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Time-homogeneous diffusion models have been widely used for describing the stochastic dynamics of the underlying economic variables.
Recently, Stanton proposed drift and diffusion estimators based on a higher-order approximation scheme and kernel regression method. He
claimed that “higher order approximations must outperform lower order approximations” and concluded nonlinearity in the instantaneous
return function of short-term interest rates. To examine the impact of higher-order approximations, we develop general and explicit
formulas for the asymptotic behavior of both drift and diffusion estimators. We show that these estimators will reduce the numerical
approximation errors in asymptotic biases, but their asymptotic variances escalate nearly exponentially with the order of approximation.
Simulation studies also con� rm our asymptotic results. This variance in� ation problem arises not only from nonparametric � tting, but
also from parametric � tting. Stanton’s work also postulates the interesting question of whether the short-term rate drift is nonlinear. Based
on empirical simulation studies, Chapman and Pearson suggested that the nonlinearity might be spurious, due partially to the boundary
effect of kernel regression. This prompts us to use the local linear � t based on the � rst-order approximation, proposed by Fan and Yao,
to ameliorate the boundary effect and to construct formal tests of parametric � nancial models against the nonparametric alternatives.
Our simulation results show that the local linear method indeed outperforms the kernel approach. Furthermore, our nonparametric
“generalized likelihood ratio tests” are indeed versatile and powerful in detecting nonparametric alternatives. Using this formal testing
procedure, we show that the evidence against the linear drift of the short-term interest rates is weak, whereas evidence against a family
of popular models for the volatility function is very strong. Application to Standard & Poor 500 data is also illustrated.
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1. INTRODUCTION

Consider the problem of estimating the drift function, Œ4¢5,
and diffusion function, ‘ 4¢5, for a continuous-time diffusion
process 8Xt1 a µ t µ T9 following the stochastic differential
equation

dXt D Œ4Xt5 dt C‘ 4Xt5 dWt1 (1)

where 8Wt1 a µ t µ T 9 is a standard one-dimensional Brow-
nian motion. Suf� cient conditions due to Itô imposed on
Œ4¢5 and ‘ 4¢5 for the existence, uniqueness and a measur-
able Markov process of the diffusion solution, 8Xt9, have
been given by, for example, Wong (1971) and Kloeden and
Platen (1992). Further regularity conditions for the station-
arity of 8Xt9 have been established by Banon (1978). This
time-homogeneous diffusion model has been widely used for
describing the stochastic dynamics of the underlying economic
variables of many well-known single-factor � nancial models.
Examples include the geometric Brownian motion (GBM),

dXt D ŒXt dt C‘Xt dWt1 (2)

by Osborne (1959) for modeling stock price and models

VAS 2 dXt D 4�0 C �1Xt5 dt C‘ dWt1 (3)

CIR SR 2 dXt D 4�0 C �1Xt5 dt C‘X1=2
t dWt1 (4)

CIR VR 2 dXt D‘X3=2
t dWt1 (5)
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and

CKLS 2 dXt D 4�0 C �1Xt5 dt C‘Xƒ
t dWt1 (6)

by Vasicek (1977), Cox, Ingersoll, and Ross (1985), Cox,
Ingersoll, and Ross (1980), and Chan, Karolyi, Longstaff, and
Sanders (1992) for modeling interest rate dynamics.

Current research including parametric approaches to esti-
mating Œ4¢5 and ‘ 4¢5 has been surveyed by Stanton (1997).
To relax model assumptions and reduce possible model-
ing biases, nonparametric regression techniques have recently
been studied in this area. Pham (1981) and Prakasa Rao (1985)
proposed nonparametric drift estimators. Ar� (1995, 1998)
showed that the Nadaraya–Watson (N-W) kernel estimator of
drift is uniformly strongly consistent under ergodic conditions
and reached the same conclusion for the kernel regression
estimate of the diffusion function. Fan and Yao (1998) used
local linear regression to the squared residuals for estimating
‘ 24¢5 and showed that the proposed approach is ef� cient. Aït-
Sahalia (1996) proposed a semiparametric procedure for esti-
mating the diffusion function, under the parametric speci� ca-
tion of the drift function. Jiang and Knight (1997) developed
a nonparametric kernel estimator for the diffusion function,
and then derived a consistent nonparametric drift estimator.
Using an in� nitesimal generator and Taylor series expansion,
Stanton (1997) constructed the � rst-, second-, and third-order
approximation formulas for Œ4¢5 and ‘ 4¢5 and further claimed
the superiority of higher-order approximations. These formu-
las contain unknown conditional expectations estimated by
N-W kernel regression. Stanton’s approach can estimate the
diffusion function‘ 4¢5 separately without knowing or estimat-
ing Œ4¢5 a priori. This feature makes his method simple and
attractive.
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Stanton’s approach has some problems. Chapman and
Pearson (2000) studied the � nite-sample properties of Stan-
ton’s estimator. By applying his procedure to simulated sam-
ple paths of a squared-root diffusion, they found that Stanton’s
estimator produces spurious nonlinearity when the underly-
ing drift function is truly linear. Chapman and Pearson nicely
concluded that the “mean reversion” and small sample at the
boundary create arti� cial patterns of nonlinearity displayed
noticeably near the boundary regions. Meanwhile, two sensi-
ble questions naturally arise: (1) Do higher-order approxima-
tions outperform their lower-order counterparts? and (2) Are
there any reasonable and formal procedures that help deter-
mine whether the observed nonlinearity in the drift is real or
due to chance variation?

In an attempt to answer the � rst question on the order of
approximations, we derive explicitly the formulas of a higher-
order approximation scheme that generalizes Stanton’s idea.
We then compute explicitly the asymptotic variances of non-
parametric estimators based on higher-order approximations.
A striking result from our asymptotic study is that higher-
order approximations will reduce the numerical approximation
errors in asymptotic biases but escalate (nearly exponentially)
the asymptotic variances. This variance in� ation phenomenon
is not only an artifact of nonparametric � tting—it also applies
to parametric modeling. The issue of a trade-off between bias
reduction and variance increment is made explicit in Theo-
rem 4 (Sec. 2).

Stanton’s work raises some other interesting issues. Is the
drift function in the short-term rate model nonlinear? Or, more
generally, does a parametric model � t a given set of economic
or � nancial data? An example of this is whether models (2)–
(6) adequately � t short-term rate data. Chapman and Pearson
(2000) suggested that the nonlinearity of the drift function
might be spurious. Their method is based on simulated data
from diffusion models with a linear drift function and eval-
uates whether the estimated drift looks linear. This graphical
procedure is useful, but informal. To set up formal statisti-
cal tests, an alternative hypothesis (model) is needed. Because
we usually do not have strong preference for alternative com-
peting models, the nonparametric model (1) serves as a nat-
ural candidate. The hypothesis testing problem becomes one
of testing a parametric (or semiparametric) null hypothesis
against a nonparametric alternative. The latter half of this arti-
cle is thus devoted to model validation. There we extend the
idea of the generalized likelihood ratio (GLR) statistic, devel-
oped by Fan, Zhang, and Zhang (2001), and apply it to the
time-homogeneous diffusion models. Our simulation results
show that GLR tests are indeed powerful and give the correct
test size. They provide useful tools for assessing the validity
of various models in economics and � nance.

The remainder of the article is organized as follows. In
Section 2 we discuss the distributional properties of Stan-
ton’s drift and diffusion estimators, and also derive explicit
expressions of asymptotic biases and variances for higher-
order approximations. To justify our analyses on empirical
grounds, we report on simulations in Section 3. In Section 4
we propose model validation methods using the GLR test,
based on the � rst-order approximation combined with the local
linear estimation. Simulations of the GLR test and real data

applications are also demonstrated. In Section 5 we brie� y
summarize our conclusions. We collect outlines of the proofs
in the Appendix.

2. HIGHER-ORDER APPROXIMATIONS

This section begins with a description of Stanton’s
approach. Although his initial construction is based solely on
the � rst-, second-, and third-order approximations, we can
build, with some extra effort, a more general framework that
gives us the � exibility to examine the impact of higher-order
approximations.

2.1 Conditional Means and Conditional Variances
of Higher-Order Differences

Following Stanton’s notations, under appropriate conditions
on Œ4¢51‘ 4¢5, and an arbitrary bivariate function f 4¢1 ¢5, the
conditional expectation Et8f 4XtCã1 t C ã59 can be expressed
in the form of a Taylor series expansion,

Et8f 4XtCã1 t C ã59 D f 4Xt1 t5C ¬f 4Xt1 t5ã C
1

2
¬2f4Xt1 t5ã2

C ¢ ¢ ¢C
1
nW

¬nf 4Xt1 t5ãn C O4ãnC151

as time increment ã # 0. Here the symbol Et denotes the con-
ditional expectation given Xt , and the in� nitesimal generator,
¬, of the process 8Xt9, is de� ned by

¬f 4x1 t5 D lim
’#t

E8f 4X’ 1 ’5—Xt D x9 ƒ f 4x1 t5

’ ƒ t

D
¡f 4x1 t5

¡t
C

¡f 4x1 t5

¡x
Œ4x5

C
1

2

¡2f 4x1 t5

¡2x
‘ 24x5 (7)

(see Øksendal 1985 for more details). Thus the � rst-order
approximation formula for the target function, ¬f 4Xt1 t5, is
given by

ãƒ1Et8f 4XtCã1 t C ã5 ƒ f 4Xt1 t59 D ¬f4Xt1 t5C O4ã50 (8)

In particular, setting f 4x1 t5 D x (or f4x1 t5 D x ƒ Xt) gives
¬f 4x1 t5 D Œ4x5; likewise, taking f4x1 t5 D 4x ƒ Xt5

2 implies
¬f 4x1 t5 D 24x ƒ Xt5Œ4x5 C‘ 24x5, which at x D Xt equals
‘ 24Xt5. Hence these two special functions f 4¢1 ¢5 can exactly
recover Œ4Xt5 and ‘ 24Xt5. In such cases, estimating the
left side of (8) by the N-W kernel method leads to Stan-
ton’s estimates for Œ4x5 and ‘ 24x5, based on the � rst-order
approximation.

Higher-order approximations (or differences) can be
achieved through a linear combination of terms on the left
side of (8). More precisely, for any � xed integer k ¶ 1, any
sequence of constants 8ak1j1 j D 11 : : : 1 k9, and any discretely
observed time steps jã, for j D 11 : : : 1 k, we consider the
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following linear combination:

ãƒ1
kX

jD1

ak1jEt8f 4XtCjã1 t C jã5 ƒ f4Xt1 t59

D
(

kX

jD1

jak1j

)
¬f 4Xt1 t5C

(
kX

jD1

j2ak1j

)
¬2f4Xt1 t5

2
ã

C ¢ ¢ ¢C
(

kX

jD1

jkak1j

)
¬kf4Xt1 t5

kW
ãkƒ1

C
(

kX

jD1

jkC1ak1j

)
¬kC1f4Xt1 t5

4k C 15W
ãk C O4ãkC150

It is readily seen that a kth order approximation scheme,

ãƒ1
kX

jD1

ak1jEt8f 4XtCjã1 t C jã5 ƒ f 4Xt1 t59

D ¬f 4Xt1 t5C O4ãk51

is obtained by choosing coef� cients 8ak1j9
k
jD1 to satisfy the

system of equations

8
>>>><

>>>>:

Pk
jD1 jak1j D 1

Pk
jD1 j2ak1j D 0

000
Pk

jD1 jkak1j D 00

(9)

The general form of the solutions, 8ak1j1 j D 11 : : : 1 k9, is
presented in Theorem 1, the proof of which is given in the
Appendix. Apparently, with orders k D 1121 3, the values of
8ak1j1 j D 11 : : : 1 k9 coincide with those derived by Stan-
ton (1997)—namely, 819 for k D 11 821ƒ1=29 for k D 2, and
831 ƒ3=21 1=39 for k D 3.

Theorem 1. For each � xed integer k ¶ 1, the unique solu-
tions to the system of (9) are given by

ak1j D 4ƒ15jC1

³
k

j

´.
j1 j D 11 : : : 1 k0 (10)

Furthermore, with these choices of 8ak1j9
k
jD1, we have

kX

jD1

jkC1ak1j D 4ƒ15kC1kW0

Therefore, using the foregoing unique solutions 4ak111 : : : 1
ak1k5, we obtain for ¬f 4Xt1 t5 a general form of the kth order
approximation formula,

ãƒ1
kX

jD1

ak1jEt8f 4XtCjã1 t C jã5ƒ f4Xt1 t591 (11)

with the approximation error term expressed as

4ƒ15kC1 ¬kC1f4Xt1 t5

4k C 15
ãk C O4ãkC150 (12)

Equations (11) and (12) imply that

ãƒ1
kX

jD1

ak1jEt4XtCjã ƒXt5

DŒ4Xt5C
µ
4ƒ15kC1 ¬kC1f14Xt1t5

4kC15
ãk CO4ãkC15

¶
(13)

with the choice f14x1 t5 D x, and that

ãƒ1
kX

jD1

ak1jEt4XtCjã ƒ Xt5
2

D ‘ 24Xt5 C
µ

4ƒ15kC1 ¬kC1f24Xt1 t5

4k C 15
ãk C O4ãkC15

¶
(14)

with the choice f24x1 t5 D 4x ƒ Xt5
2. From (14), one can sim-

ply take the square root operation to obtain the kth-order
approximation formula for the function ‘ 4Xt5, such that

‘ 4Xt5 D
À

ãƒ1
kX

jD1

ak1jEt4XtCjã ƒ Xt5
2

Á1=2

C O4ãk50 (15)

In addition, for each of the choices f`4x1 t51 ` D 112, the term
¬kC1f`4Xt1 t5 does not vanish and is independent of the time
variable t. Therefore, the resulting numerical approximation
errors for Œ4¢51‘ 24¢5, and ‘ 4¢5 maintain, for any integer k ¶ 1,
the same convergence rates, O4ãk5, to 0. Simulation com-
parisons of the � rst three order approximations with the true
drift and diffusion functions, for the processes (3) and (4),
were demonstrated in tables I–IV of Stanton (1997), whereas
numerical comparisons conducted for the interest rate data
were shown in his � gures 4–7, along with the pointwise 95%
con� dence bands based only on the � rst-order approximation.

With the kth-order approximation formulas available for
Œ4¢5 and ‘ 24¢5, the involved conditional expectations remain
to be estimated. Given the initial calendar time point t0 and
time series data 8Xt0Ciã1 i D 11 : : : 1 n9 observed at equally
spaced time points, our � rst step is to form 4n ƒ k5 pairs of
synthetic data,

³
Xt0Ciã1ãƒ1

kX

jD1

ak1j8Xt0C4iCj5ã ƒ Xt0Ciã9

´
² 4X ü

iã1 Y ü
iã51

i D 11 : : : 1 n ƒ k1 (16)

for estimating Œ4¢5, together with

³
Xt0Ciã1ãƒ1

kX

jD1

ak1j8Xt0C4iCj5ã ƒ Xt0Ciã92

´
² 4X ü

iã1Z ü
iã51

i D 11 : : : 1 n ƒ k1 (17)

for estimating ‘ 24¢5. Our second step is to use appropriate
pointwise nonparametric regression estimators, OŒ11ã4x05 and
OŒ21ã4x05, for estimating the conditional expectations

E4Y ü
iã—X ü

iã D x05 D Œ4x05 C O4ãk5 and

E4Z ü
iã—X ü

iã D x05 D‘ 24x05C O4ãk51 (18)

from (13) and (14).
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Table 1. Variance In‘ ation Factors Using Higher-Order Differences

Order k

1 2 3 4 5 6 7 8 9 10

V1(k) 1000 2050 4083 9025 18095 42068 105049 281065 798001 21364063
V2(k) 1000 3000 8000 21066 61050 183040 570066 11837028 61076025 201527022

There are many nonparametric methods for estimating the
conditional expectations in (18); the N-W estimator is the
simplest. It can be improved by local polynomial techniques
(Fan and Gijbels 1996). Therefore, our subsequent analytical
discussions are concentrated on OŒ11ã4x05 and OŒ21ã4x05 for an
interior point x0, via the qth-degree local polynomial estima-
tion 4q ¶ 05; the N-W estimator corresponds to the local con-
stant method with degree q D 0. We now brie� y describe the
technique for estimating E4Y ü

iã—X ü
iã D x05. By a Taylor series

expansion, a smooth function m4x5 D E4Y ü
iã—X ü

iã D x5, with x
located in a neighborhood of x0, can be locally approximated
by a qth-degree polynomial, that is,

m4x5 º m4x05 C 4x ƒ x05m
04x05 C ¢ ¢ ¢C 4x ƒ x05

q m4q54x05=qW0

Denote the coef� cient vector by Â4x05 D 4m4x051m04x051
: : : 1m4q54x05=qW5T D 4‚01‚11 : : : 1‚q5T . Then the local poly-
nomial estimator OÂ4x05, of the qth degree, is determined by
the minimizer of the residual sum of squares between Y ü

iã and
the local model on m4X ü

iã5, weighted by the distance of X ü
iã

from the � tting point x0. Formally, OÂ4x05 minimizes the objec-
tive function

nƒkX

iD1

8Y ü
iã ƒ ‚0 ƒ 4X ü

iã ƒ x05‚1

ƒ ¢ ¢ ¢ƒ 4X ü
iã ƒ x05

q‚q92Kh4X ü
iã ƒ x05 (19)

over values of Â4x05, where Kh4¢5 D K4¢=h5=h. Here K4¢5 and
h are referred to as the kernel function and the bandwidth
(or smoothing parameter). The � rst component of the vector
OÂ4x05 gives OŒ11ã4x05, the qth degree local polynomial estimate
of E4Y ü

iã—X ü
iã D x05. A similar procedure can be applied to

obtain the qth degree local polynomial estimate OŒ21ã4x05 of
E4Z ü

iã—X ü
iã D x05. For practical application, Fan and Gijbels

(1996) recommended the use of local linear � t (q D 1).
Because any nonparametric regression procedure is in

essence a weighted average of local data, its performance
always depends on the local variation, namely the conditional
variance. For our current applications, based on the synthetic
data, the corresponding conditional variances are

‘ 2
11ã4x05 D var4Y ü

iã—X ü
iã D x05 and

‘ 2
21ã4x05 D var4Z ü

iã—X ü
iã D x050 (20)

Theorem 2, proved in the Appendix, summarizes the mag-
nitudes of ‘ 2

11ã4x05 and ‘ 2
21ã4x05. Note that some regularity

conditions (see, e.g., Wong 1971, chapter 4, prop. 4.1) put
on Œ4¢51‘ 4¢5, and Xt0

for the unique existence and Markov
process of 8Xt9 in (1) are always assumed implicitly in Theo-
rems 2 and 4.

Theorem 2. Assume that 8Xt9 is a Markov process. Let
A11k and A21k be k � k matrices with 4i1 j5th entry equal to

min4i1 j5 and min4i21 j25, and let Ák be a k� 1 vector, the jth
element of which is given in (10). Denote V14k5 D ÁT

k A11kÁk

and V24k5 D ÁT
k A21kÁk. Then as ã ! 0, the conditional vari-

ance of the kth-order difference formula for Œ4x05 is given by

‘ 2
11ã4x05 D‘ 24x05V14k5ãƒ181 C O4ã591 (21)

whereas the conditional variance of the kth order difference
formula for ‘ 24x05 is given by

‘ 2
21ã4x05 D 2‘ 44x05V24k581 C O4ã590 (22)

The factors V14k5 and V24k5 re� ect the premium that higher-
order approximations must pay. For this reason, we call them
the variance in�ation factors for using higher-order approxi-
mations. To provide some numerical impression, Table 1 sum-
marizes the numerical values of V14k5 and V24k5 for approx-
imations of orders up to the 10th. For visual assessment,
Figure 1 contains plots of log8V14k59 and log8V24k59 versus
order k. The overall impacts of higher-order approximations
on variance in� ation are striking.

It is also notable from Table 1 and Figure 1 that the variance
in� ation factors grow nearly exponentially fast as the order k

increases. This relation can indeed be veri� ed analytically, as
shown in the following theorem.

Theorem 3. (a) For k ¶ 1, the factor V14k5 in (21) is
bounded below by

k2 ƒ 3k ƒ 2

k4k C 153

³
2k

k

´
C

2

k
C 2

kX

jD1

1

j
ƒ

2k2 C 4k C 3

4k C 152
º

4k

� 1=2k5=2
1

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Order k

lo
g{

V j(k
)}

Figure 1. Theoretical Values of log{Vj ( k) } Versus Order k. The fac-
tors Vj (k) are given in Theorem 2, where j D 1 (-�-) refers to drift Œ( ¢)
and j D 2 (- &- - ) refers to squared diffusion ‘ 2( ¢) .
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and bounded above by

5k2 ƒ k ƒ 2

k4k C 153

³
2k

k

´
C

2

k
C 2

kX

jD1

1

j
ƒ

3k2 C 6k C 5

4k C 152
º

5 � 4k

� 1=2k5=2
0

(b) For k > 1, the factor V24k5 in (22) is given by

V24k5 D
¡

2k

k

¢
ƒ 4k C 15

k ƒ 1
º

4k

� 1=2k3=2
0

2.2 Asymptotic Behavior
of Nonparametric Estimators

The asymptotic bias and variance of the pointwise drift esti-
mator OŒ11ã4x05 and the squared diffusion function estimator
OŒ21ã4x05, based on the kth order approximation scheme and
the qth degree local polynomial � tting, are presented in The-
orem 4. The results demonstrate that higher-order differences
result in reductions of the asymptotic bias, while translating
the variance in� ation into the asymptotic variance of the asso-
ciated nonparametric drift and diffusion estimators.

We � rst introduce some notations and de� nitions. Set
f14x1 t5 D x1 f24x1 t5 D 4x ƒ Xt5

21Œj D
R

ujK4u5 du1 �j DR
ujK24u5 du1 e1 D 41101 : : : 105T 1 S D 4ŒiCjƒ25i1jD11 : : : 1qC11

S ü D 4�iCjƒ25i1jD11 : : : 1qC11 cq D 4ŒqC11 : : : 1Œ2qC15
T , and Qcq D

4ŒqC21 : : : 1Œ2qC25
T . For integers ` > 0, let p`4y—x5 denote the

conditional probability density of Xt0C4`C15ã given Xt0Cã.

Theorem 4. Let 8Xt0Ciã1 i D 11 : : : 1 n ƒ k9 be a sequence
of observations on a stationary Markov process with a
bounded continuous density p4¢5. Assume that p`4y—x5 is con-
tinuous in the variables 4y1x5 and is bounded by a constant
independent of `. The sequence 8Xt0Ciã1 i D 11 : : : 1 nƒ k9 sat-
is� es the stationarity conditions of Banon 419785 and the
G2 condition of Rosenblatt 419705 on the transition operator.
Assume that the kernel K is a bounded symmetric probability
density function with bounded support. Suppose that x0 is any
given point in the interior of the support of p where p4x05 >

01‘ 24x05 > 0, and that Œ4qC154¢5 and 4‘ 254qC154¢5 are contin-
uous in a neighborhood of x0. Put ‘ 2

1 4x03 k5 D ‘ 24x05V14k5

and ‘ 2
2 4x03 k5 D 2‘ 44x05V24k5. Let n ! ˆ, such that h ! 0

and nh ! ˆ, and ã ! 0, then at any time t D t0 C iã1 i D
11 : : : 1 n ƒ k,

(a) The asymptotic bias of OŒ11ã4x05 for odd degrees q is
given by

4ƒ15kC1 ¬kC1f14x01 t5

4k C 15
ãk C O4ãkC15

C eT
1 Sƒ1cq

Œ4qC154x05

4q C 15W
hqC1 C oP 4hqC151 (23)

whereas for even degrees q, the last two terms in 4235 become

eT
1 Sƒ1Qcq

4q C 25W
©
Œ4qC254x05 C 4q C 25Œ4qC154x05

� p04x05=p4x05
ª
hqC2 C oP4hqC251 (24)

provided that p04¢5 and Œ4qC254¢5 are continuous in a neighbor-
hood of x0 and nh3 ! ˆ. Assume further that h D O4ã1=25;
then the asymptotic variance is

4nhã5ƒ1eT
1 Sƒ1S ü Sƒ1e1‘

2
1 4x03 k5=p4x0581C o41590 (25)

(b) The asymptotic bias of OŒ21ã4x05 for odd degrees q is
given by

4ƒ15kC1 ¬kC1f24x01 t5

4k C 15
ãk C O4ãkC15

C eT
1 Sƒ1cq

4‘ 254qC154x05

4q C 15W
hqC1 C oP4hqC151 (26)

whereas for even degrees q, the last two terms in 4265 become

eT
1 Sƒ1Qcq

4q C 25W
©
4‘ 254qC254x05 C 4q C 254‘ 254qC154x05

� p04x05=p4x05
ª
hqC2 C oP4hqC251 (27)

provided that p04¢5 and 4‘ 254qC254¢5 are continuous in a neigh-
borhood of x0 and nh3 ! ˆ. Assume further that h D O4ã1=45;
then the asymptotic variance is

4nh5ƒ1eT
1 Sƒ1S ü Sƒ1e1‘

2
2 4x03 k5=p4x0581 C o41590 (28)

It is clearly observed from (23) that the bias of OŒ11ã4x05 is
composed of a numerical approximation error, expressed by
E4Y ü

iã—X ü
iã D x05 ƒ Œ4x05, in addition to the usual nonparam-

etric estimation bias, OŒ11ã4x05 ƒ E4Y ü
iã—X ü

iã D x05. Results of
(23) and (24) indicate that for the kernel estimator used by
Stanton (1997), the leading term of its asymptotic bias is

4ƒ15kC1 ¬kC1f14x01 t5

4k C 15
ãk

C
Œ2

2
h28Œ004x05 C 2Œ04x05p

04x05=p4x0591 (29)

whereas for the local linear method, the second term becomes
2ƒ1Œ2h

2Œ004x05. A similar comparison can be made for
OŒ21ã4x05.

Remark 1. As shown by Banon and Nguyen (1981,
lemma 2.1), a stationary Markov process satisfying a cer-
tain mixing condition, namely the G2 condition of Rosen-
blatt (1970), is asymptotically uncorrelated (Rosenblatt 1971).
Therefore, the “big-block and small-block” arguments simi-
lar to those used by Fan and Gijbels (1996, theorem 6.1) can
be incorporated to show the asymptotic normality of OŒ11ã4x05

and OŒ21ã4x05. The lengthy details are omitted here.

Remark 2. The conclusions of Theorems 2 and 3 do not
depend on the stationarity condition. The stationarity condition
in Theorem 4 is imposed to facilitate technical manipulations;
it is not a necessary condition. The stationarity condition pos-
sibly can be relaxed.
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3. SIMULATIONS

Realistically, we do not know whether the stationary Marko-
vian assumption remains valid for � nancial data recorded at
discrete time points. We also do not know whether the asymp-
totic results re� ect reality. Nevertheless, we can still carry out
the drift and diffusion estimations using higher-order approx-
imations and nonparametric regression techniques. This will
enable us to assess empirically how our asymptotic results are
re� ected in � nite samples. Our simulation studies show the
fact that the variance in� ation due to higher-order approxima-
tions is re� ected in � nite samples.

3.1 Cox–Ingersoll–Ross Squared-Root Diffusion

As a � rst illustration, we consider the well-known Cox–
Ingersoll–Ross (CIR) model for interest rate term structure,

dXt D Š4ˆ ƒ Xt5 dt C‘X1=2
t dWt1 t ¶ t01 (30)

where the spot rate, Xt , moves around its long-run equilib-
rium level ˆ at speed Š. When the condition 2Šˆ ¶‘ 2 holds,
this process is shown to be positive and stationary. Provided
that the time step size ã is small, we can use the discrete-
time order 1.0 strong approximation scheme given in (3.14) of
Kloeden, Platen, Schurz, and Sørensen (1996). In this exam-
ple, the scheme takes the form

XtiC1
º Xti

C 8Š4ˆ ƒ Xti
5 ƒ 4ƒ1‘ 29ã

C 2ƒ1‘
h
8Xti

C 4Šˆ ƒ ŠXti
ƒ 4ƒ1‘ 25ã

C‘ 4Xti
51=2

C ˜i

p
ã91=2

C C 4Xti
51=2

C

i
˜i

p
ã1 (31)

for 1 µ i µ n ƒ 1, where ˜i

iid¹ N 40115 and xC D max4x105.
Alternatively, one might use the transition density properties of
the process (see Cox et al. 1985). That is, given Xt D x at the
current time t, the variable 2cXs at the future time s has a non-
central chi-squared distribution with degrees of freedom 2q C2
and noncentrality parameter 2u, where q D 2Šˆ=‘ 2 ƒ 11 u D
cxeƒŠ4sƒt5, and c D 2Š

‘ 281ƒeƒŠ4sƒt59
. The initial value of Xt0

can be
generated from the steady-state gamma distribution of 8Xt9,
with the probability density p4y5 D —�=â 4�5y�ƒ1eƒ—y , where
� D 2Šˆ=‘ 2 and — D 2Š=‘ 2. For each simulation experiment,
we generate a sample path of length 10,000 and compute,
based on the synthetic data [see (16) and (17)], Stanton’s ker-
nel drift estimate OŒ11ã4x05, and the squared diffusion estimate
OŒ21ã4x05. We replicate the experiments 1,000 times, and calcu-
late the sample variances of 8 OŒ11ã4x059 and 8 OŒ21ã4x059 across
these 1,000 simulations respectively.

Choices of kernel function depend purely on individual
preferences. Throughout our numerical work in this arti-
cle, we use the Epanechnikov kernel, de� ned by K4u5 D
3=441ƒu25I4—u— µ 15, where I 4¢5 stands for the indicator func-
tion. For a given kernel function, the choice of an effective
bandwidth parameter is very important to the performance
of a nonparametric regression estimator. It is often selected
through either visual inspection of the resulting smooths or
a data-driven technique. Popular data-dependent approaches

include cross-validation (Allen 1974; Stone 1974), general-
ized cross-validation (Wahba 1977), the preasymptotic sub-
stitution method (Fan and Gijbels 1995), the plug-in method
(Ruppert, Sheather, and Wand 1995), and the empirical bias
method (Ruppert 1997). These techniques provide various use-
ful means for automatic bandwidth selection, but involve inten-
sive computation and extra effort to program. A more detailed
look at these methods, regarding theoretical properties and
implementations, was given by Fan and Gijbels (1996). Alter-
natively, a simple rule of thumb bandwidth formula, such as

h D constant� std48X ü
ã1 : : : 1 X ü

4nƒk5ã95 nƒ1=51 (32)

also can be used. To show the occurrence of variance in� a-
tion with order k, by � nite-sample simulation, an appropriate
choice of bandwidth is constant-valued and independent of k,
even though the optimal bandwidth may depend on k. For the
purpose of illustration, we set h D 0004 in this example. Other
choices of bandwidth have also been tried, and the results have
been similar.

In our implementation, the values of the model parame-
ters are cited from Chapman and Pearson (2000), that is, Š D
0214591 ˆ D 0085711‘ D 007830, and ã D 1=250. To differ-
entiate the effects of the higher-order approximation scheme
from the boundary effects of the kernel estimator, we focus
on an interior state point, x0 D 01. The natural logarithms of
the simulated variance ratios of OŒ11ã4015 and OŒ21ã4015, based
on higher-order difference, to those of their � rst-order coun-
terparts, are displayed in Figure 2, where plot (a) is based on
sample paths generated from the conditional chi-squared dis-
tribution and plot (b) results from the discretization scheme
(31). Meanwhile, for the purpose of comparison, we also
present, in plots (a0) and (b0), the corresponding results by
local linear estimation. All plots mimic (except in amplitude)
our theoretical results shown in Figure 1.

3.2 Geometric Brownian Motion

We include another familiar example of geometric Brown-
ian motion determined by

dXt D 4Œ C 2ƒ1‘ 25Xt dt C‘Xt dWt1 0 µ t µ T 0 (33)

Apparently from its construction, both the drift and diffu-
sion are linear, and thus 8Xt9 is Markovian (see Wong 1971,
prop. 4.1), but the technical assumption of stationarity is vio-
lated. This model is incorporated to illustrate that the conclu-
sion of Theorem 4 extends to more general diffusion processes.

For (33), we simulate in time interval 601T 7 with T D 10,
the corresponding approximate process with parameters Œ D
0087 and ‘ D 0178 starting at X0 D 1. We choose the order 1.0
scheme

XtiC1
º Xti

C 4Œ C 2ƒ1‘ 25Xti
ãC‘Xti

˜i

p
ã

C 2ƒ1‘ 2Xti
4˜2

i ƒ 15ã (34)

given in (3.5) of Kloeden et al. (1996). Alternatively, we
could directly use the explicit solution Xt D X0 exp8Œt C‘ Wt9
for (33). For both schemes, 1,000 sample paths of length 1,000
are generated. The bandwidth parameter, h D 004, is used for
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Figure 2. Simulated Values of log{Vj (k)} Versus Order k for CIR Model dXt D .21459( .08571 - Xt ) dt + .07830X 1=2
t dWt . The index j D 1 (-�-)

refers to the drift estimator OŒ1, ã( .1) ; j D 2 (- &- - ) refers to the squared diffusion estimator OŒ2, ã( .1) . Plots (a) and (a0) are based on the same sets
of sample paths generated by the noncentral chi-squared distribution, whereas plots (b) and (b0) are based on the same sets of sample paths
generated by the discretization scheme (31).

local smoothing. Again, this number serves for the sake of
illustration. For the same reason stated in the previous exam-
ple, we restrict attention to the state value x0 D 100, simply
because more data points fall within its local region. Figure 3
displays similar types of plots as those shown in Figure 2.
For comparison, plots (a) and (a0) are based on data generated
from the exact solution, and plots (b) and (b0) depend on the
discretization scheme (34). Again, all plots in Figure 3 sup-
port our theoretical results in Figure 1, although we used a
smaller sample size and lower sampling frequency than those
in the preceding example of the CIR model.

3.3 Local Linear Fit: Boundary Correction

Overall, the foregoing simulation studies present convinc-
ing evidence that, at least for models similar to those two
types, the higher-order approximations substantially amplify
variances. As discussed in Section 2, this phenomenon always
occurs, regardless of the method used for nonparametric

regression. It is well known that the kernel regression esti-
mator can create boundary biases. In contrast, the local linear
estimator enjoys the theoretical advantages of design adapta-
tion, automatic boundary correction, and minimax ef� ciency
(see Fan and Gijbels 1996 for further details). This naturally
leads us to substitute kernel estimation by local linear estima-
tion. A similar application of local linear � t to the � rst-order
approximation of continuous-time diffusion models was used
by Fan and Yao (1998), who also suggested correcting the
drift term before the variance estimation.

To examine the performance of local linear estimation of
diffusion models, we revisit the CIR square-root diffusion
model discussed in Section 3.1. We adopt the same values
of model parameters Š1ˆ, and ‘ to generate, with weekly
frequency, sample paths of length 5,000, using the (noncen-
tral chi-squared) transition density. To conduct kernel and
local linear � ts, based on the � rst-order synthetic data, a scale
constant, 6, is used in the empirical bandwidth formula (32).
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(b)  KERNEL ESTIMATION  (DISCRETIZATION)
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(a’)  LOCAL LINEAR ESTIMATION  (EXACT SOLUTION)
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Figure 3. Simulated Values of log{Vj ( k) } Versus Order k for Geometric Brownian Motion dX t D ( .087 + .1782=2)Xt dt + .178Xt dWt . The index
j D 1 (-�-) refers to the drift estimator OŒ1,ã( 1.0) ; j D 2 (- &- - ) refers to the squared diffusion estimator OŒ2, ã( 1.0) . Plots (a) and (a0) are based on
the same sets of sample paths generated from the exact solution Xt D X0 exp{.087t + .178Wt}, whereas plots (b) and (b0) are based on the same
sets of sample paths generated by the discretization scheme (34).

For individual simulated trajectories, we compared the esti-
mated drift and diffusion, for which we observed that in
most cases the local linear approach is superior to the kernel
method. In fact, according to Fan (1992), the local linear � t
has a better bias-correction property than the kernel method.
Thus, as the bandwidth gets larger, the outperformance of
the local linear � t over the kernel method can become even
more dramatic. In contrast, the sample ranges of 8Xt9 vary
considerably across different simulations. Extremely high lev-
els of those states x (e.g., .20) rarely occur in reality or
are visited in practical simulations. To conduct more sensible
comparisons, we simulate 101 sample paths with range inter-
val © D 60031 0157. The drift and diffusion are estimated for
each realization, and the 25th and 75th percentiles (dashed
curves) and the median (dash dotted curves) of the estimates,
over the 101 realizations, are presented in Figure 4. Similar
graphs using discretization schemes such as (31) are omitted

here. For the volatility estimates, we � nd that the local lin-
ear method achieves more gains in alleviating the impact of
“boundary effects” than the kernel counterpart. The same con-
clusion applies to estimation of the drift function. The wider
bands of the interquartile ranges of the drift estimates com-
pared to those of the diffusion estimates can be easily under-
stood from Theorem 4, which states that the estimates of drift
are more variable than the estimates of diffusion. Furthermore,
this necessitates the importance of developing formal proce-
dures for model validation.

4. MODEL VALIDATION

Model diagnosis plays an important role in examining the
relevance of speci� c assumptions underlying the modeling
process and in identifying unusual features of the data that
may in� uence conclusions. Despite a wide variety of well-
known parametric models imposed on the short-term interest
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Figure 4. Estimated Drift and Diffusion Functions for CIR Model dXt D .21459( .08571 - Xt ) dt + .07830X1=2
t dWt . The solid curves are the true

functions, the dashed-dotted curves denote the medians of the estimates, and the dashed curves correspond to the 25th and 75th sample
percentiles of the estimates, over simulated data (101 replications). The sample paths are generated by the transitional noncentral chi-squared
distribution.

rates and stock price indices, relatively little is known about
how these models capture the actual stochastic dynamics of
the underlying processes. Among them, a majority of the use-
ful models have been studied and compared in terms of their
relative performances under a uni� ed parametric framework,

dXt D 4� C ‚Xt5 dt C‘Xƒ
t dWt1 (35)

in Chan et al. (1992). The generalized method of moments of
Hansen (1982) is frequently used to estimate the parameters.
However, the question frequently arises whether model (35)
itself correctly captures the stochastic dynamics of a given set
of economic data. To address this issue, we need an alternative
family of stochastic models. Nonparametric models offer a
very nice solution to this problem. Depending on the cases and
the natures of model validation, the alternative nonparametric
models can be of the form

dXt D Œ4Xt5 dt C‘X
ƒ
t dWt1 (36)

dXt D 4� C ‚Xt5 dt C‘ 4Xt5 dWt1 (37)

or the more generic model (1), which places no particular
restriction on either the structural shift or volatility. These
kinds of hypothesis testing problems often arise in � nancial
modeling.

In this section, we � rst describe approaches used for esti-
mating parameters of models (35)–(37). To testify against
these models (null hypotheses), we treat model (1) as our alter-
native hypothesis. We propose new hypothesis-testing proce-
dures based on the “generalized likelihood ratio” by Fan et al.
(2001), and demonstrate the explanatory power and versatility
of the GLR tests by simulations and two sets of real data.

4.1 Parametric Estimation

For ease of exposition, we proceed from the parametric
model (35). Given discretely sampled observations 8Xti

1 i D
11 : : : 1 n9 from this model, denote ãi D tiC1 ƒ ti and Yti

D
XtiC1

ƒXti
, for 1 µ i µ nƒ1. Then the parameters �1 ‚1‘ , and

ƒ can be estimated through a discrete-time speci� cation

Yti
º 4� C ‚Xti

5ãi C‘Xƒ
ti

˜i

p
ãi1 i D 11 : : : 1 n ƒ 11 (38)

where ˜i

iid¹ N 40115. Three steps summarize the estimation
procedure:

Step I: Pretend that model 4385 is homoscedastic, and
obtain the least squares estimates of 4�1‚5, denoted by
4 O� 4151 O‚4155.

Step II: Let Oeti
D 8Yti

ƒ 4 O� 415 C O‚415Xti
5ãi9=ã1=2

i , which
transforms model 4385 into

log4 Oe2
ti
5 º log4‘ 25 C ƒ log4X2

ti
5 C log4˜2

i 51

i D 11 : : : 1 nƒ 10 (39)

Obtain least squares estimates 4 O‘ 4151 Oƒ4155 of 4‘ 1 ƒ5 after
subtracting E8log4Z259 º ƒ10270362845 from both sides of
model (39), where Z ¹ N 40115.

Step III (optional): Substitute 4 O‘ 4151 Oƒ4155 into model
(38) and get weighted least squares estimates of 4�1 ‚5,
denoted by 4 O�4251 O‚4255. Meanwhile, get updated estimates
4 O‘ 4251 Oƒ4255 at step II.

This approach can be � exibly modi� ed. For instance, the dif-
fusion parameters ‘ and ƒ in model (36) could be estimated
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Table 2. Parameter Estimates and Standard Errors (%, in brackets) for the CIR Model: dXt D (� + ‚Xt ) dt + ‘ Xƒ
t dWt , Where

� D .0183925,‚ D - .21459,‘ D .0783, and ƒ D .5

n O� (1) O� (2) O‚(1) O‚(2) O‘ (1) O‘ (2) O‘ (3) Oƒ (1) Oƒ (2) Oƒ (3)

5,000 00224 00217 ƒ02620 ƒ02534 00782 00783 00781 04979 04983 04976
(072) (065) (8047) (7076) (082) (081) (081) (4005) (4002) (4000)

10,000 00205 00200 ƒ02385 ƒ02328 00778 00779 00777 04971 04974 04968
(045) (040) (5044) (4086) (056) (057) (055) (2083) (2084) (2078)

directly from step II, except for setting Oeti
in (39) to 8Yti

ƒ
OŒ4Xti

5ãi9=ã1=2
i , where OŒ4Xti

5 is estimated nonparametrically
by the local linear method. Call 4 O‘ 4351 Oƒ 4355 the resulting esti-
mators. Estimation of the drift parameters of model (37) can
be accomplished by similar adjustment.

To assess the ef� ciency of the parametric estimators,
4 O� 4`51 O‚4`51 O‘ 4`51 Oƒ4`551 ` D 11 2, and 4 O‘ 4351 Oƒ4355, we generate,
with weekly frequency and by the transition density, pathwise
samples of lengths 5,000 and 10,000 from the CIR model,
dXt D 400183925ƒ 021459Xt5 dt C 00783X1=2

t dWt . The sam-
ple means and standard errors of these estimates over 1,000
samples are reported in Table 2. Obviously, ‘ and ƒ can be
estimated far more ef� ciently than � and ‚. This is directly
attributed to the lower magnitude of signal compared with that
of stochastic noise in (35) or (38). Also, the improvements
of the weighted least squares estimators over the unweighted
estimators are negligible. This is why we leave step III as
optional.

4.2 Generalized Likelihood Ratio Test

Interest rate volatility plays a key role in valuing contingent
claims and hedging interest rate risks. For the sake of brevity,
we describe how to test model (36) against the nonparametric
alternative (1), namely, the following testing problem:

H0 2‘ 4Xt5 D ‘Xƒ
t vs. H1 2 ‘ 4Xt5 6D‘Xƒ

t 0

Let bEti
D 8Yti

ƒ OŒ4Xti
5ãi9=ã1=2

i and Y
415
ti

D log4bE2
ti
5. Then sim-

ilar to (38) and (39), we have approximately

bEti
º‘ 4Xti

5 ˜i1 i D 11 : : : 1 nƒ 1

and

Y
415
ti

º log8‘ 24Xti
59 C log4˜2

i 51 i D 11 : : : 1 n ƒ 10 (40)

This transforms the test originally for (36) into that for

H0 2 log8‘ 24Xt59 D log4‘ 25 C ƒ log4X2
t 5 versus

H1 2 log8‘ 24Xt59 6D log4‘ 25 C ƒ log4X2
t 51 (41)

that is, testing the linear relationship of the bivariate data
84Xti

1 Y
415
ti

5nƒ1
iD1 9. Under the null hypothesis in (41), let O‘ and Oƒ

be the parameter estimates outlined in Section 4.1. Under the
alternative model (1), let O‘ 4¢5 be the estimated diffusion func-
tion based on the local linear approach. The GLR test statistic,
proposed by Fan et al. (2001), is given by

‹n4h5 D
nƒ 1

2
log

RSS0

RSS14h5
1 (42)

where RSS0 and RSS1 [depending on h through O‘ 4¢5] repre-
sent the residual sums of squares of model (40) under the null
and alternative hypotheses in (41). Under H0, there will be lit-
tle difference in size between RSS0 and RSS1, whereas under
the alternative, RSS0 should become systematically larger than
RSS1, and the GLR statistic thus will tend to take large posi-
tive values. Hence a high value of the test statistic ‹n4h5 indi-
cates that the null hypothesis should be rejected. This proce-
dure can similarly be applied to testing other forms of drift or
diffusion functions.

In the nonparametric regression model with independent
data, Fan et al. (2001) showed the Wilks type of result, that
rK‹n4h5, under certain types of null hypotheses, is asymp-
totically distributed as �2

dn4h5. Here the normalizing constant

is rK D 4Kƒ2ƒ1K ü K5405R
4Kƒ2ƒ1K ü K524t5dt

, the degrees of freedom is dn4h5 D
rKcK —ì—hƒ1, with cK D 4K ƒ2ƒ1K ü K5405, and —ì— measures
the length of the support of the regressor variable. In the same
paper, it was shown that ‹n is asymptotically equivalent to a
quadratic form,

Pn
iD1

Pn
jD1 Wijn4Ri1Rj5, in which the variables

8Ri9 are independent. Although the GLR statistic applied to
our current setup (40) involves more complicated stochastic
errors and requires more detailed technical justi� cations, we
believe that a similar Wilks type of result continues to hold
under the null hypothesis in (41). This is due to the fact that
the quadratic form is a special case of Hoeffding’s U statistic.
Probabilistic limit theorems (limit law, convergence rate) on U
statistics and von Mises statistics for weakly dependent pro-
cesses are available (see Denker and Keller 1983). Therefore,
with dependent 8Ri9, it is technically feasible to work out the
limiting distribution of ‹n. Indeed, we have conducted sub-
stantial simulations that provide stark evidence to support this
claim. However, rigorous justi� cations are beyond the scope
of this article.

4.3 Power Calculation

One advantage of nonparametric regression is attributed to
its � exibility in model assumptions. This broadens the scope
of applications. As a result, nonparametric tests, while gain-
ing signi� cant � exibility, may result in loss of power com-
pared with the parametric counterparts, when the parametric
assumptions provide a suitable description of the true pattern.
To gauge the level and power of our proposed GLR test, we
conduct the following simulation studies.

First, we compute the empirical critical values of the
GLR statistics under each form of the following typical null
hypotheses:

H
415

0 2 Œ4Xt5 D �0 C ‚0Xt1 ‘ 4Xt5 D c01 (43)

H
425

0 2 Œ4Xt5 D �0 C ‚0Xt1 ‘ 4Xt5 D c1X
05
t 1 (44)
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H
435

0 2 Œ4Xt5 D 01 ‘ 4Xt5 D c2X
105
t 1 (45)

and

H
445

0 2 Œ4Xt5 D �0 C ‚0Xt1 ‘ 4Xt5 D ‘X
ƒ
t 1 (46)

against the nonparametric alternative (1). Here we set �0 D
000739 and ‚0 D ƒ011798, which result from the weighted
least squares estimates of the 3-month interest rate data
(described at the beginning of Sec. 4.4). The constants c0 D
0012721 c1 D 005596, and c2 D 090114 are put in (43), (44),
and (45), to match the average height of the local linear esti-
mates of volatility, while the parameters ‘ and ƒ in (46) are
unknown. We have generated with weekly frequency 1,000
pathwise samples of length 2,400, from each of the four hypo-
thetical models, starting at an initial value of .013, the � rst
observation of the interest rate data. In such instances, we use
the scheme (3.14) of Kloeden et al. (1996) for models (44)
and (46), and use their scheme (3.5) for models (43) and (45).
To simulate realizations from model (46), we take the param-
etrically � tted diffusion function, for which the weighted least
squares estimates, O‘ D 0071258 and Oƒ D 072957, are obtained
from the interest rate data.

To perform the GLR test combined with the local lin-
ear approach, we adopt the empirical formula for band-
width. For simplicity, three different scales of bandwidth, hj D
105jƒ1h01 j D 11213, are also considered, to evaluate simul-
taneously the impact of bandwidth choice on the test. These
bandwidths are roughly viewed as “smaller,” “just right,” and
“bigger.” In particular, we use

h0 D 4 std48Xt1
1 Xt2

1 : : : 1Xtn
95 nƒ2=91 (47)

where 8Xti
1 i D 11 : : : 1 n9 denotes the simulated sample path,

and the rate, nƒ2=9, was shown by Fan et al. (2001) to be the
asymptotically optimal rate of bandwidth such that the GLR
test can detect alternatives converging to the null at the optimal
rate for nonparametric testing. To expedite the computation,
we evaluate the local linear � ts at 200 grid points, distributed
evenly on the ranges of the simulated samples, and then take
linear interpolation to obtain the estimates at all of the 2,400
data points. The results of the quantiles are summarized in

Table 3. 100(1 - �) th Percentiles of Test Statistics ‹n( h j ) , j D 1,2, 3,
Under Models H( `)

0 , ` D 1,2, 3,4

Percentile

Null Test statistic � D 001 � D 0025 � D 005 � D 010

H (1)
0 ‹n (h1) 12706 10904 8507 6602

‹n (h2) 11903 10508 8500 6504
‹n (h3) 12107 9400 7801 6500

H (2)
0 ‹n (h1) 13204 11406 9203 7409

‹n (h2) 12304 10300 9006 7400
‹n (h3) 12006 10600 8602 6502

H (3)
0 ‹n (h1) 13207 10908 9100 7007

‹n (h2) 13905 10800 8704 6703
‹n (h3) 13903 10905 8405 6706

H (4)
0 ‹n (h1) 11905 10203 8303 6506

‹n (h2) 12101 9908 8206 6307
‹n (h3) 12008 10007 8200 6300
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Figure 5. Comparison of Volatility Curves Under Null Hypotheses
(44)–(46). The dashed line is c0 ; the solid line is c1X .5

t ; the dotted line
is c2X1.5

t ; the dash-dotted line is ‘ X ƒ
t . The constants are c0 D .01272,

c1 D .05596, c2 D .90114, ‘ D .071258, and ƒ D .72957.

Table 3. As can be seen, the empirical critical values of ‹n4hj5
do not depend sensitively on the true parameter values of the
null models, although they should depend on the choice of
bandwidth and signi� cance level � .

Second, to examine the power of the GLR test statistics
‹n4hj51 j D 1121 3, we consider testing for CIR model (44)
against the nonparametric alternative (1). We evaluate the
power of the tests at a nominal level 5%, based on 400
datasets simulated from the speci� c models H

4`5

0 1 ` D 11 21314.
Figure 5 depicts how far apart the volatility functions .01272,
090114X105

t , and 0071258X 072957
t deviate from the hypothetical

volatility function 005596X 05
t . Thus the GLR tests, as shown in

Table 4, are powerful in detecting slight departures from the
null, in addition to keeping the right size.

4.4 Testing Commonly Used Short Rate Models

The Treasury bill (T-bill) dataset for our study consists
of 2,400 weekly observations covering the period January 8,
1954–December 31, 1999. U.S. Treasury bill secondary mar-
ket rates are the averages of the bid rates quoted on a bank
discount basis by a sample of primary dealers who report to
the Federal Reserve Bank of New York. The rates reported are
based on quotes at the of� cial close of the U.S. government
securities market for each business day. Figure 6 shows the
estimated drift and volatility curves based on a local lin-
ear approach. The estimated drift function exhibits strong
nonlinearities at the right boundary region; also, the estimated
volatility curve looks like a CIR VR form.

Table 4. Simulated Rejection Rates Against Models H ( `)
0 , ` D 1, 2,3, 4

Rejection rate

Test statistic H(1)
0 H(2)

0 H(3)
0 H(4)

0

‹n(h1) 06175 00525 100000 09525
‹n(h2) 06125 00450 100000 09575
‹n(h3) 06300 00375 100000 09475
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Figure 6. Estimated Drift (a) and Volatility (b) of Short Rate. Estimated drift and volatility functions based on a local linear approach, calculated
using weekly data, January 8, 1954–December 31, 1999. The bandwidths are h j D 1.5j - 1h0, j D 1,2, 3, where h0 D .01984 is calculated from
formula (47) (—, h1 ; - - -, h2 ; ¢ ¢ ¢ ¢, h3).

We � rst address the issue, raised by Chapman and Pearson
(2000) of whether the short-rate drift is actually nonlinear,
which becomes tantamount to testing model (37) versus
model (1). Due to the presence of a larger magnitude of noise,
distinguishing the pattern of the signal component from the
random-error component becomes very challenging. Despite
Chapman and Pearson’s full coverage and great efforts in
explaining the seemingly nonlinear drift function, there are
still no convincing procedures for formally justifying whether
the observed deviation from linearity indicates signi� cant
departure from model (37). With the aid of the powerful GLR
test, we can compute the associated p value, based on a regres-
sion bootstrap method for approximating the empirical null
distributions of the GLR test statistics. A complete procedure
comprises the following steps:

Step 1: For the original T-bill data 8Xti
1 i D 11 : : : 1 n9,

denote Yti
D XtiC1

ƒ Xti
. From 84Xti

1 Yti
5nƒ1

iD1 9, obtain least
squares estimates 4 O�1 O‚5, and RSS0 D

Pnƒ1
iD1 8Yti

=ã ƒ O� ƒ
O‚Xti

92. Use a local linear approach with bandwidth h to
obtain OŒ4Xti

51 O‘ 4Xti
5, and RSS14h5 D

Pnƒ1
iD1 8Yti

=ã ƒ OŒ4Xti
592.

Compute the observed value of the test statistic, ‹n3 obs4h5 D
nƒ1

2
log RSS0

RSS14h5
. Get the standardized residuals Oeti

D Yti
ƒ OŒ4Xti

5ã

O‘ 4Xti
5ã1=2 .

Step 2: Obtain the bootstrap residuals 8Oe4b5
ti

1 i D 11 : : : 1
n ƒ 19 via sampling randomly and with replacement from
8Oetj

1 j D 11 : : : 1 n ƒ 19, and de� ne the bootstrap responses,

Y
4b5
ti

D 4 O� C O‚Xti
5ãC O‘ 4Xti

5ã1=2 Oe4b5
ti

. Use the bootstrap sample
84Xti

1 Y
4b5
ti

5nƒ1
iD1 9 to get the bootstrap test statistic ‹4b5

n 4h5.

Table 5. Testing Linear Drift Function for T-Bill Short Rate

Test statistic Bootstrap p value Rejection rate

‹n (h1) 0141 006
‹n (h2) 0104 011
‹n (h3) 0092 009

Step 3: Repeat step 2 many times (indexed by super-
scripts b D 11 : : : 111000, say), and compute the proportion of
times that 8‹4b5

n 4h59 exceeds ‹n3 obs4h5. This yields the p value
of the observed GLR test statistic.

Using this bootstrap procedure, we obtain the p value of the
GLR test for model (37) against model (1), shown in the sec-
ond column of Table 5, with three different bandwidths 8hj9
as in Section 4.3. Thus there is no strong evidence against the
null hypothesis of linear drift. Our proposed test provides for-
mal proofs to reinforce the � ndings of Chapman and Pearson
(2000).

We also apply similar procedures for assessing the ade-
quacy of some previously established hypotheses regarding
the variance nature, in particular, competing forms (2)–(6)
for volatility functions. The associated p values are displayed
in Table 6. Surprisingly, strong evidence indicates that these
assumptions on the volatility function cannot be validated by
our GLR tests. This is consistent with the results reported by
Gallant and Long (1997).

To calibrate the GLR test’s ability to correctly reject null
hypotheses, we simulate 100 datasets, each containing 2,400
observations from the CIR squared root model (44). Based
on the level 5% critical values of the foregoing bootstrapped
null distributions, a decision on whether or not to reject the

Table 6. Testing Forms of Volatility Function for T-Bill Short Rate

Test statistic GBM VAS CIR SR CIR VR CKLS

Bootstrap p value
‹n (h1) 0000 0000 0000 0000 0000
‹n (h2) 0000 0000 0000 0000 0000
‹n (h3) 0000 0000 0002 0000 0015

Rejection rate
‹n (h1) 1 1 008 1 008
‹n (h2) 1 1 004 1 006
‹n (h3) 1 1 004 1 003
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Figure 7. Estimated Drift (a) and Volatility (b) of the S&P 500 Index. Estimated drift and volatility functions based on a local linear approach,
calculated using daily data, January 4, 1971–April 8, 1998. The bandwidths are h j D 1.5j - 1h0 , j D 1,2,3, where h0 D .4019 is calculated from
formula (47). (—, h1 ; - - -, h2 ; ¢ ¢ ¢ ¢, h3).

null hypothesis of linear drift can be made with respect to
each sample. The proportion of rejections across 100 samples
is presented in the third column of Table 5. Similar results
concerning volatility functions are listed in Table 6. Therefore,
both Table 5 and Table 6 strengthen the assertion that our
bootstrap procedures are powerful in correctly accepting or
rejecting the null hypotheses.

4.5 Testing Models for Standard & Poor 500 Index

In addition to the interest rate application, we investigate
the signi� cance of structural shifts of Standard & Poor (S&P)
500 data from previously studied models. This dataset con-
tains 6,890 daily observations on the S&P composite price
index for January 4, 1971–April 8, 1998. Following the con-
ventional practice in � nance research, we � rst take the loga-
rithmic transformation of the price index. The estimated drift
and volatility based on a local linear approach are displayed in
Figure 7, and the associated bootstrap p values are presented
in Tables 7 and 8. Clearly, there is no strong evidence against
the hypothesis on the linear drift. For the volatility function,
our test suggests that the GBM and CIR VR models do not � t
the logarithm of the index. Furthermore, our test also indicates
that the VAS, CIR SR, and CKLS models cannot be validated
based on the test statistics ‹n4hj5, for j D 11 21 3, together.

Table 7. Testing Linear Drift Function for Logarithms
of the S&P 500 Index

Test statistic Bootstrap p value

‹n (h1) 0814
‹n (h2) 0554
‹n (h3) 0582

5. CONCLUSION

Stanton (1997) proposed drift and diffusion estimators
based on a higher-order approximation scheme and a non-
parametric kernel estimation. He claimed (p. 1982) that “the
higher the order of the approximation, the faster it will con-
verge to the true drift and diffusion of the process given
in equation (1), as we observe the variable Xt at � ner and
� ner time intervals. Eventually, if we can sample arbitrar-
ily often, higher order approximations must outperform lower
order approximations,” and reiterated (p. 1983) that “even with
daily or weekly data, we can achieve gains by using higher
order approximations compared with the traditional � rst order
discretizations.” Actually, these claims are correct, but some-
what misleading. They ignore the variance in� ation in sta-
tistical estimation due to higher-order approximation. This
variance in� ation phenomenon is not an artifact of nonpara-
metric � tting; it also applies to parametric models. With the
tool of asymptotic analysis, we show that higher-order approx-
imations bene� t from reducing the numerical approximation
error within asymptotic bias, a statement correctly made by
Stanton (1997), but nevertheless they are penalized by an
asymptotic variance escalating nearly exponentially with the
order of the approximations. This shadows the higher-order
approximation scheme. This phenomenon can be accounted
for by the stochastic nature of the Taylor series expansion

Table 8. Testing Forms of Volatility Function for Logarithms
of the S&P 500 Index

Bootstrap p value

Test statistic GBM VAS CIR SR CIR VR CKLS

‹n(h1) 0 0000 0000 0 0031
‹n(h2) 0 0295 0004 0 0418
‹n(h3) 0 0491 0204 0 0576
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in (8) accumulated with the linear combination of higher-order
differences (11). Caution should be taken when using higher-
order formulas. This bias and variance trade-off phenomenon
yields general and insightful understandings of the estimators.
It also provides useful guidance for determining an optimal
strategy for order of approximation, as well as proposing pos-
sibly more ef� cient estimators.

Encouragingly, by using the local linear approach, spu-
rious “boundary effects” from Stanton’s kernel estimation
are ameliorated, especially for estimating diffusion functions.
This local linear estimation approach could also be incor-
porated with the GLR statistic to test a wide variety of
parametric time-homogeneous diffusion models and also to
formally check nonlinearity of the short-rate drift. Our simu-
lation shows that our procedures are indeed powerful and have
nearly the correct size of the test. The procedures are useful
for verifying various models in � nance and economics.

APPENDIX: PROOF OF THEOREMS

A.1 Proof of Theorem 1

Using the matrix notation, the system of equations in (9) can be
written as Ax D b, where

A D

2

66664

1 2 ¢ ¢ ¢ j ¢ ¢ ¢ k

1 22 ¢ ¢ ¢ j2 ¢ ¢ ¢ k2

000
000

0 0 0
000

0 0 0
000

1 2k ¢ ¢ ¢ jk ¢ ¢ ¢ kk

3

77775
and b D

2

66664

1

0
000

0

3

77775
0

Thus the solution x D 4x11 : : : 1 xk5T is uniquely determined by

x D —A—ƒ1Aü b1 (A.1)

where A ü and —A— denote the adjoint matrix and the determinant of
the matrix A; that is, x is the � rst column of Aƒ1. Applying the
property of the Vandermonde matrix, we see that the determinant of
the matrix A is

—A— D 2 � 3 � ¢ ¢ ¢ � k �



1 1 ¢ ¢ ¢ 1 ¢ ¢ ¢ 1

1 2 ¢ ¢ ¢ j ¢ ¢ ¢ k

000
000

0 0 0
000

0 0 0
000

1 2kƒ1 ¢ ¢ ¢ jkƒ1 ¢ ¢ ¢ kkƒ1



D kW
Y Y

1µl1<l2µk

4l2 ƒ l151

and that the jth entry in the � rst column of matrix A ü is

A ü 4j1 15 D 4ƒ15jC1 4kW52

j2

Y Y

1µl1 <l2µk
l1 6Dj1 l2 6Dj

4l2 ƒ l150

Hence in (A.1), the solutions xj1 j D 11 : : : 1 k, can be simpli� ed as

xj D 4ƒ15jC1 4kW52

j2

Q Q
1µl1 <l2µk
l1 6Dj1 l2 6Dj

4l2 ƒ l15

kW
Q Q

1µl1<l2µk4l2 ƒ l15

D
4ƒ15jC1kW

j24j ƒ15W 4k ƒ j5W
D 4ƒ15jC1

³
k

j

´,
j0

This proves the � rst statement. We now prove the second statement.
The proof is based on the recursion relation, which we now derive.

For any 1 µ j µ k1
¡

k

j

¢
j D

¡
kƒ1
jƒ1

¢
k, which, when applied to the � rst

statement, results in

kX

jD1

jkC1ak1 j D
kX

jD1

4ƒ15jC1

³
k

j

´
jk

D ƒk

µ
4ƒ15C

kƒ1X

jD1

4ƒ15jC1

³
k ƒ 1

j

´
4j C 15kƒ1

¶
0

Using the binomial expansion for the factor 4j C 15kƒ1 and exchang-
ing the order of summations, we obtain

kX

jD1

jkC1ak1 j D ƒk

µ
4ƒ15 C

kƒ1X

lD0

³
k ƒ1

l

´kƒ1X

jD1

j lC1akƒ11 j

¶
0

This together with (9) yields

kX

jD1

jkC1ak1 j D ƒk

µ
4ƒ15 C1 C

kƒ1X

jD1

jkakƒ11 j

¶

D ƒk
kƒ1X

jD1

jkakƒ11 j 0

The conclusion follows from the foregoing inductive formula.

A.2 Proof of Theorem 2

Before we derive the asymptotic variances in Theorem 2, we need
the following lemma.

Lemma A.1. Assume the same regularity conditions on 8Xt9 as
in Theorem 2. For each � xed x0 , as ã ! 0, it holds that

E84XtCã ƒXt5—Xt D x09 D Œ4x05ãCO4ã251 (A.2)

E84XtCã ƒXt5
2—Xt D x09 D‘ 24x05ãC O4ã251 (A.3)

E84XtCã ƒXt5
3—Xt D x09

D 3‘ 24x058Œ4x05 C2ƒ14‘ 2504x059ã2 CO4ã351 (A.4)

E84XtCã ƒXt5
4—Xt D x09 D 3‘ 44x05ã2 CO4ã351 (A.5)

E84XtCã ƒ Xt5Œ4XtCã5—Xt D x09

D 8Œ24x05C Œ04x05‘
24x059ãC O4ã251 (A.6)

E84XtCã ƒ Xt5
2‘ 24XtCã5—Xt D x09 D‘ 44x05ãC O4ã251 (A.7)

and

E84XtCã ƒXt5
3Œ4XtCã5—Xt D x09 D O4ã250 (A.8)

Proof. To show results (A.2)–(A.8), we choose the correspond-
ing functions, f14x1 t5 D 4x ƒ Xt51f24x1 t5 D 4x ƒ Xt5

21 f34x1 t5 D
4x ƒ Xt5

31 f44x1 t5 D 4x ƒ Xt5
41 f54x1 t5 D 4x ƒ Xt5Œ4x51f64x1 t5 D

4xƒXt5
2‘ 24x5, and f74x1 t5 D 4xƒXt5

3Œ4x5. Straightforward calcu-
lations, applying the differential operator ¬ de� ned by (7), give the
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following relations:

¬f14x1 t5 D Œ4x51

¬2f14x1 t5 D Œ04x5Œ4x5C 2ƒ1Œ004x5‘ 24x51

¬f24x1 t5 D 24x ƒXt5Œ4x5 C‘ 24x51

¬2f24x1 t5 D 82Œ4x5C 24x ƒXt5Œ
04x5 C 4‘ 2504x59Œ4x5

C2ƒ184Œ04x5 C24x ƒ Xt5Œ
004x5C 4‘ 25004x59‘ 24x53

¬f34x1 t5 D 34x ƒXt5
2Œ4x5 C34x ƒ Xt5‘

24x51

¬2f34x1 t5 D 864x ƒXt5Œ4x5 C34x ƒ Xt5
2Œ04x5 C3‘ 24x5

C 34x ƒXt54‘
2504x59Œ4x5 C2ƒ1‘ 24x5

� 86Œ4x5 C124x ƒXt5Œ
04x5 C34x ƒ Xt5

2Œ004x5

C64‘ 2504x5 C34x ƒXt54‘
25004x591

¬f44x1 t5 D 44x ƒXt5
3Œ4x5 C64x ƒ Xt5

2‘ 24x51

¬2f44x1 t5 D 8124x ƒXt5
2Œ4x5C 44x ƒXt5

3Œ04x5

C 124x ƒXt5‘
24x5C 64x ƒXt5

24‘ 2504x59Œ4x5

C2ƒ18244x ƒXt5Œ4x5 C244x ƒXt5
2Œ04x5

C44x ƒ Xt5
3Œ004x5 C12‘ 24x5

C244x ƒXt54‘
2504x5

C64x ƒXt5
24‘ 25004x59‘ 24x53

and

¬f54x1 t5 D 8Œ4x5 C 4x ƒ Xt5Œ
04x59Œ4x5

C2ƒ18Œ04x5 CŒ04x5 C 4x ƒXt5Œ
004x59‘ 24x51

¬f64x1 t5 D 824x ƒ Xt5‘
24x5 C 4x ƒXt5

24‘ 2504x59Œ4x5

C2ƒ182‘ 24x5C 44x ƒXt54‘
2504x5

C 4x ƒXt5
24‘ 25004x59‘ 24x51

¬f74x1 t5 D 834x ƒXt5
2Œ4x5 C 4x ƒ Xt5

3Œ04x59Œ4x5

C2ƒ1864x ƒ Xt5Œ4x5 C64x ƒ Xt5
2Œ04x5

C 4x ƒ Xt5
3Œ004x59‘ 24x50

The proof of Lemma A.1 is completed by using a Taylor series
expansion in (8).

To show Theorem 2, we start by considering the conditional vari-
ance of the drift estimator. Write t D t0 C `ã for any � xed index
` D 11 : : : 1 nƒk, throughout the following derivations. From the def-
initions in (16) and (20), we have

‘ 2
11 ã4x05

D ãƒ2

"
X

1µjµk

a2
k1 jvar84XtCjã ƒ Xt5—Xt D x09 C2

X X

1µi<jµk

ak1 iak1 j

� cov4XtCiã ƒx01 XtCjã ƒx0—Xt D x05

#

0 (A.9)

For j ¶ 1, (A.2) and (A.3) imply that

var84XtCjã ƒXt5—Xt D x09

D E84XtCjã ƒ Xt5
2—Xt D x09 ƒ 6E84XtCjã ƒ Xt5—Xt D x0972

D‘ 24x05jãC O4ã250 (A.10)

For 1 µ i < j µ k, combining the Markov property of 8Xt1 t ¶ 09 with
(A.2), (A.3), and (A.6), we have

E84XtCiã ƒ x054XtCjã ƒx05—Xt D x09

D E64XtCiã ƒx05E84XtCjã ƒx05—XtCiã9—Xt D x07

4Markovian property5

D E64XtCiã ƒx0584XtCiã ƒ x05C Œ4XtCiã54j ƒ i5ã

C O4ã259—Xt D x07

D E84XtCiã ƒx052 C 4XtCiã ƒx05Œ4XtCiã54j ƒ i5ã

C 4XtCiã ƒx05O4ã25—Xt D x09

D‘ 24x05iãCO4ã250 (A.11)

We also obtain, according to (A.2), that

E84XtCiã ƒx05—Xt D x09E84XtCjã ƒx05—Xt D x09

D 8Œ4x05iã CO4ã2598Œ4x05jãC O4ã259 D O4ã250 (A.12)

The expression (21) follows readily from the combination of (A.9),
(A.10), (A.11), and (A.12).

We now consider the conditional variance of the squared diffusion
estimator. In the same vein, from equations (17) and (20), we have

‘ 2
21 ã4x05

D ãƒ2

"
X

1µjµk

a2
k1 jvar84XtCjã ƒXt5

2—Xt D x09 C2
X X

1µi<jµk

ak1 iak1 j

� cov844XtCiã ƒ x0521 4XtCjã ƒ x0525—Xt D x09

#

0 (A.13)

For j ¶ 1, (A.3) and (A.5) imply that

var84XtCjã ƒ Xt5
2—Xt D x09

D E84XtCjã ƒXt5
4—Xt D x09 ƒ 6E84XtCjã ƒXt5

2—Xt D x0972

D 2‘ 44x054jã52 CO4ã350 (A.14)

For 1 µ i < j µ k, combining the Markov property of 8Xt1 t ¶ 09 with
(A.5), (A.7), and (A.8), we have

E84XtCiã ƒx0524XtCjã ƒx052—Xt D x09

D E64XtCiã ƒx052E84XtCjã ƒ x05
2—XtCiã9—Xt D x07

4Markovian property5

D E64XtCiã ƒx05284XtCiã ƒx052 C 424XtCiã ƒx05Œ4XtCiã5

C‘ 24XtCiã554j ƒ i5ãCO4ã359—Xt D x07

D E84XtCiã ƒx05
4 C24XtCiã ƒx05

3Œ4XtCiã54j ƒ i5ã

C 4XtCiã ƒx052‘ 24XtCiã54j ƒ i5ãCO4ã35—Xt D x09

D 3‘ 44x054iã52 CO4ã35 C‘ 44x054iã54j ƒ i5ãCO4ã35

D 2‘ 44x054iã52 C‘ 44x05ijã2 C O4ã350 (A.15)

We also obtain from (A.3) that

E84XtCiã ƒx052—Xt D x09E84XtCjã ƒx052—Xt D x09

D 8‘ 24x05iãCO4ã2598‘ 24x05jã CO4ã259

D‘ 44x05ijã2 CO4ã350 (A.16)
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The equality (22) follows directly from the combination of (A.13),
(A.14), (A.15), and (A.16).

A.3 Proof of Theorem 3

The proofs in this section are based on some combinatorial rela-
tions. Let ƒ D limn!ˆ8

Pn
kD1 kƒ1 ƒ log4n59 º 0577216 be the Euler’s

constant and –4z5 D â 04z5=â4z5 be the Psi function, where â4z5 DR ˆ
0 uzƒ1eƒu du for z > 0. First, we consider part (a). With the aid of

Mathematica, we obtain the identities

kX

jD1

³
k

j

´2 4j C 25

4j C152
D

42k C15W
84kC 15W92

C
4kC1â43=2 C k5

4k C153� 1=2kW
ƒ

2k2 C4k C 3

4k C152
1

(A.17)

kX

jD1

³
k

j

´2 4j C 35

4j C152
D

42k C15W
84kC 15W92

C
22kC3â43=2 Ck5

4k C153� 1=2kW
ƒ

3k2 C6k C5

4k C152
1

(A.18)

and

kX

jD2

(
jƒ1X

iD1

4ƒ15iC1

³
k

i

´)

4ƒ15jC1

³
k

j

´,
j

D
1 Cƒk

k
ƒ

1
k

³
2k

k

´
C–4k C150 (A.19)

Consequently, putting ak1 j D 4ƒ15jC1
¡

k

j

¢
=j and simplifying the right

sides of (A.17) and (A.18), we have

kX

jD1

ja2
k1 j >

kX

jD1

³
k

j

2́ 4j C 25

4j C152
D

42k C 154k C35

4kC 153

³
2k

k

´
ƒ

2k2 C4k C3

4k C 152

(A.20)

and

kX

jD1

ja2
k1j µ

kX

jD1

³
k

j

2́ 4j C35

4jC152
D

42kC154kC55

4kC153

³
2k

k

´
ƒ

3k2 C6kC5

4kC152
0

(A.21)

Applying (A.19) and the identity –4n5 D
Pnƒ1

jD1 jƒ1 ƒƒ , which holds
for any integer n ¶ 2, we deduce

XX

1µi<jµk

iak1 iak1 j D
1

k
C

kX

jD1

1

j
ƒ

1

k

³
2k

k

´
0 (A.22)

Hence (21), (A.9), and (A.22), together with inequalities (A.20) and
(A.21), ensure that V14k5 has a lower bound

k2 ƒ3k ƒ2

k4kC 153

³
2k

k

´
C

2

k
C 2

kX

jD1

1

j
ƒ

2k2 C 4k C3

4kC 152
(A.23)

and an upper bound

5k2 ƒk ƒ2

k4kC 153

³
2k

k

´
C

2

k
C 2

kX

jD1

1

j
ƒ

3k2 C6k C5

4k C152
0 (A.24)

The conclusion follows from applying Stirling’s formula nW D
42� n51=24n=e5n exp8ˆ=412n59 for some 0 < ˆ < 1 to the � rst domi-
nating terms of (A.23) and (A.24).

Next, we consider part (b). For k ¶ 1, it follows directly that

kX

jD1

j2a2
k1 j D

³
2k

k

´
ƒ 10 (A.25)

Again with the aid of Mathematica, we obtain the identity that for
k > 1 and 2 µ j µ k,

jƒ1X

iD1

4ƒ15iC1

³
k

i

´
i D

4ƒ15jjâ 4k5

â 4j5â4kƒ j C15
ƒ

4ƒ15jâ4k ƒ15

â 4j5â4k ƒ j5
1 (A.26)

which implies that

X X

1µi<jµk

i2ak1 iak1 j D
1

k ƒ1

kX

jD2

³
k ƒ1

j

´³
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j
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ƒ

kX

jD2

³
k ƒ1
k ƒ j

´³
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j

´

D ƒ
¡2kƒ1

k

¢
4k ƒ25 C1

k ƒ1
0 (A.27)

The conclusion (b) follows from (22), (A.13), (A.25), (A.27) and
Stirling’s formula.

A.4 Proof of Theorem 4

It suf� ces to consider only Part (1); similar treatments
apply to Part (2). We denote a generic constant by C . Let
X D 44X ü

iã ƒ x05
j5iD11 : : : 1nƒk3jD01 : : : 1q1 y D 4Y ü

ã 1 : : : 1 Y ü
4nƒk5ã5T 1 W D

diag8Kh4X ü
iã ƒ x051 i D 11 : : : 1 n ƒ k9, and m D 4E4Y ü

ã —X ü
ã51 : : : 1

E4Y ü
4nƒk5ã

—X ü
4nƒk5ã

55T . Denote Sn D XT WX and Tn D XT Wy. Then by

(19), we can write OÂ4x05 D Sƒ1
n Tn and thus

OÂ4x05 ƒÂ4x05 D Sƒ1
n XT W8mƒ XÂ4x059 CSƒ1

n XT W4y ƒm51

² b C t0

We � rst establish the asymptotic behavior of the bias vector b D
4b01 b11 : : : 1 bq5T . Set Zn1 ` D Kh4X ü

`ã ƒ x054X
ü
`ã ƒ x05j and Sn1 j DPnƒk

`D1 Zn1 `; then Sn D 4Sn1 iCjƒ25i1 jD11 : : : 1 qC1 . A Taylor expansion leads
to the expression

b D Sƒ1
n 8‚qC14Sn1 qC11 : : : 1 Sn1 2qC15T C‚qC24Sn1 qC21 : : : 1 Sn1 2qC25T

C oP 4nhqC25H191 (A.28)

with a 4q C 15 � 4q C 15 matrix H D diag411 h1 : : : 1 hq5 and a 4q C
15 � 1 vector 1 D 411 : : : 115T . To derive the asymptotic form of b,
we need only apply the expression

Sn1 j D nhj8p4x05Œj Chp04x05ŒjC1 C OP 4an591 (A.29)

where an D h2 C 4nh5ƒ1=2. Equation (A.29) can be obtained via pro-
cedures similar to those of Fan and Gijbels (1996, thm. 3.1). How-
ever, to verify the term OP 4an5 in our current context, we need to
do the variance calculation for Sn1j , which is different than that of
Fan and Gijbels. To this end, using the assumption on the transition
density, we � rst obtain

—cov4Zn1 11Zn1 `C15— µ Ch2j81C o41590 (A.30)

Recall for a bounded real-valued Borel measurable function g, the
transition probability operator ´ ` of the process 8X ü

iã1 i D 11 : : : 1
n ƒ k9 is de� ned by

4´ `g54x5 D E8g4X ü
4`C15ã5—X ü

ã D x90

By the G2 condition of Rosenblatt (1970), there exists a constant
� 2 40115 for ´ , such that for g4¢5 D Kh4¢ƒ x054¢ ƒx05j ƒE8Kh4¢ƒ
x054¢ƒ x05j9, we have

—cov4Zn1 11Zn1 `C15— D —E8g4X ü
ã5´ `g4X ü

ã59—

µ ˜g4X ü
ã5˜2˜´ `g4X ü

ã5˜2

µ ˜g4X ü
ã5˜2

2—´ `—2

µ Ch2jƒ1�`1 (A.31)
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where —´ `—2 D supg2g 6DE4g5
˜´ `gƒE4g5˜2

˜gƒE4g5˜2
, and E stands for expectation

with respect to the stationary density p4¢5. Now select an integer dn

so that dn ! ˆ and dnh ! 0 (e.g., dn D hƒ1=2); then (A.30) and
(A.31) give

nƒkƒ1X

`D1

—cov4Zn1 11Zn1 `C15— D
³ dnX

`D1

C
nƒkƒ1X

`DdnC1

´
—cov4Zn1 11Zn1 `C15—

D o4h2jƒ150 (A.32)

This, along with the stationarity assumption, yield

var4Sn1 j5 D 4nƒ k5var4Zn1 15 C 2
nƒkƒ1X
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4nƒ k ƒ `5cov4Zn1 11 Zn1 `C15

D nh2jƒ1
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p4x05�2j C o415C 2hƒ42jƒ15

�
nƒkƒ1X

`D1

³
1 ƒ

`

n ƒk

´
cov4Zn1 11 Zn1 `C15

¶
1

from whence (A.29) is obtained.
The asymptotic bias expression in (23) then results from the

decomposition

OŒ11ã4x05 ƒŒ4x05 D
©

OŒ11ã4x05ƒ E4Y ü
iã—X ü

iã D x05
ª

ƒ 8E4Y ü
iã—X ü

iã D x05ƒ Œ4x0590

On the right side, we see that OŒ11ã4x05 ƒ E4Y ü
iã—X ü

iã D x05 D b0;
by (13), we see that E4Y ü

iã—X ü
iã D x05 ƒ Œ4x05 D 4ƒ15kC1 �

¬kC1f1 4x0 1t0Ciã5

4kC15
ãk CO4ãkC15. This completes the proof of (23).

Next, consider the asymptotic variance of OŒ11ã4x05. By (A.29),
t D pƒ14x05Hƒ1Sƒ1u81 C oP 4159, where u D nƒ1Hƒ1XT W4y ƒ m5.
For any constant vector c, de� ne

Qn D cT u D
1

n

nƒkX

iD1

8Y ü
iã ƒE4Y ü

iã—X ü
iã59Ch4X ü

iã ƒx051

where C4x5 D
Pp

jD0 cj xjK4x5, and Ch4x5 D C4x=h5=h. Set vn1` D
8Y ü

iã ƒ E4Y ü
iã—X ü

iã59Ch4X ü
iã ƒx05. Then direct calculations give that

var4vn115 D 4hã5ƒ1‘ 2
1 4x03 k5p4x05cT S ü c81 Co41590 (A.33)

Similar procedures to those used in (A.30)–(A.32) lead to

nƒkƒ1X

`D1

—cov4vn111 vn1`C15— µ dnh2ãƒ2 C hãƒ2
nƒkƒ1X

`DdnC1

�` D o4hãƒ251

which, combined with (A.33) and the assumption on h, imply that
var4u5 D 4nhã5ƒ1‘ 2

1 4x03 k5p4x05S
ü 81 Co4159 and, therefore, (25).

[Received November 2000. Revised February 2002.]
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