Implausibility of Little and Rubin’s “Plausible” Model. In
Sec. 7.3.1 of our article, we criticized our model (1) as im-
plausible because it assumes that drop-out depends on the
entire future only through the final observation. We thus
recommended the alternative model (15), which we called
model A∗(α0). Model (15) overcomes the deficiencies of (1)
by modeling the conditional hazard of drop-out given only
the observed past covariates and the final observation Y ,
rather than the entire future. In their section 3, LR repeat
our criticism of model (1), having apparently overlooked
our discussion in Section 7.3.1. Then, rather than adopting
our recommended model (15), they suggest an alternative
model, originally proposed by Diggle and Kenward (1994),
which assumes that drop-out depends on the entire future
only through the next observation. But in a previous pa-
per (Rotnitzky et al., 1998, p. 1321), we showed that this
assumption is itself implausible.

To clarify matters, we adopt LR’s discrete time model in
which Q is the censoring time and the complete data are
(Y1, Y2, Y3). For a subject who is censored in the interval
(1, 2], Q = 1; for one censored in (2, 3], Q = 2; and for an
uncensored subject, Q = 3. LR claim that the discrete time
analogue of our model implies 1 − pr(Q = 1|Y1, Y2, Y3) =
(1 − pr(Q = 1|Y1))Ψ(α0Y3) and that a more “plausible”
model would be 1 − pr(Q = 1|Y1, Y2, Y3) = (1 − pr(Q =
1|Y1))Ψ(α0Y2), where Ψ(u) = exp{− exp(u)} corresponds
to the complementary log-log link function. However, LR’s
claims are incorrect. Indeed, there does not exist any joint
distribution for (Q,Y1, Y2, Y3) that satisfies either of these
equations. To see this note that by taking conditional expec-
tations with respect to Y1 on both sides of the first equation,
one deduces that E{Ψ(α0Y3)|Y1} = 1 with probability one.
But this is impossible because the range of the function
Ψ(u) is the open interval (0, 1). An identical argument ap-
plied to the second equation leads to E{Ψ(α0Y2)|Y1} = 1
which again cannot occur.

LR’s misstatements can be easily corrected and, once
corrected, do not materially affect the thrust of their ar-
gument which we still find to be misguided. Specifically,
the correct discrete time analogue of our model (1) has
1 − pr(Q = 1|Y1, Y2, Y3) = Ψ{h(Y1) + α0Y3} where h(Y1)
is an unspecified nuisance function, and α0 is regarded as
known. The correct form of LR’s more “plausible” model
has 1 − pr(Q = 1|Y1, Y2, Y3) = Ψ{h(Y1) + α0Y2} where
h(Y1) is an unspecified function of Y1. LR’s parametric
model imposes the additional assumption that h(Y1) is lin-
ear in Y1. The Diggle–Kenward model only differs from
LR’s parametric model in that the complementary log-log
link is replaced by the logistic link. Finally, the discrete
time version of model (15) is 1 − pr(Q = 1|Y1, Y3) =
Ψ{h(Y1)+α0Y3} with h(Y1) unspecified and α0 regarded as
known. Subsequent discussion refers to the correct discrete
time versions of these models. Both model (1) and the LR–
Diggle–Kenward model impose implausible conditional in-
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dependence assumptions: Conditional on the past Y1, drop-
out in the interval (1, 2] depends on the future (Y2, Y3) only
through the final observation in Y3 in (1) and only through
the next observation Y2 in LR–Diggle–Kenward. In contrast,
(15) imposes no conditional independence assumptions; the
fact that the right side of the equation (15) does not depend
on Y2 is not an assumption, but rather a simple logical con-
sequence of the fact that (15) models the discrete hazard
pr(Q = 1|Y1, Y3) of Q at t = 1 given the past Y1 and the
final observation Y3.

When we are interested in performing a sensitivity anal-
ysis over the magnitude of the final outcome’s influence on
selection, (15) is a good choice, because it lessens the dif-
ficulty of choosing a plausible selection function. Indeed,
we introduced (1) and (13) before (15) only for pedagogic
reasons. Specifically, a theoretical analysis of the semipara-
metric model (15) is both less familiar and more subtle than
the analysis of (13). Remarkably, however, we show in Sec-
tion 7.3.1 and in Appendix A that the interval estimators for
(13) remain valid when (15) is true but (13) is false. A better
understanding of (15) can be obtained by reviewing the spe-
cial case in which α0 = 0 studied by Robins et al. (1995),
which we do in Section 3.3 here.

Finally, to review why the conditional independence as-
sumption imposed by the LR–Diggle–Kenward model is im-
plausible, we note that it will be false under the following,
quite natural scenario. Given the data up to time j, (a) the
hazard of drop-out given in the interval (j, j+1] is a deter-
ministic function of some unmeasured vector-valued latent
variable Uj+1 = (Uj+1,1, . . . , Uj+1,k) encoding multiple as-
pects of a subject’s health, economic, and emotional status
at that time; (b) the Uj are highly correlated over time;
and (c) Yj+1 is a possibly mismeasured version of some
component of Uj+1. Indeed, Little (1995, p. 1116) himself
previously noted that the Diggle–Kenward model could not
be true if the Yj’s were a mismeasured version of an un-
derlying Uj that determined drop-out.

2.5.5 Censoring by Death. LR follow Robins (1995,
p. 249) in arguing that censoring due to death should often
be handled differently from censoring due to other causes.
We agree that it would often be wise to impose the assump-
tion that a subject’s CD4 count at end of follow-up T is not
defined if he or she died prior to T . Robins (1995, p. 249)
discussed the strong nonidentifiable restrictions necessary
to identify even the null hypothesis of no treatment effect
under this assumption. In our article we did not make this
assumption, because it would have complicated the analysis
and drawn attention away from our main points.

2.6 Laird and Pauler

2.6.1 Nonparametric Versus Saturated Models. Baker
and Laird (1988) demonstrated that with categorical data,
a nonignorable model may fail to exactly fit the data (i.e.,
the expected cell counts may differ from the observed cell
counts), even though the model is “saturated” in the sense
that the number of free parameters in the model equals the
total degrees of freedom. LP incorrectly suggest that the
discrete time, categorical data versions of our models stud-

ied by Rotnitzky et al. (1998, sec. 7) might suffer from sim-
ilar lack of fit. LP failed to recognize that a model that is
saturated in the number of parameters is not necessarily
nonparametric. Recall that a model for missing data is non-
parametric if, for each possible law FO for the observed
data, there is a joint law allowed by the model whose
marginal is exactly FO. Our models (1), (13), (15), and (16)
are nonparametric models. With categorical data, the MLE
of the expected cell counts under a nonparametric model
will always equal the observed cell counts.

It is often argued that with categorical missing data, a
model that imposes only the MAR assumption is nonpara-
metric, because the number of free parameters in an unre-
stricted MAR model equals the degrees of freedom. As the
above discussion makes clear, this argument is flawed. Gill,
van der Laan, and Robins (1997), however, provided a rig-
orous proof that a model for categorical missing data that
imposes only MAR is nonparametric. The Gill et al. proof
covers both monotone and nonmonotone missing data.

2.6.2 Laird and Pauler’s Example 2. In their Exam-
ple 2, LP suggest considering the discrete time version of
our mean model (16), which they refer to as a pattern-
mixture model. However, strictly speaking, model (16) is
not a pattern mixture model in the sense of Little (1993a).
In our paper, we therefore referred to model (16) as a “se-
quential pattern-mixture model.” LP assume that censor-
ing by Q occurs only at times t ∈ {8, 20, 32, 44},V(t)
is the last observed value of V when Q = t, Y is mea-
sured at time T = 56, and Q ≡ T if Y is uncensored.
Further they suggest assuming that the difference between
the conditional mean E[Y |V̄(t), Q = t] of Y among those
dropping out at t and the mean E[Y |V̄(t), Q > t] of
those continuing on study is a constant φ, which is re-
garded as known but then varied in a sensitivity anal-
ysis. They appear to suggest fitting this model by fur-
ther specifying a regression model for E[Y |V̄(t), Q > t].
In section 3.5.2 here we show that LP’s suggested ap-
proach can be used to construct a consistent estimator of
µ provided the regression model for E[Y |V̄(t), Q > t] is
correct.

When φ = 0, we show in Section 3.5.2 below that LP’s
suggested approach reduces to the iterated conditional ex-
pectations estimator (ICE) studied by Robins et al. (1995)
and Robins (1998). Suppose that the specified model for
E[Y |V̄(t), Q > t] is non-linear in V̄(t). Consider the spe-
cial case in which the data happens to be MCAR (which
implies φ = 0). Even in this special case the ICE esti-
mator will be inconsistent unless the regression model for
E[Y |V̄(t), Q > t] happens to be correct; in contrast, the
estimators we propose in section 7.3.2 of our paper and
Section 3.5.2 below are guaranteed to be consistent.

A more fundamental problem with LP’s suggested ap-
proach is that, as discussed in Robins et al. (1995) and
section 3.5.2 below, the four nonlinear regression models
mt(V̄(t), βt) for E[Y |V̄(t), Q > t], t = 8, 20, 32, 44, will al-
most always be incompatible in the sense that for nearly all
values of the parameters βt, there will exist no joint distri-
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bution of (Q, V̄(T ), Y ) that simultaneously satisfies all four
models.

As an alternative to our model (16), LP also suggest re-
lating the mean of Y of those who drop-out at time t with
that of those that drop-out at time t + 1, by, for example,
specifying E[Y |V̄(t), Q = t] = E[Y |V̄(t), Q = t+ 1] + φ1,
or by relating the mean of Y of those who drop-out at t to
that of the completers (Q = T ), by, for example, specifying
E[Y |V̄(t), Q = t] = E[Y |V̄(t), Q = T ] + φ2. Conducting
a sensitivity analysis based on these models may be unsat-
isfactory because: (i) as emphasized by Robins (1998) and
Little and Rubin in their discussion here, one would nearly
always wish the model to include the possibility that one
has succeeded in collecting in V(t) data on all the important
causes of drop-out so that the data are missing at random
(MAR), i.e. pr(Q = t|Q ≥ t, V̄(T ), Y ) = pr(Q = t|Q ≥
t, V̄(t)) and yet, (ii) MAR does not imply that φ1 or φ2
take any particular fixed value such as 0. In contrast, MAR
implies φ = 0 in model (16).

3. MORE TECHNICAL DISCUSSION

In the remainder of this rejoinder we treat various is-
sues in greater depth. An understanding of this discussion
requires familiarity with the terminology and notation that
we and coauthors have used in a series of articles whose
purpose has been to generalize the results of Heitjan and
Rubin (1991) and Rubin (1976) for parametric missing-data
and censored-data models to include parametric, semipara-
metric, and nonparametric models.

3.1 Review of Notation and Terminology

Let L denote a subject’s full (possibly incompletely ob-
served) data vector. Assume that there are available for data
analysis n iid copies of the observed data O = (R, cR(L)),
where R is a random vector and cR(L) is a known function;
that is, a coarsening of L that changes with R. The coarsen-
ing variable R indicates what part of L is observed. Rubin
(1976) referred to cR(L) as Lobs. Let ∆ = I[cR(L) = L] be
the indicator of observing full (i.e., complete) data. Coars-
ened data includes missing data and censored data, as well
as other partially observed data configurations. For exam-
ple, missing data is the special case of coarsened data
in which each (possibly multivariate) component Lk of
L = (L′

1, . . . , L
′
p)

′ is observed either exactly or not at all
and R = (R1, . . . , Rp)′ is a vector of response indicators;
that is, Lk is observed if and only if Rk = 1. Right-censored
failure time data with a time-varying covariate process V(t)
is coarsened data in which O = (X = min(T , Q),∆ =
I (X = T ), V̄(X)), L = (V̄(T ), T ), T is a failure time ran-
dom variable, V̄(t) = {V(u); 0 ≤ u ≤ t}, R is equal to the
censoring time Q if Q < T , and, by convention, R = ∞ if
T ≤ Q. Also, cr(L) is the event (T > r, V̄(r)) when r < ∞
and c∞(L) = L (Robins and Rotnitzky 1992). Our article’s
data structure is the special case in which T is equal to the
nonrandom end of follow-up time T with probability 1 and
V(T ) = Y .

A model for the joint distribution of (R,L) specifies
that f(r, l) ∈ {f(r, l; ρ), ρ ∈ ρ}, where f(r, l) is the true

joint density, ρ is a possibly infinite-dimensional param-
eter space, and f(r, l; ρ) is a known density with respect
to a dominating measure. The model is correctly speci-
fied if the true density f(r, l) equals f(r, l; ρ0) for some
ρ0 ∈ ρ. A model f(r, l; ρ) is a selection model if f(r, l; ρ) =
f(r|l; ρmis)f(l; ρful), and the parameters ρmis and ρful are
variation-independent; that is, ρmis ∈ ρmis, ρful ∈ ρful, and
ρ = ρmis × ρful. The model is parametric if ρ can be
smoothly identified with a subset of a finite-dimensional
Euclidean space, in which case we refer to ρ as a finite-
dimensional parameter; otherwise, the model is said to be
semiparametric or, equivalently, infinite dimensional. An es-
timator µ̂ of a finite dimensional functional µ ≡ µ(ρ) of ρ
is a consistent and asymptotically normal (CAN) estima-
tor at a given ρ ∈ ρ if n1/2(µ̂ − µ(ρ)) converges in law
to a N(0, σ2) distribution. The estimator is regular CAN
(RCAN) at ρ if n1/2(µ̂ − µ(ρn)) converges to the same
N(0, σ2) distribution under all sequences {ρn} such that
n1/2(ρn − ρ) is bounded and {ρn} is contained in a regular
parametric submodel of ρ. In a parametric model contain-
ing ρ, a necessary condition for a RCAN estimator µ̂ of µ
to exist at ρ is that the Cramer–Rao variance bound for µ at
ρ is finite. In a semiparametric model a necessary condition
is that the semiparametric variance bound for µ at ρ is finite
(Bickel et al. 1993). The semiparametric variance bound for
µ at a law ρ ∈ ρ is the supremum of the parametric Cramer–
Rao variance bounds for µ at ρ over all parametric submod-
els containing ρ. RCAN estimators may exist at some but
not all laws allowed by a model. Although regularity is not
often explicitly mentioned, it is usually implicitly assumed.
For example, in a parametric model the Cramer–Rao bound
is the minimal asymptotic variance that can be obtained by
a RCAN estimator; nonregular CAN estimators may have
smaller asymptotic variance.

We focus our discussion on semiparametric selection
models in which ρful = (µ, θ), where µ is a finite- (say
p) dimensional parameter of interest and θ is an infinite-
dimensional nuisance parameter. For simplicity, until Sec-
tion 3.2.8, we suppose that µ is a one-dimensional func-
tional such as the mean or median of a component Y of L
and the model f(l; ρful) places no restriction on the law
of L. This implies that in the absence of missing data,
all RCAN estimators of µ are, up to asymptotic equiva-
lence, equal to solutions to a particular unbiased estimating
equation

∑
im(Li;µ) = 0 (Bickel et al. 1993). [The last

statement is technically true only for regular asymptoti-
cally linear (RAL) estimators, a subset of RCAN estimators.
But because RCAN estimators that are not RAL are rather
pathological and unlikely to arise in applications, we ignore
the distinction between RCAN and RAL estimators.] As an
example, m(L;µ) is Y − µ for the mean.

When data on Y are missing for some subjects and
f(r|l) is unrestricted, µ is not identified. Thus it is natu-
ral to consider more restrictive models in which ρmis, ρful
(equivalently θ), or both lie in finite-dimensional parameter
sets that we call parametric nonresponse models, paramet-
ric complete-data models, and (fully) parametric models.
For notational convenience, we let R1 denote a paramet-
ric nonresponse model, R2 denote a parametric complete-
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data model, and R3 denote a (fully) parametric model. One
might expect a large degree of symmetry between models
R1 and R2. Surprisingly, this is not the case. Specifically,
no RCAN estimator of µ (and of ρful) exist in any paramet-
ric complete-data model R2 in which f(r|l) is unrestricted
(Rotnitzky, et al. 1998). In contrast, RCAN estimators of µ
often exist at most ρ ∈ ρ in parametric nonresponse models
R1 even though f(l) is unrestricted. Rotnitzky and Robins
[1997, eqs. (29) and (30)] provided necessary conditions for
their existence, and Rotnitzky et al. (1998) studied many ex-
amples. A semiparametric nonresponse model (model R0)
differs from model R1 in that ρmis = (γ, η) where γ is fi-
nite (say q) dimensional and η is infinite dimensional. Model
B(α0) of our article is an example with η being the cumu-
lative baseline hazard function Λ0(·).

We say that there is positive probability of observing
complete data if the chance pr(∆ = 1|L) of fully observing
L is always positive; that is,

π(L) ≡ pr(∆ = 1|L) > 0 with probability 1. (1)

Unless we state otherwise, assume that (1) holds. Then
any RCAN estimator of ψ = (µ, ρ′

mis)
′, µ ∈ R1, ρmis ∈

Rq in the parametric nonresponse model R1 is asymp-
totically equivalent to an AIPCW estimator ψ̂ ≡ ψ̂(b̂) =
(µ̂(b̂), ρ̂mis(b̂)′)′ solving

∑
i

h(Oi;µ, ρmis; b̂) = 0,

h(O;µ, ρmis; b)

= ∆π−1(L; ρmis){d(L;µ) − Eρmis [(1 − ∆)b(O;ψ)|L]}
+ (1 − ∆)b(O;ψ) (2)

for some, possibly data-dependent (1 + q)-dimensional
function b̂ chosen by the analyst that converges in prob-
ability as n goes to ∞ to a fixed function. Here d(L;µ) =
(m(L;µ), 0′)′ and π−1(L; ρmis) = 1/π(L; ρmis) (Rot-
nitzky and Robins 1997). Any RCAN estimator of ψ =
(µ, γ) ∈ R1+q in the semiparametric nonresponse model
R0 is asymptotically equivalent to an estimator ψ̂(b̂) =
(µ̂(b̂), γ̂(b̂)′)′ provided that in (2) we replace ρmis by
ρ̂mis(γ) ≡ (γ, η̂(γ)) and η̂(γ) converges to the true value
of η at an appropriate rate. As an example, the estimator
ψ̂(b̂) of Section 4 of our article is a RCAN estimator in
model B(α0), where η = Λ0(·), η̂(γ) = Λ̂(·; γ).

Efficiency Theory. Let ρ̂MLE = (ρ̂ful,MLE, ρ̂mis,MLE) be
the MLE of ρ under a parametric model R3. In model
R1, Rotnitzky and Robins (1997) showed that the unique
efficient non-random choice beff(·;ψ) of b̂(·;ψ) is a func-
tion of all of the components of the ρ generating the data.
One possibility is to evaluate this function at ρ̂ = (ψ, θ̂)
where θ̂ is an estimate of θ based on a parametric sub-
model f(l; ρful). The resulting estimator ψ̂loc,eff = ψ̂(b̂eff)
is locally semiparametric efficient at the chosen paramet-
ric submodel f(l; ρful). That is, (a) ψ̂loc,eff is a RCAN es-
timator under model R1 even if the parametric submodel

f(l; ρful) is misspecified and (b) ψ̂loc,eff is the most efficient
estimator satisfying (a) when both model R1 and the sub-
model f(l; ρful) are correct. When the submodel f(l; ρful) is
correct, µ̂loc,eff has asymptotic variance equal to the semi-
parametric variance bound. Thus in model R1, µ̂loc,eff has
an asymptotic variance greater than or equal to that of the
MLE µ̂MLE =

∫
y dF (l; ρ̂ful,MLE) under the associated fully

parametric submodel of model R1. If, however, f(l; ρful) is
misspecified but model R1 is correct, µ̂MLE, in contrast to
µ̂loc,eff , is inconsistent. To make this discussion less ab-
stract, we use, as requested by LR, a simple missing-data
structure as a running example.

Example. Suppose that L = (Y,V),V is an always ob-
served high-dimensional vector of baseline variables (with
all components continuous) and Y , whose mean µ is the pa-
rameter of interest, may be missing for some subjects. Thus
O = (∆, Lobs), where ∆ = R,Lobs = (Y,V) when ∆ = 1
and Lobs = V when ∆ = 0. We consider the parametric
nonresponse model R1 with f(r|l; ρmis) given by

logit pr[∆ = 1|L; ρmis]
≡ logit π(L; ρmis) = γ0 + γ′

1V + αY, (3)

where ρmis = (γ′, α)′. Neither µ nor α need be identified.
For example, suppose the true but unknown value of α is 0.
Then it is not difficult to show that µ is not identified from
the law of FO of O if and only if the conditional moment
generating function MGF logE[exp{tY }|∆ = 1,V] exists
and is a linear function of V for some non zero-value of t.
Further it follows from Rotnitzky and Robins (1997, Table
2, Model 5), that a RCAN estimator cannot exist whenever
E[Y |V,∆ = 1] is linear in V. Hence when the conditional
MGF does not exist for all t 6= 0, the unknown α is zero,
and E[Y |V,∆ = 1] is linear in V, µ is identified but no
RCAN estimator exists and therefore the rate of conver-
gence of the optimal estimator will be less than the usual
n1/2. If, however, as when conducting a sensitivity analysis,
we consider the submodel in which we regard α as known,
so that ρmis = γ, then RCAN estimators exist at all laws
allowed by the submodel.

In this simple example, to obtain µ̂loc,eff in model (3) at
a parametric submodel f(l; ρful), it is sufficient to evaluate
b̂eff(O;ψ) for subjects with incomplete data (∆ = 0), which
Rotnitzky and Robins (1997) showed to be b̂eff(O;ψ) =
E∗
ρ̂rMLE(ψ)[H(ψ)|V], where H(ψ) = π(L; ρmis)[π−1(L;

ρmis)(Y −µ), 1,V′, Y ]′, E∗
ρ [H|V] ≡ Eρful [H{π−1(L; ρmis)−

1}|V]/Eρful [π
−1(L; ρmis) − 1|V], and ρ̂rMLE(ψ) is the re-

stricted MLE of ρ in the parametric submodel R3 with
ψ = (µ, ρmis) held fixed.

3.2 Parametric Versus Semiparametric Inference

In this section we compare parametric and semiparamet-
ric inference. We require the following definitions. If the
conditional density f(R|L) of R given L is only a func-
tion of O, we say that f(R|L) satisfies coarsening at ran-
dom (CAR) (Heitjan and Rubin 1991). In our example the
law f(R|L) of (3) satisfies CAR if and only if α = 0. Any
missing-data model is said to be a CAR model if and only if
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f(r, l; ρ) satisfies CAR for all ρ ∈ ρ. A CAR selection model
is ignorable in the sense of Rubin (1976) for the purposes
of frequentist inference. It is ignorable for Bayesian infer-
ence if ρmis and ρful are a priori independent. If a selection
model includes any density f(r|l; ρmis) that fails to satisfy
CAR, then the model is nonignorable. In a CAR parametric
nonresponse model, the MLE ρ̂mis of ρmis equals ρ̂mis,loc,eff .

Example (Continued). Model (3) is a nonignorable se-
lection model because it includes nonignorable laws (α 6= 0)
in addition to ignorable laws (α = 0). As an example of a
CAR model, consider the submodel of (3) in which, as when
conducting a sensitivity analysis, we regard α as known, so
ρmis = γ. Then this submodel is a CAR model if and only
if α = 0. In that case, π(L; ρmis) depends only on V, and
so E∗

ρ [H|V] simplifies to Eρful [H|V].
We show that the parametric MLE, µ̂MLE is less robust

to model misspecification than (a) any AIPCW estimator
µ̂(b̂) in a nonignorable selection model and (b) a locally
efficient AIPCW estimator in a ignorable selection model.
Before proceeding, we offer a note of caution. Many of the
arguments made in this section and in our article rely on
large-sample theory and thus may not be relevant to studies
with small sample sizes. When there is doubt, investigation
by simulation would be warranted.

3.2.1 Robustness of the Augmented Inverse Probability
of Censoring Weighted Estimators µ̂(b) in Nonignorable Se-
lection Models. In a nonignorable parametric selection
model R3, the MLE µ̂MLE will generally be inconsistent un-
less the parametric models f(r|l; ρmis) and f(l; ρful) are both
correctly specified. Somewhat surprisingly, this remains the
case even if the true law f(r|l) satisfies CAR. In contrast,
µ̂(b) generally will be CAN if the model f(r|l; ρmis) is cor-
rect.

3.2.2 Robustness of µ̂(b) in Designed Studies. In stud-
ies, such as sample surveys, with missingness only by de-
sign, f(r|l) is known, so that ρmis need not be estimated and
its dimension q can be taken to be 0 in model R1. It follows
that any estimator µ̂(b̂) is guaranteed to be a RCAN estima-
tor of µ in model R1. In contrast, µ̂MLE will be inconsistent
if the parametric model f(l; ρful) is misspecified.

3.2.3 Robustness of µ̂loc,eff in Coarsened at Random Se-
lection Models. In CAR selection models, µ̂MLE is CAN
if the parametric model is correct and the true density f(r|l)
satisfies CAR, even if the parametric model f(r|l; ρmis) is
misspecified. On the other hand, the estimators µ̂(b) are
CAN whenever the parametric CAR model f(r|l; ρmis) is
correct, even when f(l; ρful) is misspecified. Suppose that,
as is the case in studies with unplanned missing data, we
cannot be certain that either parametric model is correct. We
still may hope to find estimators of µ that are CAN if either
of the two models is correct and f(r|l) satisfies CAR. The
estimator µ̂MLE fails to satisfy this goal, because it is in-
consistent if the parametric model f(l; ρful) is misspecified.
However, following Robins and Ritov (1997) and Robins,
Rotnitzky, and van der Laan (to appear), we show in Sec-

tion 3.2.9 that the estimator µ̂loc,eff satisfies this goal. Thus,
somewhat surprisingly, even in ignorable models locally ef-
ficient AIPCW estimators are more robust than parametric
MLEs.

Example (Continued): Further Robustness and Regression-
Propensity Score Estimators in Ignorable Models. We can
sometimes further increase the robustness of µ̂loc,eff =
µ̂(b̂eff) by choosing b̂eff differently. A parametric model
e(V;ω) for the regression function E[Y |V] is less restric-
tive than a parametric model f(l; ρful) for the joint law of
L = (Y,V), because a correct model for f(l) implies a
correct model for E[Y |V], but not conversely. Hence if we
choose b̂eff(V;µ) = e(V; ω̂) − µ with ω̂ the (possibly non-
linear) least squares estimator of the parameter ω among
subjects with ∆ = 1, then µ̂(b̂eff) = n−1{∑

i e(Vi; ω̂) +
∆iπ

−1(Vi; ρ̂mis)[Yi − e(Vi; ω̂)]} will be CAN if either the
model e(V;ω) or the model f(r|l; ρmis) is correct. Further,
if both are correct, then the asymptotic variance will equal
the semiparametric variance bound for model R1. Consider
now the special case in which e(V;ω) ≡ e(V;ω, ρ̂mis) is
Φ{s(V;ω1) +ω2π

−1(V; ρ̂mis)}, where s(V;ω1) is a known
function, w = (w′

1, w2)′,Φ−1 is a known link function, and
ω̂ solves 0 =

∑
i ∆i{∂s(Vi;ω1)/∂ω′

1, π
−1(Vi; ρ̂mis)}′{Yi −

e(Vi;ω)}. Then µ̂(b̂eff) = n−1 ∑
i e(Vi; ω̂), because the

terms in ∆i exactly cancel. The term ω2π
−1(V; ρ̂mis) pro-

tects against misspecification of the model e(V;ω, ρ∗
mis) for

E[Y |V], where ρ∗
mis is the probability limit of the MLE ρ̂mis.

If Φ−1 is a canonical link function of a generalized lin-
ear model, then ω̂ is the iterately reweighted least squares
(IRLS) estimator solving the quasi-likelihood score equa-
tion. The representation of a locally efficient AIPCW esti-
mator as the regression estimator n−1 ∑

i e(Vi; ω̂) should
help dispel the mistaken belief that all AIPCW estimators
are inefficient.

Extension to Estimation of Treatment Effects. A
straightforward generalization of this estimator solves the
longstanding problem in the analysis of treatment effects of
how to add the propensity score to a regression model to
guarantee consistency, without needing to smooth. Consider
an observational study with n iid copies of (∆, Y,V) with
∆ the dichotomous treatment indicator, Y the outcome,
V a vector of pretreatment variables, π(V; ρmis) a para-
metric model for the propensity score pr(∆ = 1|V) with
MLE ρ̂mis and probability limit ρ∗

mis, and Φ{s(∆,V;ω1)}
a canonical link generalized linear model for E[Y |∆,V].
Assume conditional ignorability of treatment given V; that
is, Y (δ)

∐
∆|V, where Y (δ) is the possibly counterfactual

outcome at treatment level δ. Then the average treatment
effect is µ ≡ E{E[Y |∆ = 1,V] − E[Y |∆ = 0,V]}. Let
ω̂ be the IRLS estimate in the canonical link expanded
model e(∆,V;ω) ≡ e(∆,V;ω, ρ̂mis) ≡ Φ[s(∆,V;ω1) +
ω2∆π−1(V; ρ̂mis) + ω3(1 − ∆){1 − π(V; ρ̂mis)}−1] for
E[Y |∆,V]. Then µ̂ = n−1 ∑

i e(1,Vi; ω̂) − e(0,Vi; ω̂) is
a CAN estimator of µ if either the model e(∆,V;ω, ρ∗

mis)
or π(V; ρmis) is correct and is locally semiparametric ef-
ficient at submodel e(∆,V;ω, ρ∗

mis) in the semiparamet-
ric model characterized by model π(V; ρmis). To guaran-
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tee consistency of µ̂ under misspecification of s(∆,V;ω1),
it was necessary to add both the terms ∆π−1(V; ρ̂mis) and
(1 − ∆){1 − π(V; ρ̂mis)}−1.

Suppose now that ∆ is a possibly multivariate contin-
uous and/or discrete treatment. We specify a paramet-
ric model f(∆|V; ρmis) for the conditional density of ∆
given V with respect to a dominating measure ν(∆).
Let ρ̂mis be the MLE with probability limit ρ∗

mis. We
also specify a marginal structural mean (MSM) model
g(δ,w;µ) for E[Y (δ)|W = w], where W is a subvector
of V, g(δ,w;µ) is a known function, and µ is an unknown
parameter vector (Robins, 1999; Robins, Greenland, and
Hu, 1999). Finally, we specify a canonical link working
model Φ[s(∆,V;ω1)] for E[Y |∆,V]. Then, given a user-
supplied function m(∆,W) of the dimension of µ, we let µ̃
solve

∑
i

∫
[m(∆,Wi){e(∆,Vi; ω̂)−g(∆,Wi;µ)}]dν(∆) =

0 where e(∆i,Vi; ω̂) and ω̂ are the predicted value of
Yi and the IRLS estimator in the expanded working
model e(∆,V;ω) ≡ e(∆,V;ω, ρ̂mis) ≡ Φ[s(∆,V;ω1) +
ω′

2m(∆,W)/f(∆|V; ρ̂mis)]. Then given that both model
g(δ,w;µ) and conditional ignorability given V hold, µ̃ is a
CAN estimator if at least one of the models e(∆,V;ω, ρ∗

mis)
or f(∆|V; ρmis) is correct. Furthermore, in the semipara-
metric model characterized by the MSM model g(δ,w;µ),
conditional ignorability, and the model f(∆|V; ρmis), for
a certain choice meff(∆,W) of m(∆,W), µ̂ is locally effi-
cient at the submodel e(∆,V;ω, ρ∗

mis). Robins (1999) shows
how to obtain meff(∆,W).

Model e(∆,V;ω, ρ∗
mis) for E[Y |∆,V] will often be in-

compatible with the MSM model g(δ,w;µ). One possible
solution is to define the model g(δ,w;µ) in terms of the
model e(∆,V;ω, ρ∗

mis) via g(δ,W;µ) ≡ g(δ,W;µ, ρ̂mis) ≡∫
e(δ,V;ω, ρ̂mis)dF (V|W;κ), where µ = (ω, κ) and

f(V|W;κ) is a model for f(V|W). Estimation of µ by µ̃ is
as described above. Both the estimators µ̂ and µ̃ are special
cases of the general class of augmented inverse probabil-
ity of treatment weighted (IPTW) estimators of marginal
structural mean (MSM) models proposed by Robins (1999).
Robins (2000) extends these results by deriving a “regres-
sion estimator” representation of an IPTW estimator in lon-
gitudinal MSM models with time-varying covariates.

Example (Continued): Further Robustness in Non-
Ignorable Models. Consider model R0 in which model
(3) for pr(∆ = 1|L) is replaced by logit π(L; ρmiss) =
η(V) + r(L), where r(L) is a known function of L
(such as α0Y ), η(V) is an unknown function of V and
ρmiss = η(·). Model R0 is the discrete time (single
occasion) version of model A(α0) in our paper. Under
model R0 µ is identified and equal to both E[∆Y + (1 −
∆)E(Y exp{−r(L)}|∆ = 1,V)/E(exp{−r(L)}|∆ = 1,V)]
and E[∆Y/pr(∆ = 1|L)]. Furthermore, the semiparamet-
ric variance bound for µ is finite. However, estimators of
µ that perform well for all laws allowed by the model do
not exist due to the curse of dimensionality. To reduce di-
mensionality, we can consider either a parametric model
η(V; γ) for η(V) indexed by a q-dimensional parameter
γ, or a parametric model u(V; ζ) for the ratio u(V) =
E[Y exp{−r(L)}|∆ = 1,V]/E[exp{−r(L)}|∆ = 1,V] in-

dexed by an s-dimensional parameter ζ. The former deter-
mines a parametric non-response model R1 with ρmiss ≡ γ.
The latter is a semiparametric model for f(Y |∆ = 1, L)
which we call a semiparametric pattern-mixture model.
Now µ̂(b̂) is a CAN estimator of µ when η(V; γ) is cor-
rectly specified. Furthermore, µ̃(g) = n−1 ∑

i ∆iYi + (1 −
∆i)u(Vi; ζ̂(g)) is a CAN estimator of µ when u(V; ζ) is
correctly specified, where ζ̂(g) is a CAN estimator of ζ
solving

∑
i ∆ig(Vi) exp{−r(Li)}{Yi − u(Vi; ζ)} = 0 with

g(V) any user-supplied s-dimensional function. Since we
cannot be certain that these models are correctly specified,
the best that can be hoped for is to find a single robust esti-
mator that is CAN whenever either model η(V; γ) or model
u(V; ζ) is correct. Interestingly, it can be shown that the
estimator µ̂(b̂robust) satisfies this hope, where b̂robust(Vi;µ)
is any user-supplied 1 + q dimensional function with first
component equal to u(Vi; ζ̂(g)) − µ.

When r(L) is identically 0 so that the data are CAR,
u(V) = E[Y |V] and the function b̂eff of the earlier CAR
example equals b̂robust. Thus, when r(L) ≡ 0, µ̂(b̂robust) is
locally efficient at the submodel u(V; ζ) in the semipara-
metric model characterized by the model logitπ(L; ρmis) =
η(V; γ) + r(L) and r(L) known. When r(L) is not identi-
cally 0, µ̂(b̂robust) is not locally efficient in this model; any
locally efficient estimator will be inconsistent if the model
η(V; γ) is misspecified even when the model u(V; ζ) is cor-
rect.

3.2.4 Robustness of µ̂(b) When the Data are Missing
Completely at Random. When R is independent of L,
we say the data are MCAR. Because when the true data-
generating mechanism is MCAR, the complete-case estima-
tor µ̂cc solving 0 =

∑
i ∆im(Li, µ) is CAN, it seems impor-

tant to require that any estimator used to adjust for poten-
tial selection bias due to measured or unmeasured factors be
guaranteed to be CAN if in fact the data are MCAR. Other-
wise, our estimator could fail where the simple complete-
case analysis would succeed. In both ignorable and non-
ignorable selection models the estimators µ̂(b̂), in contrast
to µ̂MLE, are CAN under MCAR, provided that the model
f(r|l; ρmis) includes all MCAR mechanisms.

Example (Continued). The nonignorable model (3) in-
cludes all MCAR mechanisms. To see this, set γ1 = α = 0
and vary γ0. Hence µ̂(b̂) is CAN under MCAR.

3.2.5 Robustness of µ̂loc,eff When the Positivity Assump-
tion (1) Fails. Assumption (1) above is equivalent to as-
suming that (a) there are subjects with complete data and
that (b) the support of L for subjects with coarsened data
(∆ = 0) is included in that of subjects with complete data
(∆ = 1). Of course, neither of these assumptions is guaran-
teed to hold. For example, (a) fails for the semiparametric
CAR current status data model studied by van der Laan and
Robins (1998) in which we observe both whether an under-
lying failure time variable T exceeds a random monitoring
time Q and the history of a covariate process V̄(t) until Q.
Furthermore, (b) may fail in the nonselection mean model
(16) considered in Section 7.3.2 of our article. Nonetheless,
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as shown in these papers, both of these models admit robust
RCAN estimators of the mean µ of T and Y . The point is
that semiparametric estimators can be useful regardless of
whether they allow the AIPCW representation of (2).

In the case of selection models in which (a) is true but
(b) is false, it is standard practice to estimate µ by the MLE
µ̂MLE in a fully parametric model R3 rather than by an
AIPCW estimators µ̂(b̂) in a parametric nonresponse model
R1 because, under model R1, h(O;µ, ρmis; b) may no longer
have mean 0 and thus µ̂(b) can be inconsistent. Surprisingly,
even in this setting, in CAR models µ̂loc,eff = µ̂(b̂eff) can
be more robust to model misspecification than µ̂MLE, as
illustrated by the following example.

Example (Continued). Suppose that pr[∆ = 1|Y,V] =
π(V)I(V ∈ K) where K is a known set and we specify a
parametric CAR nonresponse model π(V) ∈ {π(V; ρmis)}.
Thus the data are CAR, but the probability of observing Y
is 0 for V 6∈ K, so the mean µ of Y is not even identi-
fied without strong assumptions. In this setting it is enor-
mously difficult to specify either a correct parametric model
f(l; ρful) for the joint law of L = (Y,V) or a correct model
e(V;ω) for E[Y |V], because of the need to extrapolate to
the complement Kc of K. But again the model e(V;ω) is
less restrictive than the model f(l; ρful). It can be shown
that the estimator µ̂(b̂eff) of Section 3.2.3 remains a CAN
estimator of µ if ω is identified and e(V;ω) is correct re-
gardless of whether the model π(V; ρmis) is misspecified.
In contrast, the MLE µ̂MLE under f(l; ρful) generally will
be consistent only if µ is identified and the model f(l; ρful)
is correct. When model e(V;ω) is correct, the CAN esti-
mator n−1 ∑

i e(Vi; ω̂) is more efficient than µ̂(b̂eff) except,
when as in the example of Section 3.2.3, they are equal.

3.2.6 Lack of Robustness of Parametric Multiple Im-
putation. In parametric MI, one imputes missing values
based on assuming a fully parametric model to create m
completed datasets. The estimator µ̂MI of the mean µ is
then the mean of the m dataset-specific sample averages of
Y (Rubin 1987). It follows that the qualitative robustness
problems of µ̂MLE are inherited by µ̂MI. However, when the
amount of missing data is quite small, µ̂MI generally will
be much less biased than µ̂MLE under misspecification of
f(l; ρful), because µ̂MI, in contrast to µ̂MLE, does not replace
a responder’s observed Y with its predicted value under the
model.

3.2.7 ρ̂MLE in a Parametric Model is an Augmented
Inverse Probability of Censoring Weighted Estimator.
Proposition A of Rotnitzky and Robins (1997) implies
that in a parametric model R3, any RCAN estimator
of ρ is asymptotically equivalent to an AIPCW estima-
tor ρ̂ ≡ ρ̂(q, b) solving

∑
i h(Oi; ρ; q, b) = 0, where

h(O; ρ; q, b) = ∆π−1(L; ρ){q(L; ρ)−Eρ[(1−∆)b(O; ρ)|L]}+
(1−∆)b(O; ρ); q(L; ρ) and b(O; ρ) are vectors of the dimen-
sion of ρ and q(L; ρ) is an unbiased estimating function; that
is, Eρ[q(L; ρ)] = 0. The MLE ρ̂MLE is algebraically iden-
tical to the optimal AIPCW estimator ρ̂(qopt, bopt), where
bopt(O; ρ) = Eρ[SF (ρ)|O], SF (ρ) = ∂ log f(R,L; ρ)/∂ρ is

the full data score for ρ, and qopt(L; ρ) = π(L; ρ)SF (ρ) +
Eρ[(1 − ∆)bopt(O; ρ)|L]. This can be proved by not-
ing that in any missing-data model, the observed data
score S(ρ) equals Eρ[SF (ρ)|O] and checking that S(ρ) =
h(O; ρ; qopt, bopt).

3.2.8 Semiparametric Complete-Data Models. In this
section we generalize models R0 and R1 to allow for semi-
parametric complete-data models f(l; ρful), where ρful =
(µ, θ), µ is a finite-(say p) dimensional parameter of in-
terest and θ is an infinite-dimensional nuisance parameter.
We restrict attention to models f(l; ρful) in which in the
absence of missing data, all RCAN estimators of µ are,
up to asymptotic equivalence, equal to solutions µ̂(m) to∑
im(Li;µ) = 0, where m(·; ·) is a member of the set M

of all p-dimensional unbiased estimating functions for µ;
that is, M = {m(L;µ): Eµ,θ[m(L;µ)] = 0 for all θ, µ}.
These models include the nonparametric complete-data
models studied earlier as special cases. Robins et al. (1999)
and Rotnitzky and Robins (1997) considered more general
models.

Example (Continued). Consider the semiparametric re-
gression model for L = (Y,V′)′ with V′ = (Z ′,W′)
characterized by the restriction E[Y |Z] = g(Z;µ0), where
g(Z;µ) is a known function; for example, g(Z;µ) = µ′Z.
In this model, θ indexes all joint laws for ε(µ) ≡ Y −
g(Z;µ) and V that are restricted only by the condition that
Eµ,θ[ε(µ)|Z] = 0 for all µ and θ, and M = {m(L;µ) =
m(Z)[Y − g(Z;µ)]: m(Z) a p-dimensional function}. Any
RCAN estimator of ψ = (µ, ρmis) in models R0 or R1
is asymptotically equivalent to an AIPCW estimator ψ̂ ≡
ψ̂(b̂) = (µ̂′(b̂), ρ̂′

mis(b̂))
′ solving (2), where now ψ, b̂, d, and

h are (p + q) dimensional and d(L;µ) is any (p + q)-
dimensional estimating function for µ.

3.2.9 Sketch of Proof of Robustness of µ̂loc,eff in the
Coarsened at Random Selection Models of Section 3.2.3.
Define the operator mρ and its inverse m−1

ρ as follows.
Given a law f(r, l; ρ) = f(r|l; ρmis)f(l; ρful), for any D =
d(L), define mρ{D} = Eρmis [Eρ{D|O}|L]. When (1) holds,
mρ is injective and the inverse operator m−1

ρ exists. An
important fact about distributions satisfying CAR, which
is the key to our proof, is that conditional expectation of
d(L) given O depends only on the marginal law of L.
That is, if f(r|l; ρmis) satisfies CAR, then Eρ{d(L)|O} =
Eρful{d(L)|O}.

Example (Continued). Rotnitzky and Robins (1997)
showed that m−1

ρ {D} = π−1(L; ρmis)D + {1 − π−1

(L; ρmis)}E∗
ρ{D|V}.

We restrict attention to the setup and models of Sec-
tion 3.2.8. We consider a semiparametric selection model
characterized by a parametric CAR nonresponse model
f(r|l; ρmis) and a semiparametric complete-data model f(l;
ρful) with p-dimensional Euclidean parameter µ. Given a
p-dimensional function m ∈ M and a parametric sub-
model of the model f(l; ρful), define the random function
b̂m(O; µ) = Eρ̂ful,rMLE(µ)[m−1

ρ̂ful,MLE(µ),ρ̂mis
{m(L, µ)}|O],
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where ρ̂ful,rMLE(µ) is the MLE of ρful in the parametric
submodel with µ held fixed and ρ̂mis is the MLE of ρmis.
Let µ̂m solve

∑
i b̂
m(Oi;µ) = 0. Note that µ̂m is equal to

the solution µ̂(b̂m) to (2) when µ, ρ̂mis,m, and b̂m are sub-
stituted for ψ, ρmis, d, and b̂. Robins et al. (1994) proved
that µ̂m̂eff is a locally efficient estimator µ̂loc,eff of µ at the
parametric complete-data submodel, where m̂eff converges
to a certain meff ∈ M. Hence, to prove robustness of µ̂loc,eff
in the sense described in Section 3.2.3, it suffices to prove
the following.

Theorem. For m̂ converging to an m ∈ M, µ̂m̂ is a
CAN estimator of µ if either (a) the parametric CAR model
f(r|l; ρmis) and the semiparametric model f(l; ρful) are both
correct or (b) the parametric submodel of model f(l; ρful) is
correct and the true data-generating process satisfies CAR.

Proof Sketch. Let ρ> = (ρ>
ful, ρ

>
mis) denote the true

CAR law generating the data, and let ρ∗
mis and ρ∗

ful
be the probability limits of ρ̂mis and ρ̂ful,rMLE(µ>) and
set ρ∗ = (ρ∗

ful, ρ
∗
mis). Note that ρ∗

mis = ρ>
mis if model

f(r|l; ρmis) is correct, and ρ∗
ful = ρ>

ful, if the paramet-
ric submodel is correct. Thus, under regularity condi-
tions, the theorem will be true if we can show for
all m ∈ M, U ≡ Eρ> [Eρ∗

ful
[m−1

ρ∗ {m(L, µ>)}|O]] =
0 when either ρ∗

mis = ρ>
mis or ρ∗

ful = ρ>
ful. If

ρ∗
mis = ρ>

mis, then U = Eρ>
ful

[mρ∗m−1
ρ∗ {m(L, µ>)}] =

Eρ>
ful

[m(L, µ>)] = 0 by m ∈ M. Next, suppose that ρ∗
ful =

ρ>
ful. Because, under CAR, Eρ>

ful,ρ
>
mis

[Eρ>
ful,

{d(L)|O}] =
Eρ>

ful,ρ
∗
mis

[Eρ>
ful

{d(L)|O}] = Eρ>
ful

[d(L)], we obtain U =
Eρ>

ful,ρ
∗
mis

[Eρ∗
ful

[m−1
ρ∗ {m(L, µ>)}|O]] = Eρ>

ful,ρ
∗
mis

[mρ∗m−1
ρ∗

{m(L, µ>)}] = Eρ>
ful,ρ

∗
mis

[m(L, µ>)] = 0.

Remark. The results in this section remain true, except
for minor notational changes, if we substitute a semipara-
metric nonresponse model R0 for the parametric nonre-
sponse model R1. In models in which the positivity assump-
tion (1) does not hold, mρ is not injective. Nonetheless,
under regularity conditions, the efficient influence func-
tion for µ still has the form Eρ{m−1

ρ [meff(L, µ)]|O}, ex-
cept that m−1

ρ is now a generalized inverse (van der Vaart
1991); in that case the results in this section remain true,
except that µ̂m may no longer have a representation as
an AIPCW estimator µ̂(b̂m). Finally, Robins et al. (1999)
and Rotnitzky and Robins (1997) showed how to calculate
m̂eff(L, µ) = m̂eff(Z)[Y −g(Z;µ)] and ψ̂loc,eff in the regres-
sion modelE[Y |Z] = g(Z;µ0) of Section 3.2.8 in both CAR
and non-CAR models for various data structures treated in
our article and in our example.

3.3 Ignorability and Nonignorability in Model (15) With
α = 0

Consider the monotone missing-data structure of Sec-
tion 3.1. The full data L = (V̄(T ), T ) are censored by
Q, resulting in observed data O = (X = min(T , Q),∆ =
I (X = T ), V̄(X)). A model λQ(t|V̄(t);ω) for the cause-
specific hazard of censoring given the observed past V̄(t)
is said to be ignorable for inference about µ if the ob-

served data likelihood L(O; ρ) with ρ = (µ, ξ, ω) factorizes
as L(O; ρ) = L1(O;µ, ξ)L2(O;ω) and (µ, ξ) and ω are “dis-
tinct,” because then the likelihood factor L2(O;ω) can be
“ignored” for inference about µ. Two parameter vectors, ρ1

and ρ2, are distinct for frequentist inference if they are vari-
ation independent and for Bayesian inference if they have
independent priors (Rubin 1976). Rubin (1976) noted that
CAR selection models with ρful = (µ, ξ) and ρmis = ω are
ignorable. (Robins and Ritov (1997) showed, however, that,
in this setting, if ξ is infinite dimensional, then the factor
L2(O;ω) often cannot be ignored for frequentist inference
about µ. Nonetheless, we shall continue to employ the usual
nomenclature and refer to the model λQ(t|V̄(t);ω) as ignor-
able even when ξ is infinite dimensional.)

Interestingly, (15) with α0 = 0, which we call model
A∗(0), provides an example of an ignorable non-CAR
model. To illustrate this point in a simple setting, we use
the discrete time model described earlier in Section 2.5.4.
To do so, we identify our V(1),V(2), and Y ≡ V(3)
with LR’s Y1, Y2, and Y3 and set T equal to 3 with prob-
ability 1. To simplify the exposition, we assume that Y3

is dichotomous. Under model A∗(0), the discrete hazard
λQ(t|Y1, Yt, Y3;ω) ≡ pr[Q = t|Y1, Yt, Y3, Q ≥ t;ω] is as-
sumed to not depend on Y3 and thus equals λQ(t|Y1, Yt;ω)
for t = 1, 2. Hence the individual likelihood contribu-
tion L(Q,L; ρ) based on data (Q,L = (Y1, Y2, Y3)) can
be factorized as L(Q,L; ρ) = Lful(Q,L;µ, ξ)Lmis(O;ω),
where Lful(Q,L;µ, ξ) = Lful

1 (Q,L;µ, φ)Lful
2 (Q,L; ν), with

Lful
1 (Q,L;µ, φ) = f(Y3;µ)f(Y1|Y3;φ1)f(Y2|Y1, Y3, Q 6=

1;φ2)I(Q6=1),Lful
2 (Q,L; ν) = {f(Y2|Y1, Y3, Q = 1; ν]}I(Q=1),

Lmis(O; ω) = λQ(1|Y1;ω)I(Q=1)[{1−λQ(1|Y1;ω)}λQ(2|Y1,
Y2; ω)I(Q=2){1 − λQ(2|Y1, Y2; ω)}I(Q6=2)]I(Q6=1), ξ =
(φ, ν), and φ = (φ1, φ2). It follows that the observed
data likelihood is L(O; ρ) = L1(O;µ, φ)L2(O;ω), where
L1(O;µ, φ) = [Lfull

1 (Q,L;µ, ξ)]I(Q=3)[
∑1
Y3=0 Lfull

1 (Q,L;
µ, ξ)]I(Q≤2) and L2(O;ω) = Lmis(O;ω). Examination of
these likelihoods reveals that: (a) L(O; ρ) does not depend
on ν, so ν is not identified from the observed data O;
(b) the “implausible” conditional independence assumption
I(Q = 1)

∐
Y2|Y1, Y3 implied by model (1) of Section 2.5.4

is equivalent to ν = φ2 and thus the data have nothing to
say about its validity; (c) when (µ, φ) and ω are distinct,
the model λQ(t|Y1, Yt;ω) is ignorable; (d) A∗(0) is a CAR
model [and identical to the model of equation (1) of our
paper with α0 = 0] if and only if ν = φ2. Items (c) and (d)
imply that a submodel of A∗(0) in which (µ, φ1, φ2) and ω
are distinct and ν = φ2−c for some known nonzero constant
c is non-CAR but ignorable. Furthermore, if we reparam-
eterize the likelihood L(Q,L; ρ) as f(Q|L; ρmis)f(L; ρful),
then it can be shown that ρful and ρmis are not distinct in
this submodel, which exemplifies the fact that an ignorable
non-CAR model cannot be a selection model. On the other
hand, suppose that we consider a submodel of model A∗(0)
in which ρmis and ρful are distinct. Then if ν 6= φ2, the model
is non-CAR. But a non-CAR selection model is nonignor-
able for inference on µ. This is so even though the observed
data likelihood still factorizes into a (µ, φ) part and a ω part,
because now ω and (µ, φ) are not distinct. In summary, a
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submodel of model A∗(0) can be an ignorable CAR se-
lection model, an ignorable non-CAR nonselection model,
or a nonignorable non-CAR selection model, depending on
whether or not we set ν equal to φ2, and whether we as-
sume that the pair ω and (µ, φ) versus the pair ρmis and ρful
is distinct.

3.4 Follow-Up of Nonrespondents

Suppose that in our AIDS example, the only censoring
had been due to loss to follow-up. Further suppose that to
diminish bias due to nonignorable drop-out, the investiga-
tors make up to K attempts (say, house visits) to contact
the nonrespondents and measure their outcome Y . (These
contacts are made soon after the end of follow-up time T
at which the CD4 count Y was to be measured, so temporal
trends in CD4 can be ignored.) In this setting the observed
data are now O = (C,Q, V̄(Q),∆,∆Y ), where C ≡ 0 if a
subject is a completer (Q = T );C ≡ k if Y is measured
on the kth contact attempt for k = 1, 2, . . . ,K − 1, and
C ≡ K otherwise; and ∆ is the indicator that Y is observed.
Redefine L ≡ (C,Q, V̄(Q), Y ) and π(L) = pr[∆ = 1|L].
Consider the semiparametric model R1 characterized by the
model for π(L),

π(L; ρmis)

= expit [κ(Q, V̄(Q); ρmis) + r(L, β0)]}I(C=K), (4)

where expit(u) ≡ {1 + exp(−u)}−1, κ(Q, V̄(Q); ρmis) is a
known function, ρmis is an unknown finite-dimensional pa-
rameter, r(L;β) is a known function satisfying r(L; 0) = 0,
and we regard the nonignorable selection bias parameter β0
as known but vary it in a sensitivity analysis. Note that, as
required, π(L; ρmis) = 1 if C 6= K, because, by definition,
∆ = π(L) = 1 if C 6= K. Then, by proposition A1 of Rot-
nitzky and Robins (1997), up to asymptotic equivalence, all
RCAN estimators of ψ = (µ, ρ′

mis)
′ under (4) based on the

data O can be obtained by solving
∑
i h(Oi;µ, ρmis; b̂) = 0

of (2) for some b̂(O;ψ). Note that we no longer need to
correctly specify either model (13) or (15) of our article to
obtain RCAN estimators of the mean µ of Y .

When it is too costly to attempt to contact all drop-outs,
the multistage monotone random sampling design (here-
after, ms design) studied by Rotnitzky and Robins (1995)
is often used. In this design, contact attempts are made
on each nonrespondent until either K attempts have been
made, Y is recorded, or the outcome of a known ran-
dom sampling mechanism specifies that the contact at-
tempts are to be discontinued. The theory of Rotnitzky
and Robins (1997) can be used to obtain estimators of ψ
as follows. Let S denote the (possibly unobserved) first
occasion k, k ∈ {1, 2, . . . ,K + 1} at which the random
sampling mechanism would specify that no contact be at-
tempted, so S can “censor” C. Let Xms = min(C, S) and
∆ms = I(S > C). Under the ms design, the observed data
are Oms = (Xms,∆ms, Q, V̄(Q),∆ms∆,∆ms∆Y ). Now re-
garding O = (C,Q, V̄(Q),∆,∆Y ) as the “full” data that
would be observed if all subjects had ∆ms = 1 (as was the
case under the design analyzed in the preceding paragraph),

the conditional probability pr[∆ms = 1|O] of observing
the “full” data O under the ms design is Πms(C), where
Πms(j) =

∏j
k=0{1−λms,k(Q, V̄(Q))}, λms,0(Q, V̄(Q)) ≡ 0,

and the random sampling probabilities λms,k(Q, V̄(Q)) ≡
pr[S = k|Xms ≥ k,O] = pr[S = k|Xms ≥ k,Q, V̄(Q)]
are known by design for k = 1, . . . ,K. Hence, by
proposition A1 of Rotnitzky and Robins (1997), up to
asymptotic equivalence, all RCAN estimators of ψ in the
model characterized by (4) and data Oms are given by
ψ̂ms(b̂, b̂ms) solving 0 =

∑
i hms(Oms,i;ψ; b̂, b̂ms), where

hms(Oms;ψ; b̂, b̂ms) = ∆msΠ−1
ms(C){h(O;µ, ρmis; b̂)−E[(1−

∆ms)b̂ms(Oms;ψ)|O]} + (1 − ∆ms)b̂ms(Oms;ψ). This result
assumes that each subject is sampled independently. Robins
et al. (1994, sec. 6.4) provided an extension appropriate for
nonindependent sampling designs.

It follows from proposition 8.2 of Robins et al.
(1994) that for any choice of b̂(O;ψ) with probabil-
ity limit b(O;ψ), the locally optimal choice b̂b̂ms of
b̂ms at a parametric model f(L; ρful) is b̂b̂ms(Oms;ψ) =
Φ{h(O;µ, ρmis; b̂)}, where Φ(Z) = HZ (Xms)/Πms(Xms)−∑Xms
j=0 λms,j(Q, V̄(Q))HZ(j)/Πms(j),HZ(j) = Eρ̂ful,rMLE(ψ)

[Z|Q, V̄(Q), C > j − 1] and ρ̂ful,rMLE(ψ) is the MLE
of ρful with ψ fixed. It then follows from Rotnitzky and
Robins (1997) that a locally efficient AIPCW estimator
ψ̂loc,eff is obtained by choosing b̂ to be b̂eff = b̂eff(L;ψ) =
I(C = K)Eρ̂ful,rMLE(ψ)[(π−1(L; ρmis) − 1)H(ψ)|C =
K,Q, V̄(Q)]/Eρ̂ful,rMLE(ψ)[(π−1(L; ρmis) − 1)Πms(C)|C =
K,Q, V̄(Q)] with H(ψ) ≡ (Y − µ, π(L; ρmis)∂κ(Q, V̄(Q);
ρmis)/∂ρ′

mis)
′. Putting all of the above together, we obtain

that ψloc,eff solves

0 =
∑
i∆ms,i∆i

{
Πms;i(Ci)π(Li; ρmis)I(Ci=K)

}−1
H1i(ψ)

+
∑
i∆ms,i{∆iπ(Li; ρmis)−1 − 1}b̂eff(Li;ψ) + Φi(H1i(ψ)),

where H1i(ψ) = (Yi − µ,0′)′ and 0 is a column vector of
the dimension of ρmis.

Suppose that there are no persistent nonresponders (∆ =
1 with probability), so all missing data on Y are by design.
Then the foregoing procedure produces a locally efficient
estimator when we take b̂eff equal to 0. In this setting, sev-
eral authors have proposed using the nonparametric maxi-
mum likelihood estimator (NPMLE) of the mean µ based on
either the data O or on a subset of the data. However, due to
the curse of dimensionality, the NPMLE, in contrast to the
locally efficient AIPCW estimator, can neither recover the
information about µ contained in the data (Q, V̄(Q)) nor
allow for the known selection probabilities λms,k to depend
in a complex way on (Q, V̄(Q)) (Robins and Ritov 1997).

3.5 Additional Issues

3.5.1 Little and Rubin. LR reference an article by Ru-
bin, Stern, and Vehovar (RSV) as support for their view
that the MAR assumption may often be a reasonable ap-
proximation to reality thus obviating the need for a sen-
sitivity analysis. However, we do not find that the RSV
article provides meaningful support for LR’s views. RSV
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analyzed a poll with nonmonotone missing data whose pur-
pose was to predict the result of the Slovenian plebiscite
that occurred 3 weeks later. RSV offered two arguments.
The first was based on designating one particular unsatu-
rated nonignorable model as “obvious” and demonstrating
that this model failed to fit the data. RSV then fit a saturated
MAR model (which, by necessity, fits the data perfectly).
From these facts, they concluded that their MAR assump-
tion was reasonable, although they noted in passing that
there would be other nonignorable models whose likelihood
would attain that of the saturated MAR model, but desig-
nated these models as “not compelling.” However, they pro-
vided no scientific rationale as to why their ill-fitting non-
ignorable model was more compelling than other possibly
well-fitting nonignorable models. Indeed, in a reanalysis of
this data, Molenberghs, Kenward, and Goetghebeur (1999)
discovered other well-fitting models and argued that these
appear no less a priori plausible than RSV’s model. Fur-
ther, a number of these well-fitting nonignorable models
predicted vote counts that differed substantially from the
count predicted by the saturated MAR model endorsed by
RSV. Finally, Robins and Gill (1997) questioned the plausi-
bility of RSV’s saturated MAR model itself, showing that
mechanisms that generate nonmonotone missing MAR data
are quite special and in particular do not include the latent
trait factor-analytic model mentioned by RSV.

RSV’s second argument was that the results obtained
based on the saturated MAR analysis, in contrast to those
based on their nonignorable model, agreed well with the re-
sults of the actual plebiscite held 3 weeks later. We find this
argument unconvincing, as it is essentially a meta-analytic
one, but based on a single study. For even if missingness
were MAR for the Slovenian survey, what does that tell
us about other surveys, much less other substantive areas,
such as ACTG trial 175? Further, why should one assume
that in a changing political situation, the result that would
have been obtained in the survey had there been no missing
data (which, as stressed by RSV, is the inferential goal of
any method to correct for missing data) would have agreed
with that obtained 3 weeks later in the actual plebiscite? It
is possible that the nonignorable model results were closer
to the inferential goal.

3.5.2 Properties of Laird and Pauler’s Estimator. Un-
der LP’s discrete time version of (16), drop-out can occur
only at times t = 8 + 12u, u = 0, 1, 2, 3. For u = 3, 2, 1, 0,
let H(u) be recursively defined by H(u) = E[H(u + 1)|V̄
(8 + 12u), Q > 8 + 12u] + φλ[8 + 12u|V̄(8 + 12u)] with
H(4) ≡ Y . Then, under LP’s model, E[Y ] = E[H(0)]
and E[Y |V̄(8 + 12u), Q > 8 + 12u] = E[H(u + 1)|V̄(8 +
12u), Q > 8+12u]. These identities motivate the following
estimator of µ0 under LP’s suggested approach. One spec-
ifies regression models mt(V̄(t), βt) for E[Y |V̄(t), Q > t].
Recursively define, for u = 3, 2, 1, 0, Ĥ(u) = m8+12u(V̄(8
+ 12u), β̂8+12u) + φλ̂[8 + 12u|V̄(8 + 12u)], where λ̂[8 +
12u|V̄(8 + 12u)] is the empirical (nonparametric) estima-
tor of the discrete hazard λ[8 + 12u|V̄(8 + 12u)], and
β̂8+12u is obtained by possibly nonlinear regression of

Ĥ(u+ 1) on V̄(8 + 12u) among subjects with Q > 8 + 12u
with Ĥ(4) ≡ Y . When V(u) has a continuous distribu-
tion then λ̂[8 + 12u|V̄(8 + 12u)] is either 0 or 1, that is
λ̂[8+12u|V̄(8+12u)] = I (Q = 8+12u). Then µ0 = E[Y ] is
estimated by n−1 ∑

i Ĥi(0). For consistency, the regression
model mt(V̄(t), βt) needs to be correct even under MCAR.
When φ = 0, this estimator is the ICE estimator discussed
by Robins et al. 1995 and Robins 1998. The discrete time
version of our estimator of µ0 described in Section 7.3.2 is
n−1 ∑

i ∆i{Yi+φ
∑3
u=0 λ̃[8+12u|V̄i(8+12u)]}/∏3

u=0{1−
λ̃[8 + 12u|V̄i(8 + 12u)]} where λ̃[8 + 12u|V̄i(8 + 12u)] is
an estimate of the hazard based on a finite dimensional
parametric model that leaves the baseline hazard unre-
stricted. In contrast, because the estimator of the mean
based on LP’s suggested approach is linear in the estimate
of λ[8 + 12u|V̄(8 + 12u)], it was possible to use a non-
parametric estimator of the hazard without sacrificing con-
sistency.

To see why the models mt(V̄(t), βt) will often be mutu-
ally incompatible, suppose Y is dichotomous, V(8) is uni-
variate and continuous and all other V(t) are dichotomous.
If we choose φ = 0 and each mt(V̄(t), βt) to be a linear
logistic function of the components of V̄(t), then it is easy
to show there is no joint distribution for which each com-
ponent of βt is non zero for t ∈ {8, 20, 32, 44}.
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