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Curve � tting and curve checking based on the local polynomial regression technique are commonly used data-analytic methods in sta-
tistics. This article examines, in nonparametric settings, both the asymptotic expressions and empirical formulas for degrees of freedom
(DF), a notion introduced by Hastie and Tibshirani, of linear smoothers. The asymptotic results give useful insights into the nonparametric
modeling complexity. Meanwhile, by substituting the exact DFs by the empirical formula, an empirical version of the generalized cross-
validation (EGCV) is obtained. An automatic bandwidth selection method based on minimizing EGCV is proposed for conducting local
smoothing. This procedure preserves full bene� ts of the ordinary and generalized cross-validation, but offers a substantial reduction in
computational burden. Furthermore, the EGCV-minimizing bandwidth can be extended in a very simple manner to � t multivariate mod-
els, such as the varying-coef� cient models. Applications of calibrating DFs to important inferential issues, such as assessing the validity
of useful model assumptions and measuring the signi� cance of predictor variables based on the generalized likelihood ratio statistics are
also discussed. Simulation studies are presented to illustrate the performance of the proposed procedures in a range of statistical prob-
lems.

KEY WORDS: Bandwidth selection; Cross-validation; Goodness of � t; Local polynomial regression; Varying coef� cient model.

1. INTRODUCTION

Curve � tting and curve checking, based on the scatterplot
smoothing, are commonly used data-analytic methods in sta-
tistics. Their utilities and potential areas of applications for a
wide variety of smoothing techniques have been summarized
by Eubank (1988),Wahba (1990), Hastie and Tibshirani (1990),
Green and Silverman (1994), Wand and Jones (1995), Fan and
Gijbels (1996), and others. An important practical problem is
choosing the appropriate amount of smoothing when carry-
ing out data smoothing and signi� cance assessment. In princi-
ple, one seeks the smoothing parameter that trades-off the bias
and variance of the resulting estimator, leading to the optimal
(global) smoothing parameter that minimizes criteria such as
the mean integrated squared error (MISE). In this article, the
discussion is con� ned mainly to the local polynomial regres-
sion technique, the smoothing parameter of which is referred to
as bandwidth.

A numberof data-based methodshave been developedfor the
automatic choice of bandwidth. The most frequently used pro-
cedure for bandwidth selection is cross-validation (CV) (Allen
1974; Stone 1974). The asymptotic equivalence of bandwidth
selectors based on CV and some other criteria was brie� y dis-
cussed by Rice (1984). Theoretically, the CV-minimizing band-
width convergesto the true MISE-optimal bandwidth.(See Här-
dle, Hall, and Marron 1992 for CV bandwidth selector applied
to kernel regression.) To further improve the convergence rate
of CV-based bandwidth selectors, various alternative methods
based on the plug-in idea have been proposed. Gasser, Kneip,
and Köhler (1991) and Ruppert, Sheather, and Wand (1995) de-
veloped plug-in bandwidth selection methods whose motiva-
tions are based on asymptotic theory (the former was developed
for a different nonparametric estimator, but applies also to lo-
cal linear regression), whereas the plug-in method of Fan and
Gijbels (1995) relies on nonasymptotic expressions. Although
re� nements based on the plug-in approaches are elegant, the
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choice of some other extraneous parameters is required in ad-
dition to the bandwidth parameter itself; moreover, implemen-
tation of plug-in methods need special programming efforts.
Ruppert, Wand, Holst, and Hössjer (1997) also pointed out that
plug-in bandwidths, such as those of Ruppert et al. (1995) and
Fan and Gijbels (1995), restrict to odd-degree local polynomi-
als, because the bias expression of even-degree local � tting is
more complex. In contrast, the CV method can be implemented
with relatively minimal effort and is easily applicable to both
odd and even degrees.

In this article, the proposed bandwidth selector applies
a variant of CV, based on the notion of generalized cross-
validation (GCV) criterion and the calibrating formulas of de-
grees of freedom (DFs). The idea of GCV appeared originally
in the context of smoothing splines (see Craven and Wahba
1979 and references cited therein). An in-depth discussion of
the theoretical properties of GCV has been given by for ex-
ample, Li (1985, 1986). Operationally, CV requires evalua-
tion of all diagonal entries of an associated smoother ma-
trix, whereas GCV relaxes this need, instead computing only
the trace of that matrix. Compared with CV, GCV improves
computational speed. However, the development herein is dis-
tinct from ordinary CV and GCV methods in the following
aspects:

1. Asymptotic expressions are derived for the matrix traces.
Then some empirical formulas for the traces, or DFs, are pro-
posed. Substituting the actual traces by the closed-form formu-
las leads to the empirical GCV (EGCV). The bandwidth se-
lector chooses the bandwidth as the minimizer of the EGCV
function. In the simulation study, these empirical formulas in
the random design perform well for sample sizes around 400
and even better for larger sizes. (In the � xed design, a sample
size around 200 or smaller could be � ne.) Indeed, as demon-
strated by Table 4 in random design, the variability of those
traces decreases rapidly as sample size grows. Although di-
rect computation of either CV or GCV is not a major concern
for a dataset of small size (say 50, as used in Lee and Solo
1999) or moderate size, it can potentially become a problem
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for the large and huge sample sizes common in data-mining
tasks. Typical examples include processing massive � nancial
data (Stanton 1997), functional data (Ramsay and Silverman
1997), and longitudinal data (Müller 1988). Nonetheless, with
the derived empirical formulas for DFs, the full bene� ts of CV
and GCV can be retained while greatly reducing the computa-
tional burden.

2. Although the principle of (G)CV is generally applicable,
most of the work related to bandwidth selection is concentrated
on the canonical nonparametric regression model with a uni-
variate predictorvariable, for which a single smooth curve must
be estimated. For � tting a useful class of multivariate models,
such as varying-coef� cientmodels (Hastie and Tibshirani 1993)
with multiple low- or one-dimensional smooth curves, band-
width selection based on EGCV continues to be extensible in
a very simple manner, whereas conventional (G)CV demands
greater amount of computation as the number of covariates in-
creases; see Section 3. Similarly, extensions of plug-in band-
width selectors to multivariate smoothing, though theoretically
feasible (Müller and Prewitt 1993), will encounter more incon-
venience when put into practical application.

3. Many important inferential issues need to be addressed
after applying nonparametric smoothing methods. Various hy-
pothesis testing problems are of interest, including checking
the suitability of some parametric/nonparametricmodels versus
the nonparametricalternatives. In particular, practical aspects of
problems arising from model validation would call for substan-
tial developments. This article reports on methodologies based
on the generalized likelihood ratio statistic (GLR) proposed by
Fan, Zhang, and Zhang (2001). With the calibration formulas
for DFs of local polynomial smoother, one can directly conduct
the proposed GLR test by comparing with the null distribution
percentiles of some familiar reference distributions.This proce-
dure works well for large datasets. Meanwhile, a bootstrap pro-
cedure is proposed to estimate the null distribution of the test
statistic with small sample sizes. The ef� cacies of both proce-
dures are examined thoroughlyin the simulation studies of Sec-
tion 5.4. Thus calibratingDFs helps statistical modelers achieve
two goals simultaneously: automatic data smoothing and effec-
tive curve checking.

In this article, calibrating DF is concentrated on commonly
used linear smoothers. A generalizednotionof “degrees of free-
dom” has been given by Ye (1998), which addresses both linear
and nonlinear smoothers. Following his arguments, it is antic-
ipated that calibrating DFs will have domains of applications
broader than those discussed here.

The article is organized as follows. Section 2 begins with the
DFs and EGCV in the nonparametric regression model. Sec-
tion 3 addresses DFs of local regression for � tting varying-
coef� cient models. Section 4 discusses applications of DFs to
model assessment. Section 5 presents simulation evaluation of
the empirical formulas for DFs with applicationsto curve � tting
and model assessment. Section 6 provides some further discus-
sions on the proposed method and points to some possible ex-
tensions and improvements. The Appendix provides technical
conditions and proofs.

2. NONPARAMETRIC REGRESSION MODEL

2.1 Degrees of Freedom of Linear Smoothers
and Empirical Generalized Cross-Validation

The DF of local polynomial regression estimates consid-
ered in this article can be de� ned for general linear smoothers,
a notion introduced by Hastie and Tibshirani (1990, sec. 3.5).
Consider the situation where .X1; Y1/; : : : ; .Xn;Yn/ are a sam-
ple of random pairs described by the nonparametric regression
model

Y D m.X/ C "; (1)

where " represents the background noise with E."jX/ D 0
and var."jX/ D ¾ 2, X is a scalar regressor variable with a
sampling density f with a known compact support Ä, and
m.x/ is some unknown response function of interest. Call
Om.¢/ a linear estimator if there is a square matrix S, inde-
pendent of all Yi, i D 1; : : : ;n, that transforms the vector of
responses, y D .Y1; : : : ;Yn/T , to the vector of � tted values,
Om D . Om.X1/; : : : ; Om.Xn//T , according to

Om D Sy: (2)

Call S the smoother matrix. Examples of linear smoothers in-
clude smoothing splines, regression splines (see, e.g., Hastie
and Tibshirani 1990), and wavelet estimators. Local polyno-
mial regression estimation is also linear, with extreme depen-
dence on the bandwidth h [see (9) in Sec. 2.2]. For later
use, denote the resulting mean function estimate by Omh.x/ and
the smoother matrix by Sh. The theoretically optimal con-
stant bandwidth minimizes the conditional MISE criterion,
where

MISE.h/ D
Z

E[f Omh.x/ ¡ m.x/g2jX1; : : : ; Xn] f .x/ dx:

The asymptotically optimal bandwidth that minimizes the as-
ymptotic expression for MISE is given by

hAMISE D constant

£
µ

¾ 2jÄjR
Äfm.pC1/.x/g2f .x/ dx

¶1=.2pC3/

n¡1=.2pC3/; (3)

where p is the degree of the local polynomial and jÄj mea-
sures the length of Ä (see Fan and Gijbels 1996, pp. 67–68, for
details). Clearly, this formula contains several unknown quanti-
ties and cannot readily serve for the purpose of automatic data
smoothing.

Perhaps the most well-known data-driven bandwidth selec-
tion method is CV (see Wong 1983; Rice 1984; Fan and Gij-
bels 1996, sec. 4.10.2). This method selects the bandwidth that
minimizes the CV score, de� ned as

CV.h/ D 1
n

nX

iD1

fYi ¡ Omh; ¡i.Xi/g2; (4)

where Omh; ¡i.Xi/ stands for the usual “leave-one-out” estimate
of m.Xi/ obtained by removing the ith observation pair .Xi;Yi/.
In spline smoothing, an alternative expression of CV is widely
used. To show that this sort of simpli� cation works for the local
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polynomialsmoothers, the Appendix veri� es that CV.h/ is also
equivalent to

CV.h/ D 1
n

nX

iD1

fYi ¡ Omh.Xi/g2

f1 ¡ Sh.i; i/g2
: (5)

Evidently, the advantage of (5) relative to (4) allows signi� cant
savings in computational efforts in that one can obtain all of
the � tted responses based on the original one sample instead of
buildingn distinct subsamples, each of size n¡ 1. The GCV ap-
proach, proposed by Craven and Wahba (1979), replaces all of
the diagonal entries S.i; i/ by their average, n¡1 Pn

iD1 S.i; i/ D
tr.S/=n, where “tr” denotes the matrix trace. This idea, when
applied to (5), yields the GCV function given by

GCV.h/ D
n¡1 Pn

iD1fYi ¡ Omh.Xi/g2

f1 ¡ tr.Sh/=ng2
;

the minimum of which can be found by optimization methods
or by a grid search.

This article proposes a bandwidth selector based on min-
imizing an empirical asymptotic version of GCV. That is,
substitute tr.Sh/ by its empirical asymptotic formula. The re-
sulting bandwidth selector is termed the “EGCV-minimizing
bandwidth.”

Traces of smoother matrices also naturally serve to estimate
the noise variance. As in the parametric regression model, a
nonparametric variance estimator of the form

O¾ 2 D
Pn

iD1fYi ¡ Om.Xi/g2

n ¡ tr.2S ¡ STS/
(6)

was considered by Buckley, Eagleson, and Silverman (1988)
and Cleveland and Devlin (1988). This motivates the need to
compute tr.S/, tr.STS/, and tr.2S¡ STS/. Evaluationof the last
quantity is also a crucial part of the model checking process, as
is described further in Section 4. Hastie and Tibshirani (1990,
sec. 3.5) considered the foregoing three quantities as three de-
� nitions of DFs used in estimating m. Of these, the naive cal-
culation of tr.S/ is the easiest to carry out, at a cost of O.n/

operations for many of the smoothers, whereas tr.STS/ costs
O.n2/ operations.

2.2 Degrees of Freedom of Local
Polynomial Regression Smoother

This section derives asymptotic formulas of tr.Sh/ and
tr.ST

h Sh/ for local polynomial smoothers. The main result is
presented in Theorem 1 under both random and � xed designs.

For expositional convenience, the derivation begins by de-
scribing the local polynomial regression, of degree p. Let x0 be
an interior point of Ä, the support of f . Denote ¯j D m.j/.x0/=j!,
j D 0; : : : ;p, where the dependence of ¯j’s on x0 is sup-
pressed for notational simplicity. Then the local polynomial
regression estimates Ō D . Ō0; : : : ; Ōp/T , of degree p, are de-
� ned to be the minimizer of the weighted sum of squared
residuals

nX

iD1

fYi ¡ ¯0 ¡ .Xi ¡ x0/¯1 ¡ ¢ ¢ ¢ ¡ .Xi ¡ x0/p¯pg2

£ Kh.Xi ¡ x0/: (7)

Here the weight function Kh.¢/ D K.¢=h/=h is rescaled from a
nonnegativekernel K.¢/, usually taken to be a probability den-
sity function.The bandwidth h > 0 speci� es the size of the local
neighborhood and governs the amount of smoothing or local
averaging. Clearly, the resulting Ō0 gives the pth degree lo-
cal polynomial regression estimate; call it Omh.x0/. The kernel
regression and local linear methods correspond to p D 0 and
p D 1.

A more systematic study of the local polynomial smoother
matrix Sh draws on some matrix notations (Fan and Gijbels
1996, chap. 3). Put Sn.x0/ D X.x0/TW.x0/X.x0/ and Tn.x0/ D
X.x0/TW.x0/, where

X.x0/ D

2

4
1 .X1 ¡ x0/ ¢ ¢ ¢ .X1 ¡ x0/p

:::
:::

: : :
:::

1 .Xn ¡ x0/ ¢ ¢ ¢ .Xn ¡ x0/p

3

5

and W.x0/ is a diagonal matrix with diagonal entries Kh.Xi ¡
x0/. Then, according to (7),

Ō .x0/ D argmin
¯

fy ¡ X.x0/¯gTW.x0/fy ¡ X.x0/¯g

D fSn.x0/g¡1Tn.x0/y: (8)

This expression immediately results in

Omh.x0/ D Ō0 D eT
1; pC1

Ō .x0/

D
nX

jD1

Wn
0

³
x0;

Xj ¡ x0

h

´
Yj; (9)

with

Wn
0 .x; t/ D eT

1; pC1fSn.x/g¡1H.1; t; : : : ; t p/TK.t/=h; (10)

de� ned for any real-valued x and t, where H D diagf1;h;

: : : ;hpg is a diagonal matrix. Here the vector notation ek; ` rep-
resents the kth column of an ` £ ` identity matrix; later, the sec-
ond subscript may be droppedwherever it is clear from the con-
text. Replicating the foregoing estimation procedure for each of
n observations Xi, all of the � tted responses Omh.Xi/ can be ob-
tained. Thus from (9), the .i; j/th entry of the smoother matrix
Sh is represented by

Sh.i; j/ D Wn
0

³
Xi;

Xj ¡ Xi

h

´
; i; j D 1; : : : ;n; (11)

and the entries on the diagonal are Sh.i; i/ D Wn
0 .Xi;0/, i D

1; : : : ;n. Obviously, Sh is neither symmetric nor idempotent.
Using (11), the explicit expressions for DFs are obtained:

tr.Sh/ D
nX

iD1

eT
1 fSn.Xi/g¡1e1K.0/=h; (12)

and

tr.ST
h Sh/ D

nX

iD1

nX

jD1

£
eT

1 fSn.Xi/g¡1f1; .Xj ¡ Xi/;

: : : ; .Xj ¡ Xi/
pgT¤2

K2
³

Xj ¡ Xi

h

´¿
h2: (13)

Therefore, when the sample size n increases, naive calculations
of the traces for any particular h are computationallyintensive.
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Conceptually, the DFs, such as tr.2Sh ¡ ST
h Sh/ in (6), should

be positive to be meaningful. To verify that this desired prop-
erty holds requires only checking relations between DFs. To
this end, � rst the preliminary nonasymptotic results on Sh are
obtained; for any h > 0, the inequalities

p C 1 · tr.ST
h Sh/ · tr.Sh/ · tr.2Sh ¡ ST

h Sh/ < n (14)

hold for any nonnegative kernel K under a mode condition,
K.0/ D supx K.x/, which is satis� ed by virtually all symmet-
ric and unimodal kernels used in practice; the lower bound is
for DFs with h ! 1, whereas the upper bound is with h ! 0.
The proof of (14) can be found in the Appendix.

To facilitate presentations of tr.Sh/ and tr.ST
h Sh/ in their as-

ymptotic forms, now K .t/ de� nes the “equivalent kernel” for
the local polynomial smoother (9), namely

K .t/ D eT
1 S¡1.1; t; : : : ; tp/TK.t/; (15)

with the matrix S D .¹iCj¡2/1·i; j·pC1, where ¹` D
R

t`K.t/dt
(see Fan and Gijbels 1996, p. 64; Müller 1987, p. 233). Straight-
forward calculations lead to the following mappings useful for
presenting Theorem 1:

K .0/ D K.0/eT
1 S¡1e1 (16)

and

K ¤ K .0/ D eT
1 S¡1S¤S¡1e1; (17)

where S¤ D .ºiCj¡2/1·i; j·pC1, with º` D
R

t`K2.t/dt, and ¤ on
the left side of (17) denotes the convolutionoperator. In practi-
cal applications, multiweight kernel functions of the following
form are commonly used:

1

beta.1=2; ` C 1/
.1 ¡ t2/`I.jtj · 1/; ` D 0;1; : : : :

Table 1 summarizes the values of K .0/, K ¤ K .0/, and .2K ¡
K ¤ K /.0/ for the Epanechnikovkernel (` D 1), biweight kernel
(` D 2), and triweight kernel (` D 3).

Theorem 1 presents the asymptotic expressions for DFs. Here
and in the sequel, jÄj denotes the length of Ä; in the random

design, the probability measure in the term oP.1/ is taken with
respect to the distribution of X.

Theorem 1. For random designs, assume condition (A); see
the Appendix. When n ! 1, h ! 0, and nh ! 1,

tr.Sh/ D K .0/jÄj=hf1 C oP.1/g; (18)

tr.ST
h Sh/ D K ¤ K .0/jÄj=hf1 C oP.1/g; (19)

and

tr.2Sh ¡ ST
h Sh/ D .2K ¡ K ¤ K /.0/jÄj=hf1 C oP.1/g: (20)

For � xed designs, assume Condition (A¤); see the Appendix.
When n ! 1, h ! 0, and nh ! 1,

tr.Sh/ D K .0/jÄj=hf1 C o.1/g; (21)

tr.ST
h Sh/ D K ¤ K .0/jÄj=hf1 C o.1/g; (22)

and

tr.2Sh ¡ ST
h Sh/ D .2K ¡ K ¤ K /.0/jÄj=h f1 C o.1/g: (23)

Theorem 1 demonstrates that the asymptotic DFs are in-
versely proportional to the bandwidth h. Fan and Gijbels (1996,
pp. 7–8) gave a more graphically oriented illustration of non-
parametric modeling complexity by displaying local polyno-
mial � ts with varying amounts of h, but did not assess quan-
titatively the extent to which h carries information of DFs.
Here this linkage is made more transparent. Results in Theo-
rem 1 also deliver the asymptotic nondependence of DFs on
the design density f . In comparison, the asymptotic DFs for
the smoothing spline smoother rely on the knowledge of f ; see
Theorem 2.

In the Appendix, the higher-order approximation formulas
are given in (A.9) for tr.Sh/ and in (A.17) for tr.ST

h Sh/, where
the kernel-dependentconstants, SK .0/, K .0/, `1.K/, and `2.K/,
are as collected in Table 1.

Table 1. Kernel-Dependent Constants From the pth Degree Local Polynomial Fit

Kernel p K ¤ K(0) K(0) (2K ¡ K ¤ K)(0) K(0) K(0) `1(K ) `2(K) r K

Epanechnikov 0 :6000 :7500 :9000 0 .1500 0 .1543 2:1153
1 :6000 :7500 :9000 :1500 .1500 :1543 .1543 2:1153
2 1:2500 1:4062 1:5625 0 .1562 0 .1569 1:9755
3 1:2500 1:4062 1:5625 :1562 .1562 :1569 .1569 1:9755
4 1:8930 2:0508 2:2085 0 .1578 0 .1580 1:9336
5 1:8930 2:0508 2:2085 :1578 .1578 :1580 .1580 1:9336

Biweight 0 :7143 :9375 1:1607 0 .1339 0 .1391 2:3061
1 :7143 :9375 1:1607 :1339 .1339 :1391 .1391 2:3061
2 1:4073 1:6406 1:8739 0 .1491 0 .1502 2:1283
3 1:4073 1:6406 1:8739 :1491 .1491 :1502 .1502 2:1283
4 2:0712 2:3071 2:5431 0 .1538 0 .1542 2:0620
5 2:0712 2:3071 2:5431 :1538 .1538 :1542 .1542 2:0620

Triweight 0 :8159 1:0938 1:3716 0 .1215 0 .1269 2:3797
1 :8159 1:0938 1:3716 :1215 .1215 :1269 .1269 2:3797
2 1:5549 1:8457 2:1365 0 .1420 0 .1432 2:1946
3 1:5549 1:8457 2:1365 :1420 .1420 :1432 .1432 2:1946
4 2:2435 2:5378 2:8322 0 .1493 0 .1498 2:1219
5 2:2435 2:5378 2:8322 :1493 .1493 :1498 .1498 2:1219
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2.3 Degrees of Freedom of the Smoothing
Spline Estimator

The asymptotic expressions for DFs based on the smooth-
ing spline are developedherein. The main result is addressed in
Theorem 2. There only the � xed-design is considered for ease
of technicalmanipulation;extensions to random designs will be
an interesting future work.

The smoothing spline estimator, denoted by Om¸, minimizes
the penalized sum of squared errors,

n¡1
nX

iD1

fYi ¡ m.xi/g2 C ¸

Z 1

0
fm.q/.x/g2 dx; ¸ > 0; (24)

over all functions m 2 Wq
2 [0;1], where Wq

2 [0;1], the qth order
Sobolev space, is de� ned as

W
q
2 [0;1] D

»
m : m.j/ is absolutely continuous

for j D 0;1; : : : ;q ¡ 1I
Z 1

0
fm.q/.x/g2 dx < 1

¼
;

for some � xed integer q ¸ 1. The commonly used cubic
smoothing spline corresponds to q D 2. The support of de-
sign points xi, taken to be Ä D [0;1], is merely for simplic-
ity. The smoothing parameter or the penalty factor ¸, on which
the smoothing spline estimator depends, regulates the “rate of
exchange” between � delity to the data and smoothness of the
� tted curve. The smoother matrix, as a result of (24), is denoted
by S¸ to stress its dependence on ¸. (See Eubank 1988 and
Wahba 1990 for detailed descriptions of smoothing splines.)

To derive expressions for tr.S¸/ and tr.ST
¸ S¸/, an explicit rep-

resentation of S¸ is needed; this can be found in Eubank (1984)
among others. For convenience, we assume that the xj’s have
been ordered, so that x1 < ¢ ¢ ¢ < xn. It is well known (see, e.g.,
Reinsch 1967) that Om¸ belongs to Sq

n , the n-dimensional space
of natural splines,

Sq
n D

©
m : m 2 C2q¡2[0; 1]; m is a polynomial of degree

2q ¡ 1 on [xi; xiC1]; i D 1; : : : ;n ¡ 1;

and of degree q ¡ 1 on [0;x1] and [xn;1]
ª
:

An explicit expression for Om¸.x/ can be obtained via the basis
functions fÁjn; j D 1; : : : ;ng of Sq

n introduced by Demmler and
Reinsch (1975). These functions satisfy the conditions

1
n

nX

iD1

Ájn.xi/Ákn.xi/ D ±jk

and
Z 1

0
Á

.q/
jn .x/Á

.q/
kn .x/dx D °kn±jk;

for j; k D 1; : : : ; n, with 0 D °1n D ¢ ¢ ¢ D °qn < °.qC1/n ·
¢ ¢ ¢ · °nn, and ±jk as Kronecker’s delta. Denote by Ájn D
.Ájn.x1/; : : : ;Ájn.xn//T , j D 1; : : : ;n, the basis vectors evaluated
at the design observations.Then the solution of (24) can be ex-
pressed as

Om¸.x/ D
nX

jD1

n¡1ÁT
jny

1 C ¸°jn
Ájn.x/:

The smoother matrix S¸ , associated with Om¸, allows for a spec-
tral decomposition

S¸ D X diagf.1 C ¸°jn/¡1gn
jD1XT ; (25)

where the square matrix X D n¡1=2[Á1n; : : : ; Ánn] is orthonor-
mal. Clearly, S¸ is symmetric (i.e., ST

¸ D S¸), and the DFs take
the forms

tr.S¸/ D q C
nX

jDqC1

.1 C ¸°jn/¡1 (26)

and

tr.ST
¸ S¸/ D q C

nX

jDqC1

.1 C ¸°jn/¡2; (27)

based on the fact °jn D 0, for j D 1; : : : ;q. It is then apparent
that

q · tr.ST
¸ S¸/ · tr.S¸/ · tr.2S¸ ¡ ST

¸ S¸/ < n; (28)

as given by Hastie and Tibshirani (1990, p. 54). Compared with
(14), these types of inequalities for DFs hold similarly for local
polynomial smoothers.

For cubic smoothing spline � t with equally spaced design,
Green and Silverman (1994, p. 36) and Hastie and Tibshirani
(1990, pp. 305–306) have established some approximation for-
mulas for DFs. Under more general � xed designs [see Condi-
tion (B)], asymptotic results on DFs are stated in Theorem 2.

Theorem 2. Let K.x/ D .2¼/¡1
R C1

¡1 .1 C t2q/¡1 exp.¡itx/ dt.

Set c.f / D
R 1

0 f .t/1=.2q/ dt, where f denotes the design density.
For � xed designs, assume condition (B); see the Appendix.
Then, for q ¸ 2, as n ! 1, ¸ ! 0, and n¸ ! 1, it holds that

tr.S¸/ D q C K.0/c.f /=¸1=.2q/f1 C o.1/g; (29)

tr.ST
¸ S¸/ D q C K ¤ K.0/c.f /=¸1=.2q/f1 C o.1/g; (30)

and

tr.2S¸ ¡ ST
¸ S¸/ D q C .2K ¡ K ¤ K/.0/c.f /=¸1=.2q/

£ f1 C o.1/g: (31)

Theorem 2 reveals the asymptotic relationships between the
DFs and the smoothing parameter ¸. Notice that in Theorem 2,
if ¸ ! 1, where the smoothing spline is actually a polynomial
regression function of degree q ¡ 1, then the limiting DFs co-
incide with q, the DFs de� ned under the classical linear model
framework. Therefore, conclusions of Theorem 2 cover situa-
tions broader than those indicated in Theorem 2.

The function K speci� ed in Theorem 2 is known as the
“equivalent kernel function” for smoothing splines (Silverman
1984). Although K itself, implicitly expressed as a Fourier
transform of 1=.1 C t2q/, appears to be complicated, ana-
lytic formulas for K.0/ and K ¤ K.0/ are rather simple. Using
Lemma A.2 (see the Appendix) and the identities

Z 1

0

dy

1 C y2q D 1
2q sinf¼=.2q/g

¼

and
Z 1

0

dy

.1 C y2q/2
D .2q ¡ 1/

4q2 sinf¼=.2q/g
¼;
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Table 2. Constants of K(0), K ¤ K(0), and 2K(0) ¡ K ¤ K(0) for the
Smoothing Spline Smoother

q K ¤ K (0) K (0) (2K ¡ K ¤ K )(0)

1 .2500 .5000 .7500
2 .2652 .3536 .4419
3 .2778 .3333 .3889
4 .2858 .3266 .3675
5 .2912 .3236 .3560
6 .2951 .3220 .3488

the following are obtained:

K.0/ D 1
2q sinf¼=.2q/g

and (32)

K ¤ K.0/ D 2q ¡ 1

4q2 sinf¼=.2q/g
:

To facilitate computations, the quantities K.0/, K ¤ K.0/, and
.2K ¡ K ¤ K/.0/, for 1 · q · 6, are tabulated in Table 2.

2.4 Comparison of Theorems 1 and 2

To make a more reasonable comparison of Theorem 1 and
Theorem 2, consider the � xed-designpoints Xi D xi. Recall that
the smoothing spline estimator at an interior point x behaves
roughly as a kernel-type method with kernel K and variable
bandwidth h.x/ D f¸=f .x/g1=.2q/ (Silverman 1984). In this per-
spective, Theorem 2 parallels conclusions conveyed from The-
orem 1.

In a common respect, both theorems indicate that DFs are
asymptotically monotone decreasing in smoothing parameters.
Thus, for the purpose of curve � tting, use of the DFs and use of
the smoothing parameters can produce nearly the same effect.
From the standpoint of smoothing, working with DFs are rela-
tively easy to handle and interpret, because they do not rely on
the con� guration of the response variable.

The major distinction is that in Theorem 1, an additive term
pC 1 is not incorporated,whereas an additive term q enters into
Theorem 2. As can be seen clearly, when smoothing parame-
ters tend to in� nity, both the local polynomial � t and smooth-
ing spline become a polynomial regression function of degree
p and degree q ¡ 1. Thus the DFs tend to p C 1 in the former
and q in the latter, agreeing with the number of model parame-
ters in each limiting case. The apparent difference is due to the
fact that Theorem 2 works directly with (26) and (27), which,
whenever ¸ > 0, encompass the quantity q. In contrast, Theo-
rem 1, derived under the imposition h ! 0, is based primarily
on each entry of the matrices Sn.xi/, i D 1; : : : ;n, appearing in
(12) and (13). Accordingly, the asymptotics for DFs assuming
h ! 0 may not carry over to those requiring h ! 1. A simi-
lar phenomenon was noted by Stone (1984, p. 1292) in another
context in the least-squares CV selection of bandwidth for mul-
tivariate kernel density estimates. Stone pointed out that “small,
moderate and large values of the coordinates of h must be han-
dled separately.” Indeed, in the simplest case of kernel regres-
sion method (p D 0), apparently fSn.xi/g¡1 D 1=

Pn
jD1 Kh.xj ¡

xi/. When h ! 0, this quantity is asymptotic to fnf .xi/g¡1, lead-
ing to tr.Sh/ ¼ K .0/jÄj=h and tr.ST

h Sh/ ¼ K ¤ K .0/jÄj=h, as
given in Theorem 1. However, when h ! 1, the same quan-
tity tends to fnK.0/=hg¡1 and thus, by (12) and (13) again, it

follows that tr.Sh/ ¼ 1 and tr.ST
h Sh/ ¼ 1, both of which agree

with p C 1.
The foregoing discussion suggests that for the local smooth-

ing method, the inclusion of p C 1 in (21)–(23) has the ad-
vantage of affecting the asymptotic expressions of DFs less
when h ! 0 [because p C 1 has a smaller magnitude than with
O.h¡1/], while allowing DFs to be more interpretable and well
de� ned even in the case h ! 1; similar adjustment can be ap-
plied to (18)–(20) for random design. This consideration, in-
spired from DFs of spline � tting, is in turn absorbed into the
empirical formulas (33)–(35) for local � tting presented in the
next section.

2.5 Empirical Formulas for Degrees of Freedom

For almost all applications encountered in practice, cases
of smoothing parameters approaching 0 are of primary inter-
est when applying local modeling techniques. Of course, it is
hoped that formulas for DFs will accommodate a broader range
of smoothing parameters and at the same time be reasonably
accurate for applications to � nite-sample situations. Guided by
this motivation and aided by the � nite-sample lower bounds for
DFs given in (14) and (28), the following empirical formulas
for DFs of local polynomial � t and smoothing spline are pro-
posed:

tr.Sh/ ’ .p C 1 ¡ a/ C C n=.n ¡ 1/K .0/jÄj=h; (33)

tr.ST
h Sh/ ’ .p C 1 ¡ a/ C C n=.n ¡ 1/K ¤ K .0/jÄj=h; (34)

tr.2Sh ¡ ST
h Sh/ ’ .p C 1 ¡ a/

C C n=.n ¡ 1/.2K ¡ K ¤ K /.0/jÄj=h; (35)

tr.S¸/ ’ .q ¡ b/ C K.0/c.f /=¸1=.2q/; (36)

tr.ST
¸ S¸/ ’ .q ¡ b/ C K ¤ K.0/c.f /=¸1=.2q/; (37)

and

tr.2S¸ ¡ ST
¸ S¸/ ’ .q ¡ b/C .2K¡ K ¤K/.0/c.f /=¸1=.2q/; (38)

where a and b are some small scalars correcting poten-
tial sources of bias. In (33)–(35), the factor n=.n ¡ 1/ arise
from (A.10) and (A.18) in the proof of Theorem 1. The use of a
slope correction factor C ¸ 1 may alleviate the undersmoothing
tendency of EGCV-minimizing bandwidth; a similar idea ap-
plied to choosing GCV-minimizing ¸ in spline smoothing was
given by Cummins, Filloon, and Nychka (2001, sec. 2.1), where
C was put directly before the actual tr.S¸/. More generally,
C in (33)–(34) may differ. In (36)–(38), we reduce the additive
term q by certain amount, to adjust for the numerical quadra-
ture error in approximating the sum of � nite-term series by an
integral; see the proof of Theorem 2 for the full details. Further
details on how to tune a, b, and C by the simple least squares
method are given in Section 5.1; to obtain rough estimates of
DFs, using a D 0, b D 1, and C D 1 are the simplest choices. In
summary, these empirical formulas lend themselves to simple
hand calculations. Although other styles of elaborate scheme
also may be useful for improving the qualities of the empirical
formulas, the simple ways of bias/slope correction suggested
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earlier suf� ce for the simulations conducted herein. The per-
formance of these handy formulas is illustrated with simulation
studies in Section 5.

Calibrating degrees of freedom can also be used to make dif-
ferent smoothers comparablewith the amount of smoothing that
they produce. This can be achieved by prespecifying the tar-
get DFs for the smooth, then selecting the values of the corre-
sponding smoothing parameters. Hastie and Tibshirani (1990,
sec. 3.5) illustrated a graphical procedure consisting of plotting
the exact DF as a function of the smoothing parameter. In such
instance, using the empirical formulas above, the DFs can be
directly converted into the smoothing parameters. Section 5.1
discusses simulation studies comparing the local linear � t and
cubic smoothing spline.

3. VARYING-COEFFICIENT MODEL

This section explores the possibilities of calibrating DFs
from the preceding univariare nonparametric regression model
to models allowing multivariate predictors. In particular,
varying-coef� cient models are considered. These models pro-
vide a � exible framework for semiparametric and nonpara-
metric regression and generalized regression analysis and do
not suffer from the “curse of dimensionality.” They arise nat-
urally when one wishes to examine how regression coef� -
cients change over different groups characterized by certain
covariates, such as age or time (see the seminal works of
Cleveland, Grosse, and Shyu 1992 and Hastie and Tibshi-
rani 1993).

The varying-coef� cient model for the scalar response vari-
able Y assumes the following conditional linear structure:

Y D a1.U/X1 C ¢ ¢ ¢ C ad.U/Xd C "; (39)

for given covariates U and X D .X1; : : : ; Xd/T , where " is the
random error with E."jU; X/ D 0 and var."jU;X/ D ¾ 2. The
r £ 1 covariate vector U is assumed to have a sampling density
fU with a known bounded support Ä, and the case r D 1 often is
practically more useful; X is assumed to be random. To ensure
identi� ability of model (39), the d £ d matrix E.XXT jU D u/ is
assumed to be positive de� nite for each u 2 Ä. Of interest is to
estimate the unknown smooth curves aj.u/, j D 1; : : : ;d, and
the population mean regression function, m.u;x1; : : : ; xd/ DPd

jD1 aj.u/xj. If d D 1 and X1 ´ c (say c D 1), then (39) reduces
to the nonparametric regression model (1).

Given n independent pairs of measurements f.Ui;X1i; : : : ;

Xdi;Yi/
n
iD1g from the model, only a couple of techniques have

been proposed for � tting a varying-coef� cientmodel. One plau-
sible way of estimating coef� cient functions, aj.u/, applies the
smoothing spline approach proposed by Hastie and Tibshirani
(1993); minimize

nX

iD1

"

Yi ¡
dX

jD1

aj.Ui/Xji

#2

C
dX

jD1

¸j

Z
fa00

j .u/g2 du;

with respect to functions aj.u/, for some positive-valued
smoothing parameters ¸1; : : : ; ¸d . As indicated by Fan and
Zhang (1999), this method has a number of problems in
that it involves selecting multiple smoothing parameters si-
multaneously, contains burden of computation, and sampling

properties of estimates are not easy to obtain. For time-
varying coef� cient models, Hoover, Rice, Wu, and Yang
(1998) discussed the asymptotic properties of kernel regression
estimators.

This section focuses on local polynomials because of their
intuitiveness and simplicity. Interestingly, the results of Theo-
rem 1 and (5) can be � exibly extended to varying-coef� cient
models; see Theorem 3 and (54). Therefore, the EGCV-
minimizing bandwidth selector continues to be applicable for
producing smooth estimates of the varying-coef� cient func-
tions. Again, the function estimation procedure for aj.u/ are de-
scribed � rst. To characterize the solution, some additionalnota-
tions are needed. Setting A.u/ D .a1.u/; : : : ; ad.u//T ,
model (39) can be expressed as Y D A.U/TX C ". Put A.`/.u/ D
.a.`/

1 .u/; : : : ; a.`/
d .u//T , ` D 0; : : : ; p. Then for the ith datum

point Ui close to a � tting point u0, via the Taylor series ap-
proximation,

A.Ui/
TXi ¼

pX

`D0

.Ui ¡ u0/` A.`/.u0/T

`!
Xi; (40)

where Xi D .X1i; : : : ; Xdi/
T . De� ne by ¯.u0/ D .A.u0/T ;

A.1/.u0/T ; : : : ; A.p/
.u0/T

p! /T the d.p C 1/ by 1 vector of coef� -
cients with their derivatives, and set

Zi.u0/ D .1; .Ui ¡ u0/; : : : ; .Ui ¡ u0/p/T Xi;

where denotes the Kronecker product. Then (40) can be writ-
ten as A.Ui/

T Xi ¼ Zi.u0/T¯.u0/. Put

eSn.u0/ D eX.u0/T eW.u0/eX.u0/ and
(41)

eTn.u0/ D eX.u0/T eW.u0/;

where

eX.u0/ D .Z1.u0/; : : : ;Zn.u0//T and

eW.u0/ D diagfKh.U1 ¡ u0/; : : : ;Kh.Un ¡ u0/g:

Then the pth degree local polynomial estimate Ō .u0/, which
minimizes the criterion

Pn
iD1fYi ¡Zi.u0/T¯g2Kh.Ui ¡ u0/, can

be written explicitly as

Ō .u0/ D argmin
¯

fy ¡ eX.u0/¯gT eW.u0/fy ¡ eX.u0/¯g

D feSn.u0/g¡1eTn.u0/y: (42)

Apparently, the � rst d entries of Ō .u0/ supply estimates
Oaj.u0/ of the coef� cient functions aj.u0/. Write bA.u0/ D
.Oa1.u0/; : : : ; Oad.u0//T ; that is, bA.u0/ D .eT

1 Id/ Ō .u0/ where
Id represents a d £ d identity matrix. The corresponding esti-
mate of the mean regression, m.u0;x/, is then given by

Omh.u0;x/ D
dX

jD1

Oaj.u0/xj D bA.u0/Tx

D .eT
1; pC1 xT /feSn.u0/g¡1eX.u0/T eW.u0/y; (43)

where x D .x1; : : : ;xd/T .
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Now expressions are sought for the smoother matrix eSh, by
which it is meant, as in (2), that . Omh.U1;X1/; : : : ; Omh.Un;Xn//T

D eShy. Combining the identity eX.u0/T eW.u0/ej; n D Zj.u0/

£ Kh.Uj ¡ u0/ with (43) leads to

Omh.u0; x/ D
nX

jD1

eWn
0

³
u0;

Uj ¡ u0

h
I x; Xj

´
Yj;

where

eWn
0 .u; tI x; X/ D .eT

1;pC1 xT /feSn.u/g¡1.H Id/

£ f.1; t; : : : ; tp/T XgK.t/=h: (44)

Consequently, the .i; j/th entry of the smoother matrix eSh be-
comes

eSh.i; j/ D eWn
0

³
Ui;

Uj ¡ Ui

h
I Xi;Xj

´
; i; j D 1; : : : ;n; (45)

and, in particular, the entries along the diagonal are eSh.i; i/ D
eWn

0 .Ui; 0I Xi;Xi/. Thus the explicit expressions for DFs are
given by

tr.eSh/ D
nX

iD1

.eT
1 X

T
i /feSn.Ui/g¡1.e1 Xi/K.0/=h

and

tr.eST
h
eSh/ D

nX

iD1

nX

jD1

£
.eT

1 XT
i /feSn.Ui/g¡1f.1; .Uj ¡ Ui/;

: : : ; .Uj ¡ Ui/
p/T Xjg

¤2
K2

³
Uj ¡ Ui

h

´¿
h2:

Similar to Lemma A.1, some nonasymptotic results can be ob-
tained for eSh. That is, for a nonnegative kernel K satisfying
K.0/ D supx K.x/,

Pn
jD1feSh.i; j/g2 · eSh.i; i/ for i D 1; : : : ; n;

for any matrix P whose column space is generated by the vec-

tors .U
kj
1 Xj1; : : : ; U

kj
n Xjn/T , for integers 1 · j · d and 0 · kj · p,

eShP D P and .eST
h C eSh ¡ eST

h
eSh/`P D P for ` D 0; 1; : : :; and

1 is an eigenvalue of eSh corresponding to d.p C 1/ distinct

eigenvectors, .U
kj
1 Xj1; : : : ;U

kj
n Xjn/T . This means, that for any

h > 0,

d.p C 1/ · tr.eST
h
eSh/ · tr.eSh/ · tr.2eSh ¡eST

h
eSh/ < n: (46)

Clearly, with the increasing number d of covariates, the de-
mand for trace computations becomes more intensive. How-
ever, after the foregoingpreliminaries,Theorem 3 presents sim-
ple closed-form asymptotic representationsof DFs based on eSh.
Again, both random and � xed designs of Ui are considered,
but we opt not to state the conclusions separately because Xi,
i D 1; : : : ; n, are usually assumed to be random regressors in
either case.

Theorem 3. For random design, assume condition (C) (see
the Appendix); for � xed design, assume condition (C¤) (see the
Appendix). In either case, when n ! 1, h ! 0, and nh ! 1,

tr.eSh/ D d K .0/jÄj=h f1 C oP.1/g; (47)

tr.eST
h
eSh/ D d K ¤ K .0/jÄj=h f1 C oP.1/g; (48)

and

tr.2eSh ¡eST
h
eSh/ D d.2K ¡ K ¤ K /.0/jÄj=h f1 C oP.1/g; (49)

where Ä denotes the support of U.

The DFs are asymptotically proportional to the number d of
regressor covariates in the varying-coef� cient model (39). In
particular, if d D 1, then the results of Theorem 3 reduce to
those of Theorem 1. In this sense, calibration formulas of DF
are as simple as those in a single regressor case. Using The-
orem 3 along with (46), in a similar spirit to Section 2.5, the
empirical formulas for DFs can be proposed:

tr.eSh/ ’ df.p C 1 ¡ a/ C C n=.n ¡ d/K .0/jÄj=hg; (50)

tr.eST
h
eSh/ ’ df.p C 1 ¡ a/ C C n=.n ¡ d/K ¤ K .0/jÄj=hg; (51)

and

tr.2eSh ¡eST
h
eSh/ ’ df.pC 1 ¡ a/ C C n=.n ¡ d/

£ .2K ¡ K ¤ K /.0/jÄj=hg: (52)

The bandwidthparameter for � tting varying-coef� cientmod-
els can also be selected based on minimizing (G)CV criterion.
The usual leave-one-out CV score in the current setup of mod-
eling has the form

CV.h/ D 1
n

nX

iD1

fYi ¡ Omh; ¡i.Ui;Xi/g2: (53)

In the Appendix we show that the foregoing CV function has
an alternative expression,

CV.h/ D
1
n

nX

iD1

fYi ¡ Omh.Ui;Xi/g2

f1 ¡eSh.i; i/g2
; (54)

and thus the GCV function is given by

GCV.h/ D
n¡1 Pn

iD1fYi ¡ Omh.Ui;Xi/g2

f1 ¡ tr.eSh/=ng2
: (55)

Replacing tr.eSh/ in (55) by the empirical formula (50), the
EGCV.h/ is obtained. Call OhEGCV the EGCV-minimizing
bandwidth. See Section 5 for the performance of this data-
determined bandwidth.

4. MODEL ASSESSMENT

Calibrating DFs not only is useful as a graphical tool for ex-
ploratory data analysis, but also provides a helpful diagnostic
tool for checking the agreement between a proposed paramet-
ric/nonparametricmodel with the observed dataset. For the pur-
pose of exposition, this section discusses the varying-coef� cient
model, whose generality includes the nonparametric regression
model as a special case.

For varying-coef� cient model (39), two types of useful null
hypotheses that arise naturally from statistical applications are
considered. The � rst of these tests whether the coef� cients that
describe the effect of regressors, X1; : : : ;Xd , are really varying
as a function of another factor U. This is equivalent to assess-
ing the adequacy of a linear model, with the null hypothesis
established as

H0 : a1.u/ ´ c1; : : : ; ad.u/ ´ cd; (56)
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for some unknown constants c1; : : : ; cd . To tackle this problem,
one can construct the GLR statistic,

¸n D
n

2
log

RSS0

RSS1
; (57)

where RSS0 D
Pn

iD1fYi ¡
Pd

jD1 OcjXjig2 , and RSS1.h/ D
Pn

iD1fYi ¡
Pd

jD1 Oaj.Ui/Xjig2, with the estimates Ocj given by
the least squares method and Oaj.Ui/ by the local polyno-
mial approach described in the preceding section. [Certainly,
in the event that fcjg in (56) are given, their true values
will be used for obtaining RSS0.] For notational clarity, the
symbol eSh represents the local polynomial smoother matrix,
based on d covariates in the full model. The theoretical jus-
ti� cation of this testing procedure was given by Fan et al.
(2001), who showed that when the null hypothesis (56) holds,
rK ¸n.h/¡2¡1rK d.2K¡K¤K/.0/jÄj=h

frK d.2K¡K¤K/.0/jÄj=hg1=2 converges in law to a standard
normal distribution,as h ! 0 at a certain rate. The normalizing

quantity before ¸n.h/ is given by rK D .K¡2¡1K¤K/.0/R
.K¡2¡1K¤K/2.t/ dt ; refer

to Table 1 for the values of rK , which are close to 2. Applying
the asymptotic DF formulas given in Theorem 3, this sampling
distribution can be stated equivalently as

rK¸n.h/ ¡ 2¡1rK tr.2eSh ¡eST
h
eSh/

frK tr.2eSh ¡eST
h
eSh/g1=2

L¡! N.0; 1/; (58)

where
L¡! denotes converges in distribution. The presence of

rK guarantees that rK¸n.h/ has its asymptotic mean and vari-
ance above in a 1 : 2 ratio. In this sense, rK¸n.h/ can be viewed
as asymptotically chi-squared distributed, with DFs equal to
2¡1rK tr.2eSh ¡eST

h
eSh/.

In another formulation of model assumptions, the null con-
tains many nuisance functions. For instance, to assess whether
the variables X1; : : : ;Xd1 , 1 · d1 < d, are signi� cant or not in-
volves testing whether certain coef� cient functions are identi-
cally 0s

H0 : a1.u/ D 0; : : : ;ad1.u/ D 0 (59)

(without placing restrictions on the effects of the remain-
ing variables). In this case, the GLR statistics can be con-
structed in similar ways; namely, under the null (59), ob-
tain the local polynomial estimates of ad1C1.¢/; : : : ;ad.¢/. Call
these estimates Oa0

j .¢/, j D d1 C 1; : : : ;d. Denote by eS0
h the

corresponding smoother matrix, based on the d ¡ d1 covari-
ates in the reduced/null model. After that, put RSS0.h/ DPn

iD1fYi ¡
Pd

jDd1C1 Oa0
j .Ui/Xjig2 into ¸n.h/. According to Fan

et al. (2001), it follows that under the null hypothesis (59),
rK ¸n.h/¡2¡1rK d1.2K¡K¤K/.0/jÄj=h

frK d1.2K¡K¤K/.0/jÄj=hg1=2 converges in distribution to a
standard normal as h ! 0 at certain rate. Once again, this sam-
pling distribution indicates that

rK¸n.h/ ¡ 2¡1rKftr.2eSh ¡eST
h
eSh/ ¡ tr.2eS0

h ¡eS0 T
h

eS0
h/g

[rKftr.2eSh ¡eST
h
eSh/ ¡ tr.2eS0

h ¡eS0 T
h

eS0
h/g]1=2

L¡! N.0; 1/: (60)

Indeed, the result (60) uni� es the result (58). This can
be understood from the observation; the smoother matrix eS0

h,
corresponding to (56), is actually a usual projection matrix

with tr.2eS0
h ¡ eS0 T

h
eS0

h/ D d, whose magnitude is asymptotically
smaller than the counterpart of eSh , and is thus ignored in (58).
Hence for the problem posed in either (56) or (59),

2¡1rKftr.2eSh ¡eST
h
eSh/ ¡ tr.2eS0

h ¡eS0 T
h

eS0
h/g (61)

is the observed degrees of freedom (ODF) of the test statistic
rK¸n.h/; similarly, the version of (61) evaluated from the em-
pirical formulas is the EDF.

It should be stressed that the difference between the EDF
and its asymptotic form may be practically large. Working with
the EDF has the advantage of making the distributional re-
sults (58) and (60) more closely re� ected in � nite-sample sit-
uations. Therefore, for practical applications of GLR tests, use
of the EDF is recommended in place of its asymptotic form
given by Fan et al. (2001).

5. SIMULATIONS

5.1 Assessing the Empirical Formulas
for Degrees of Freedom

This section presents some � nite-sample simulation studies.
The purposes are two-fold: to assess the extent to which the
empirical formulas for DFs approximate their exact values and
to illustrate numerical comparisons of different smoothers in
which the smoothing parameters are chosen based on the em-
pirical formulas. To simplify the programming, assume that the
design is on the interval Ä D [0;1], so that jÄj D 1 (see The-
orem 1) and c.f / D 1 (see Theorem 2). For reasons of compu-
tational ef� ciency, the Epanechnikovkernel is used throughout
the simulations.

As an illustration, � rst consider the � xed uniform design
points, xi D .i ¡ :5/=n, i D 1; : : : ;n, in which case the DFs are
nonrandom.Determine a and C in the empirical formulas (33)–
(35) based on the local linear smoother. With a medium sample
size n D 200, the simple least squares estimates of three sets,
.h¡1

j ; tr.Shj//, .h¡1
j ; tr.ST

hj
Shj//, and .h¡1

j ; tr.2Shj ¡ ST
hj

Shj //,
with respect to 20 bandwidthshj, logarithmicallyevenly spaced
between :025 and :20, give rise to the estimates of intercept,
1:4531, 1:4603, and 1:4458 and the estimates of slope, :7513,
:6033, and :8993. These estimates, combined with (33)–(35)
and Table 1, suggest that for p D 1, p C 1 ¡ a ’ 1:45 or a ’ :55,
and C ’ 1. The larger the n, the better the approximation pro-
vided by the empirical formulas. Using this strategy for lo-
cal polynomial smoother of other degrees p, the recommended
choices for a and C are given in Table 3.

Analogously,when the cubic smoothing spline method is ap-
plied to the foregoing fxig, the simple least squares estimates of
three sets, .¸¡4

j ; tr.S¸j//, .¸¡4
j ; tr.ST

¸j
S¸j//, and .¸¡4

j ; tr.2S¸j ¡
ST

¸j
S¸j//, yield the intercept estimates, 1:0038, 1:0015, and

1:0061, and slope estimates :3533, :2651, and :4416. Thus for
q D 2, the choice b D 1 is adopted in (36)–(38). There the range
of ¸j values is chosen so as to obtain an agreement in range
between the empirical tr.S¸j/ and the empirical tr.Shj/. In each
panel of Figure 1, the dots denote the actual values of the traces
and the centers of the circles denote those evaluated from the
empirical formulas. All plots provide convincing evidence that
the empirical formulas track the evolutionof the DFs as a func-
tion of the smoothing parameters nearly perfectly.
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Table 3. Choices of a and C, in the Empirical Formulas (33)–(35)
and (50)–(52), for the pth-Degree Local Polynomial Smoother

Design type p a C

Fixed 0 :55 1
1 :55 1
2 1:55 1
3 1:55 1

Random 0 :30 :99
1 :70 1:03
2 1:30 :99
3 1:70 1:03

To see how use of the DF formulas make it easy to compare
the amount of smoothing by different types of smoothers, con-
sider Figure 2. This � gure displays the local linear � t and the
cubic smoothing spline � t to a sequence of observations Yi at
� xed-design points xi D .i ¡ :5/=n, simulated from model

Yi D m.xi/ C ¾ "i; i D 1; : : : ;n; (62)

where m.x/ D :6 C :3 cos.2¼x/ and "i are independent stan-
dard normal random variables. The noise variance ¾ 2 is
chosen so that the signal-to-noise ratio (SNR), de� ned by
varfm.x1/; : : : ;m.xn/g=¾ 2, is roughly equal to 4, a median
amount of SNR. Figures 2(a) and (b) correspond to the smooth-
ing parameters h and ¸, which are chosen so that the empirical

formulas, (33) for tr.Sh/ and (36) for tr.S¸/, are set at 5 and 11.
It can be observed clearly that the empirical DF formulas can
produce two types of nonparametric � ts comparable in a very
simple fashion. Similar plots based on specifying tr.ST

h Sh/ and
tr.ST

¸ S¸/ have been obtained in Figures 2(c) and (d).
Now consider random designs, in which case the observed

traces are random quantities and the choices a and C will
necessarily differ slightly from their counterparts in the � xed
design. For the local linear method, the least squares esti-
mates, based on 400 independent U.0;1/ random variables
Xi, give a D :70 and C D 1:03. (These choices are adopted
throughout the remaining simulations in random design.) Ta-
ble 3 collects the choices of a and C for other degrees of
the local polynomial regression method. Figure 3 presents
typical plots of DFs based on one sample path. These plots
show that the empirical formulas capture the observed pat-
terns of the DFs reasonably well. Table 4 summarizes the sam-
ple mean and variance of the observed DFs, based on 100
sets of independent samples fXi; i D 1; : : : ; ng, for n D 400
and 1;000. These summary statistics demonstrate that the av-
erage values of the observed DFs are slowly varying with
sample size, whereas the variabilities of these random quan-
tities decrease quickly with sample size, and that for � xed n,
the larger the value of h, the smaller amount of variability
in the DFs.

Figure 1. Plots of DFs Versus Smoothing Parameters, Under Fixed Uniform Design. Dots denote the actual values, and centers of circles
represent the values using the empirical formulas (33) and (35) for the local linear smoother with a D :55 and C D 1 [(a) and (b)] and (36) and (38)
for the cubic smoothing spline with b D 1 [(c) and (d)].
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Figure 2. Comparison Between Local Linear Fit (dashed curve) and Cubic Smoothing Spline Fit (solid curve) of the Regression Curve in (62),
Under Fixed Uniform Design. In (a) and (b), h and ¸ are chosen so that the empirical formulas of tr( Sh) and tr( S¸) are set to be 5 and 11; in (c)
and (d), h and ¸ are set based on the empirical formulas of tr( ST

h Sh) and tr ( ST
¸ S¸).

5.2 Nonparametric Regression Model:
Smoothing Parameter Selection

This section reports a simulation study done to evaluate the
practical performance of the proposed EGCV-based bandwidth
selector, as well as some existing bandwidth selectors, for local
linear regression. For ease of comparison, consider two sets of
regression functions,

Example 1: m.x/ D sin.10¼x/

and

Example 2: m.x/ D .4x ¡ 2/ C 2 exp
©
¡16.4x ¡ 2/2ª

;

in the model Y D m.X/ C ¾", with X » U.0; 1/, " » N.0;1/,
and " independent of X. The noise variance ¾ 2 in each case is
chosen so that SNR equals 4.

A total of 400 random samples are drawn per setting with
sample size n D 400. For each of these simulated datasets, four
automatically selected bandwidths are computed:

OhEGCV; a bandwidth that minimizes the EGCVI
OhGCV; a bandwidth that minimizes the GCVI

OhFG; the (global) re� ned bandwidth selector

of Fan and Gijbels (1995)I

and

OhRSW; the direct plug-in bandwidth selector of Ruppert,

Sheather, and Wand (1995):

Then hAMISE in (3), the bandwidth asymptotically optimal but
in practice unknown, is calculated. The � rst three bandwidth
selectors are searched over an interval [hmin;hmax] at a geo-
metric grid of points, hj D Cj¡1hmin, j D 1; 2; : : :, with C > 1.
The present implementation uses C D 1:2, hmax D :50, and
hmin D max[5=n;max2·j·nfX.j/ ¡X.j¡1/g], where X.1/; : : : ;X.n/

denote the order statistics of X1; : : : ;Xn. Figure 4 compares the
relative errors of these bandwidth selectors to hAMISE. As ex-
pected, there is little difference in the behaviors of OhEGCV and
OhGCV. In most cases, OhFG and OhRSW tend to oversmooth; this
tendency is most pronounced for OhRSW in Example 1. This ob-
servation is similar to that obtained from small-sample simu-
lation studies by Lee and Solo (1999), who compared the CV-
minimizing bandwidth selector with OhFG and OhRSW. Among the
four selectors, OhFG has less variation and OhEGCV is closer to the
asymptotically optimal bandwidth. Furthermore, numerical ex-
perience suggests that OhFG is occasionally unstable when using
kernels with bounded support, such as the Epanechnikov ker-
nel; that is, zero values of a matrix trace may occur in the de-
nominator of equation (2.3) of Fan and Gijbels (1995). Figure 4
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Figure 3. Plots of tr( Sh) [(a) and (c)] and tr (2 Sh ¡ ST
h Sh) [(b) and (d)] Versus Bandwidth h for the Local Linear Method, Under Random Uniform

Design. Dots denote the observed values, and centers of circles represent the values using the empirical formulas, (33) and (35), with a D .7 and
C D 1.03.

also shows the boxplot of the averaged squared error (ASE),
where ASE D n¡1 Pn

iD1f Omh.Xi/ ¡ m.Xi/g2. In this aspect, the
ASEs for all methods exhibit quite similar behavior; however,
the ASEs alone may be less informative in distinguishing be-
tween bandwidth selectors that produce oversmoothed and un-
dersmoothed � ts.

5.3 Varying-Coef� cient Model:
Fitting Coef� cient Functions

For the varying-coef� cient model, the following example il-
lustrates the performance of the EGCV-based bandwidth selec-

tor in curve � tting by the local linear method:

Example 1: Y D sin.3¼U/X1 C sin.2¼U/X2 C ¾ "; (63)

where U follows a uniform distribution on [0;1] and X1 and X2

are normally distributed with mean 0, unit variance, and cor-
relation coef� cient 2¡1=2. Furthermore, U, .X1;X2/, and " are
independent. The noise " follows a standard normal distribu-
tion; ¾ is chosen so that the SN ratio is about 4 : 1.

First, examine the approximation of the empirical formulas
(50)–(52). Generate from model (63) a three-covariate random
sample f.Ui; X1i;X2i/

n
iD1g, with each sample consisting of 400

Table 4. Sample Mean and Variance ( %, in brackets) of tr( Sh), tr ( ST
h Sh), and tr(2 Sh ¡ ST

h Sh), Based on 100 Independent Samplings, Each of
Which Contains n Independent Uniform Random Variables

h

n Statistic .0250 .0311 .0387 .0482 .0600 .0747 .0930 .1157 .1440 .1793

400 tr( Sh) 32:41 26:16 21:19 17:24 14:11 11:60 9:59 7:98 6:70 5:67
(6:44) (2:69) (1:35) (:85) (:61) (:42) (:34) (:24) (:16) (:13)

tr(ST
h Sh) 26:61 21:48 17:42 14:20 11:67 9:64 8:02 6:72 5:69 4:87

(7:94) (3:01) (1:35) (:87) (:60) (:38) (:31) (:19) (:12) (:11)
tr(2Sh ¡ ST

h Sh) 38:21 30:83 24:97 20:28 16:54 13:56 11:16 9:24 7:70 6:47
(5:56) (2:75) (1:52) (:95) (:69) (:51) (:41) (:31) (:21) (:16)

1;000 tr( Sh) 31:83 25:80 20:98 17:13 14:03 11:55 9:56 7:97 6:69 5:66
(1:01) (:52) (:30) (:20) (:16) (:12) (:10) (:08) (:06) (:04)

tr(ST
h Sh) 25:92 21:05 17:17 14:06 11:57 9:58 7:98 6:70 5:68 4:86

(1:05) (:51) (:29) (:20) (:14) (:11) (:09) (:07) (:04) (:03)
tr(2 Sh ¡ ST

h Sh) 37:74 30:55 24:80 20:19 16:49 13:52 11:14 9:23 7:70 6:47
(1:04) (:59) (:34) (:23) (:19) (:15) (:12) (:10) (:08) (:06)
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Figure 4. Comparison of Various Bandwidth Selectors Oh. (a) and (b) Boxplots of the relative errors ( Oh ¡ hAMISE )=hAMISE . (c) and (d) Boxplots of
the average squared errors n¡1 Pn

iD1f Om(Xi ) ¡ m(Xi )g2 . In each panel, the boxplots correspond to (from left to right) OhEGCV , OhGCV , OhFG, and OhRSW .

observations. Figure 5 compares the exact values of tr.eSh/ and
tr.2eSh ¡eST

h
eSh/ with their empirical formulas based on the local

linear smoother. As sample size n grows, the overall patterns of
the EDFs do resemble those actually observed.

Now, 100 independent samples are generated with sample
size 400 from (63), and the local linear technique is used to
� t the varying-coef� cient model. The bandwidth is chosen to
minimize the EGCV function. Figure 6 depicts the local lin-
ear estimates of the varying-coef� cient functions a1.u/ and
a2.u/ for Example 1, in which the smoothness of a1.u/ and
the smoothness of a2.u/ are comparable. In each panel, the
solid curves denote the true coef� cient functions. Three typi-
cally estimated curves are presented, corresponding to the 10th
(the dotted curve), 50th (the dashed curve), and 90th (the dash-
dotted curve) percentiles among the ASE-based curves, where
ASE D n¡1 Pn

iD1f Omh.Ui;Xi/ ¡ m.Ui;Xi/g2 . The performance
of OhEGCV, when applied to recovering multiple smooth curves
in varying-coef� cient models, is reasonable.

The local polynomial regression method discussed in Sec-
tion 3 assumes implicitly the similarity between the degrees
of smoothness of functions aj.u/, j D 1; : : : ; d. To achieve the
optimal rates of convergence for aj.u/ with differing smooth-
ness, the two-step iterative estimation procedure proposed by
Fan and Zhang (1999) offers a � exible alternative and improve-
ment over the one-step procedure. However, practical imple-
mentation of this approach relies on seeking, in the � rst-step,

a simple and good pilot bandwidth to estimate aj jointly, and
identifyingcertain functions aj, which are actually signi� cantly
smoother than the rest of functions and thus need to be reesti-
mated individually in the second step. In such instances, OhEGCV

can be easily used in the initial stage for pilot bandwidth; a vi-
sual inspection of the preliminary � tted curves provides a quick
check on the inhomogeneous smoothness across aj.u/. Again,
a simple choice of bandwidth in the second-step smoothing is to
minimize the EGCV function. Illustrative examples are omitted
here.

5.4 Varying-Coef� cient Model: Hypothesis Testing

The objective in this section is to use simulations to study
the discriminatory power of the testing procedure described in
Section 4. For illustration, consider a four-covariate varying-
coef� cient model,

Y D a1.U/X1 C a2.U/X2 C a3.U/X3 C ¾": (64)

Set X3 ´ 1, and let .U;X1;X2; "/ have the same types of joint
distributions as speci� ed in the previous section. Suppose that
one is interested in the following typical forms of assertions
about model (64):

H.1/
0 : a1.u/ ´ c1; a2.u/ ´ c2; a3.u/ ´ c3 (65)
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Figure 5. Plots of [(a) and (c)] tr(eSh) and [(b) and (d)] tr (2eSh ¡ eST
h

eSh) Versus Bandwidth h, When the Local Linear Method is Applied.
Dots denote the observed values, and centers of circles represent the values using the empirical formulas (50) and (52), with a D .7 and
C D 1.03.

Figure 6. Use of the EGCV-Minimizing Bandwidth Selector for Fitting the Coef� cient Functions (a) a1(u) and (b) a2(u) in (63). Three typical
estimated curves are presented, corresponding to the 10th (dotted curve), the 50th (dashed curve), and the 90th (dashed-dotted curve) percentiles
among the ASE-ranked curves. The solid curves denote the true coef�cient functions.
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and

H.2/
0 : a2.u/ ´ 0; (66)

where in H.1/
0 the three constants cj are unknown. No other

testing procedures deal with the foregoing model-checking
problems in varying-coef� cient models, so comparisons with
published results are impossible.

To obtain the critical values and powers of the GLR test sta-
tistics rK¸n.h/, the data are simulated as follows. To test (65),
observations are generated from model (64) using the varying-
coef� cient functions,

a1.u/ D 1 C µ sin.2¼u/; a2.u/ D 1=2 ¡ cos.3¼µu/;

a3.u/ D 4u.1 ¡ u/µ ¡ 1; µ ¸ 0: (67)

Analogously, to test (66), the data are generated from model
(64) with

a1.u/ D sin.2¼u/; a2.u/ D µu2;

a3.u/ D 4u.1 ¡ u/ ¡ 1; µ ¸ 0: (68)

In both cases, µ indexes structural deviations of the alternative
models from the null models. Particularly, let µ D 0 character-
ize the model from which data are simulated under the null hy-
potheses. Again, the magnitude of ¾ in (64) is determined so
that SNR under each null hypothesis equals 4.

Note the following remarks about bandwidth selection in
model checking. Take the null hypothesis (65), for instance.
If a sample of observed data indeed comes from model (64)
satisfying this null assumption (linear model), then the optimal
bandwidth for local � tting of the coef� cient functions should
be close to in� nity, and data-driven bandwidth selectors will
lead to a large bandwidth. However, the distributional proper-
ties in (58) and (60) rely implicitly on the assumption h ! 0.

Hence the bandwidth well suited for producingvisually smooth
estimates of the underlyingcurves may not in general be appro-
priate for checking model assumptions. Based on this consider-
ation, an empirical bandwidth formula,

h¤ D std.U/ £ n¡2=.4pC5/; (69)

is proposed for model checking based on the pth degree local
polynomial regression. The rate n¡2=.4pC5/ was given by Fan
et al. (2001); in practice, the standard deviation of the covariate
U can be simply replaced by its sample standard deviation.

5.4.1 Large Datasets. First, methodologies for process-
ing large datasets are developed. Experience indicates that
under the null hypotheses, the sampling distribution of the
test statistic, rK¸n.h¤/, is close to a chi-squared distribution,
Â2

EDFC2, where EDF represents the empirical degrees of free-
dom for hypothesis testing, de� ned at the end of Section 4.
To see this, simulate, from the null hypotheses (65) and (66),
400 random samples each of size 400. Figure 7(a) and Fig-
ure 8(a) plot the kernel density estimates (Fan and Gijbels
1996, p. 47) of frK¸n.h¤/g, for (65) and (66). For compari-
son, two reference density functions are also included: the nor-
mal density with mean EDF and standard deviation

p
2 EDF

and the chi-squared density Â 2
EDF C2 . Table 5 compares the

simulated rejection rates of rK¸n.h¤/ exceeding the 100.1 ¡
®/th percentiles of the reference distributions. Note that the
chi-squared approximation gives better agreement with the
nominal type-I errors than does the normal approximation.
Moreover, using EDF instead of ODF in the parameters of the
reference distributionsmakes little difference in approximating
the tail distribution of rK¸n.h¤/, but has the added merit of be-
ing quickly implemented.

To measure the GLR test’s ability to detect departures
from the null, the following power studies were performed.

Figure 7. (a) Kernel density estimate of the test statistics, r K ¸n(h¤), under the null hypothesis (65), based on 400 random samples each of
size 400. The solid curve represents kernel density estimate; the dotted curve, density of N(EDF,

p
2EDF ); and the dashed curve, density of

Â2
EDFC2 . (b) Estimated power curves when the data are simulated from (67). The solid curve is based on the simulated null critical values, and the

dashed curve is based on the percentile of Â2
EDFC2 . The bottom dotted line denotes the nominal level of signi�cance.
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Figure 8. Same as Figure 7, Except That (a) Shows the Null Hypothesis (66) and in (b) the Data Are Simulated From (68).

A total of 400 independent samples were simulated from the
alternative models indexed by µ , with each sample contain-
ing 400 observations; for simplicity, 10 values of µ evenly
spaced on an interval [0; :15] with (67) and [0; :5] with (68)
were considered. At a nominal level 5%, the empirical powers
are estimated through simulation by the proportion of observed
test statistics rK¸n.h¤/, across 400 samples, exceeding the 95th
percentile of the Â 2

EDFC2 distribution. For comparison, also in-
cluded is the rate of the observed test statistics exceeding their
95th sample percentile, under the null, across 400 samples. Fig-
ures 7(b) and 8(b) display the estimated power curves. It is clear
that the GLR tests are powerful, besides holding their correct
sizes.

Simulation studies of model checking with small datasets,
via the bootstrap procedure, are omitted here.

6. DISCUSSION

This article has provided a simple, yet � exible extension of
the criterion based on GCV, termed EGCV, for smoothing pa-

rameter selection in nonparametric regression. By using an em-
pirical formulas of DFs, the computational burden associated
with smoothing large datasets is improved considerably, and
the procedure for model checking is also easier to carry out.
It is hoped that the methodology presented here will be useful
in mining large collectionsof data.

In closing, several points bear mentioning. First, an appli-
cation to bandwidth selectors based on principles other than
CV or GCV would also be valuable. Hurvich, Simonoff, and
Tsai (1998) used an improved Akaike information criterion, to
which the empirical formulas of DFs proposed here can also
apply. Second, if there is a clear indication that the design is
nonuniform,then the data-based form, n¡1 Pn

iD1 f ¡1.Xi/, could
be used directly in place of its asymptotic form, jÄj, in the em-
pirical formulas (33)–(35); refer to (A.10) and (A.18) for fur-
ther derivationaldetails. In such instances, if f is unknown, then
those f .Xi/ can be replaced by their kernel density estimates,
which are computationally far more economic than evaluating
the actual traces, but will surely improve the � nite-sample per-
formance of the empirical approximations.Indeed, experiments

Table 5. Simulated Rejection Rates of the Test Statistics, Based on 400 Random Samples of Size n D 400,
From Null Hypotheses H(1)

0 and H (2)
0 . The signi�cance levels are ® D :01; :025; :05; :10

Rejection rate at level ®

Null Test statistic Reference distribution ® D :01 ® D :025 ® D :05 ® D :10

H(1)
0 r K ¸n(h¤ ) N(EDF;

p
2EDF) .0250 .0500 .0750 .1375

N(ODF;
p

2ODF) .0250 .0550 .0875 .1425
N(EDF C 2;

p
2 (EDF C 2)) .0125 .0300 .0550 .0950

N(ODF C 2;
p

2 (ODF C 2)) .0150 .0300 .0550 .0975
Â2

EDFC2 .0075 .0200 .0400 .0900
Â2

ODFC2 .0075 .0200 .0475 .0950

H(2)
0 r K ¸n(h¤ ) N(EDF;

p
2EDF) .0450 .0725 .1150 .1700

N(ODF;
p

2ODF) .0450 .0750 .1175 .1700
N(EDF C 2;

p
2 (EDF C 2)) .0200 .0375 .0575 .0950

N(ODF C 2;
p

2 (ODF C 2)) .0200 .0375 .0575 .0925
Â2

EDFC2 .0075 .0200 .0450 .0850
Â2

ODFC2 .0050 .0200 .0450 .0875
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with this modi� cations have yielded results comparable with
those in the uniform design. Third, if f is other than uniformity
but known, then the higher-order approximationsgiven in (A.9)
and (A.17) may perform better than those in (A.10) and (A.18).
On the other hand, even a decent approximation, as simple as
the � rst-order empirical formulas, is likely to be satisfactory.
Fourth, some robust procedures may be applied before the em-
pirical formulas are used; for example, remove a few design
observations at the edges of the sample space. This preprocess-
ing of the raw data before the analyses are performed is also
common in other contexts of statistical applications.

APPENDIX: PROOFS OF MAIN RESULTS

Condition (A)

(A1) The design variable X has a bounded support Ä; the marginal
density f of X is Lipschitz continuous and bounded away from 0.

(A2) m.x/ has the continuous p C 1th derivative in Ä.
(A3) The kernel function K.t/ is a symmetric probability density

function with bounded support and is Lipschitz continuous.
(A4) 0 < E."4/ < 1.

Condition (A¤) is similar to condition (A), except that (A1) is replaced
by (A1¤).

(A1¤) The design observations Xi D xi , i D 1; : : : ; n, are generated
by xi D F¡1..i ¡ :5/=n/, where F has a probability density function
f with a bounded support Ä; f is Lipschitz continuous and bounded
away from 0.

Condition (B)

The design points xi , i D 1; : : : ;n, are generated from a continuous
and strictly positive density f , on a � nite interval [0; 1] without loss of
generality, through the relation

R xi
0 f .x/ dx D .i ¡ :5/=n.

Condition (C)

(C1) The covariate U has a bounded support Ä; the marginal den-
sity fU of U is Lipschitz continuous and bounded away from 0.

(C2) aj.u/, j D 1; : : : ; d, has the continuous p C1th derivative in Ä.
(C3) The kernel function K.t/ is a symmetric probability density

function with bounded support and is Lipschitz continuous.
(C4) 0 < E."4/ < 1.
(C5) The matrix E.XXT jU D u/ is positive de� nite for each u 2 Ä,

and each entry is Lipschitz continuous.

Condition (C¤) is similar to condition (C), except that (C1) is re-
placed by (C1¤).

(C1¤) The covariate observations Ui D ui are generated by ui D
F¡1

U ..i ¡ :5/=n/, where FU has a probability density function fU with
a bounded support Ä; fU is Lipschitz continuous and bounded away
from 0.

Proof of (14)

This proof begins with Lemma A.1.

Lemma A.1. 1. For a nonnegative kernel K satisfying K.0/ D
supx K.x/,

Pn
jD1fSh.i; j/g2 · Sh.i; i/ for i D 1; : : : ; n, and thus 0 ·

Sh.i; i/ · 1, and jSh.i; j/j · 1 for i 6D j.
2. For any integer k D 0;1; : : : ;p, Sh.Xk

1; : : : ;Xk
n/T D .Xk

1; : : : ;

Xk
n/T . Thus for any matrix P whose column space is generated by the

vectors .Xk
1; : : : ;Xk

n/T , k D 0;1; : : : ; p, it follows that ShP D P and

.ST
h C Sh ¡ ST

h Sh/`P D P for integers ` ¸ 0.

Proof. To show part 1, it is seen that

fSh.i; j/g2 D eT
1 fSn.Xi/g¡1f1; .Xj ¡ Xi/; : : : ; .Xj ¡ Xi/

pgT

£ f1; .Xj ¡ Xi/; : : : ; .Xj ¡ Xi/
pg

£ fSn.Xi/g¡1e1K2
h .Xj ¡ Xi/

· eT
1 fSn.Xi/g¡1f1; .Xj ¡ Xi/; : : : ; .Xj ¡ Xi/

pgT

£ f1; .Xj ¡ Xi/; : : : ; .Xj ¡ Xi/
pg

£ Kh.Xj ¡ Xi/fSn.Xi/g¡1e1Kh.0/;

and thus
Pn

jD1fSh.i; j/g2 · eT
1 fSn.Xi/g¡1e1Kh.0/ D Sh.i; i/.

To show part 2, recall that
Pn

jD1.Xj ¡ x/kWn
0 .x;

Xj¡x
h / D I.k D 0/

holds for any integer k D 0; 1; : : : ; p (Fan and Gijbels 1996, p. 103).
Applying this result and the binomial expansion leads to

nX

jD1

Xk
j Wn

0

±
x;

Xj ¡ x

h

²
D

nX

jD1

kX

`D0

³
k

`

´
.Xj ¡ x/`xk¡`Wn

0

±
x;

Xj ¡ x

h

²

D
kX

`D0

³
k

`

´
xk¡`

nX

jD1

.Xj ¡ x/`Wn
0

±
x;

Xj ¡ x

h

²

D xk :

Thus for each i D 1; : : : ;n,
Pn

jD1 Sh.i; j/Xk
j D

Pn
jD1 Xk

j Wn
0 .Xi,

Xj¡Xi
h /

D Xk
i . Lemma A.1 � nishes.

To show (14), observe from the � rst part of Lemma A.1 that

tr.ST
h Sh/ D

nX

iD1

nX

jD1

fSh.i; j/g2 · tr.Sh/ (A.1)

holds under the kernel-modecondition.The second part of Lemma A.1
asserts that 1 is an eigenvalueof Sh corresponding to a number pC1 of
distinct eigenvectors. Let ¸i.Sh/, i D 1; : : : ;n, denote all of the eigen-
values of Sh. Then Schur’s inequality (Marcus and Minc 1964, p. 142)
says that tr.ST

h Sh/ ¸
Pn

iD1 j¸i.Sh/j2 ¸ pC1. Henceforth, this inequal-
ity, together with (A.1) and trf.In ¡ Sh/T .In ¡ Sh/g > 0, implies the
expected results.

Proof of Theorem 1

For each i D 1; : : : ; n, because the ith row of X.Xi/ is eT
1 , and the

ith diagonal entry of W.Xi/ is Kh.0/, Sn.Xi/ D Kh.0/e1eT
1 C Ai can be

rewritten, where the .`; r/th entry of the matrix Ai is given by

Ai.`; r/ D
X

k: k 6Di

.Xk ¡ Xi/
`Cr¡2Kh.Xk ¡ Xi/;

`; r D 1; : : : ; p C 1: (A.2)

Set dij D Xj¡Xi
h . Thus the use of fSn.Xi/g¡1 D A¡1

i ¡ A¡1
i e1eT

1 A¡1
i

h=K.0/CeT
1 A¡1

i e1
,

together with (10) and (11), implies

Sh.i; j/ D
Bij

h=K.0/ C Bii
; (A.3)

where

Bij D eT
1 A¡1

i H.1;dij; : : : ;d p
ij /T K.dij/=K.0/;

i; j D 1; : : : ;n: (A.4)

Writing fi D f .Xi/, f 0
i D f 0.Xi/, f 00

i D f 00.Xi/, gi1 D f 0
i =fi, and gi2 D

2¡1.f 00
i =fi/, then the higher-order Taylor expansion of Ai.`; r/, `; r D

1; : : : ;p C 1, leads to

Ai D .n ¡ 1/fiH.S C hgi1eS C h2gi2S/Hf1 C oP.1/g; (A.5)
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where oP.1/ is uniform in i D 1; : : : ;n (abbreviated as Ui), eS D
.¹`Cr¡1/1·`; r·pC1, and S D .¹`Cr/1·`; r·pC1. Denote M1 D
S¡1eSS¡1, M2 D S¡1eSS¡1eSS¡1, and M3 D S¡1SS¡1; then

A¡1
i D 1

.n ¡ 1/fi
H¡1fS¡1 ¡ hgi1M1 C h2.g2

i1M2¡ gi2M3/gH¡1

£ f1 C oP.1/g; (A.6)

Ui. Set eK .t/ D eT
1 M1.1; t; : : : ; t p/T K.t/, K .t/ D eT

1 M2.1; t; : : : ;

t p/T K.t/, and K .t/ D eT
1 M3.1; t; : : : ; t p/T K.t/. Equations (A.4)

and (A.6), together with the fact that eK .0/ D 0, give

Bii D
1

.n ¡ 1/K.0/fi
fK .0/ C h2.g2

i1 K ¡ gi2 K /.0/g

£ f1 C oP.1/g; (A.7)

Ui, an immediate consequence of which is

Sh.i; i/ D
K .0/ C h2.g2

i1 K ¡ gi2 K /.0/

.n ¡ 1/hfi C fK .0/ C h2.g2
i1 K ¡ gi2 K /.0/g

£ f1 C oP.1/g; (A.8)

Ui, and therefore,

tr.Sh/ D
nX

iD1

K .0/ C h2.g2
i1 K ¡ gi2 K /.0/

.n ¡ 1/hfi C fK .0/ C h2.g2
i1 K ¡ gi2 K /.0/g

£ f1 C oP.1/g (A.9)

D K .0/

.n ¡ 1/h

³ nX

iD1

fi
¡1

´
f1 C oP.1/g: (A.10)

This � nishes the proof of the � rst part.
For tr.ST

h Sh/, the fact is that

tr.ST
h Sh/ D

nX

iD1

fSh.i; i/g2 C
X X

1·i 6Dj·n

fSh.i; j/g2: (A.11)

For the � rst additive term of (A.11), from (A.8),

nX

iD1

fSh.i; i/g2 D
nX

iD1

K 2.0/

.n ¡ 1/2h2 f 2
i

f1 C oP.1/g

D OPf.nh2/¡1g: (A.12)

Consider the second additive term of (A.11). According to (A.4)
and (A.6), it holds that

Bij D 1
.n ¡ 1/K.0/fi

fK .dij/ ¡ hgi1 eK .dij/

C h2.g2
i1 K ¡ gi2 K /.dij/gf1 C oP.1/g; (A.13)

where the term oP.1/ is independent of j and uniform in i D 1; : : : ; n
(abbreviated as IjUi). It can be deduced that from (A.3), (A.7),
and (A.13),

Sh.i; j/ D
K .dij/ ¡ hgi1 eK .dij/ C h2.g2

i1 K ¡ gi2 K /.dij/

.n ¡ 1/fi C fK .0/ C h2.g2
i1 K ¡ gi2 K /.0/g

£ f1 C oP.1/g; (A.14)

IjUi. For the numerator of (A.14),

fK .dij/ ¡ hgi1 eK .dij/ C h2.g2
i1 K ¡ gi2 K /.dij/g2

D K 2.dij/ ¡ 2hgi1 K eK .dij/

C h2fg2
i1.2K K C eK 2/ ¡ 2gi2 K K g.dij/f1 C oP.1/g;

in which this oP.1/ can also be IjUi, under the smoothness assumption
on f . Similar to the derivation of (A.5),
X

j: j 6Di

.1; dij; : : : ;d p
ij /

T .1; dij; : : : ;d p
ij /K2.dij/

D .n ¡ 1/hfi.S
¤ C hgi1 eS¤ C h2gi2S¤/f1 C oP.1/g; (A.15)

Ui, where S¤ D .ºiCj¡2/1·i; j·pC1, eS¤ D .ºiCj¡1/1·i; j·pC1, and
S¤ D .ºiCj/1·i; j·pC1. Analogously, using (17), eT

1 S¡1 eS¤S¡1e1 D 0,

and eT
1 S¡1S¤M1e1 D K ¤ eK .0/ D 0, it can be deduced that
X

j: j 6Di

K 2.dij/ D .n ¡ 1/hfi fK ¤ K .0/ C h2gi2eT
1 S¡1S¤S¡1e1g

£ f1 C oP.1/g;
X

j: j 6Di

K eK .dij/ D .n ¡ 1/hfi fhgi1eT
1 S¡1 eS¤M1e1gf1 C oP.1/g;

X

j: j 6Di

eK 2.dij/ D .n ¡ 1/hfi eK ¤ eK .0/f1 C oP.1/g;

X

j: j 6Di

K K .dij/ D .n ¡ 1/hfi K ¤ K .0/f1 C oP.1/g;

and
X

j: j 6Di

K K .dij/ D .n ¡ 1/hfi K ¤ K .0/f1 C oP.1/g;

Ui. Hence, uniformly in i,
X

j: j 6Di

fK .dij/ ¡ hgi1eK .dij/ C h2.g2
i1 K ¡ gi2 K /.dij/g2

D .n ¡ 1/hfi[K ¤ K .0/ C h2fg2
i1`1.K/ ¡ gi2`2.K/g]

£ f1 C oP.1/g; (A.16)

again due to the fact K ¤ eK .0/ D 0, where `1.K/ D 2K ¤ K .0/ C eK ¤
eK .0/ ¡ 2eT

1 S¡1 eS¤M1e1 and `2.K/ D 2K ¤ K .0/ ¡ eT
1 S¡1S¤S¡1e1.

Applying (A.14) and (A.16), it can be observed that
nX

iD1

X

j: j 6Di

fSh.i; j/g2

D
nX

iD1

[K ¤ K .0/ C h2fg2
i1`1.K/ ¡ gi2`2.K/g].n ¡ 1/hfi

[.n ¡ 1/hfi C fK .0/ C h2.g2
i1 K ¡ gi2 K /.0/g]2

£ f1 C oP.1/g (A.17)

D K ¤ K .0/

.n ¡ 1/h

³ nX

iD1

fi
¡1

´
f1 C oP.1/g: (A.18)

This, together with (A.11) and (A.12), � nishes the proof of the second
part. Proof of the third part is trivial from the � rst two parts.

For � xed designs, the proofs follow arguments analogous to the
foregoing. For example, (A.5) and (A.15) follow from the theory of
Riemann sums, with oP.1/ replaced by o.1/.

Proof of Theorem 2

The proof of Theorem 2 depends on two lemmas. The proof of
Lemma A.2 was given by Ramil Novo and González Manteiga (2000).

Lemma A.2. Let K.x/ D .2¼/¡1 R C1
¡1 .1 C t2q/¡1 exp.¡itx/ dt,

with q D 1;2; : : : . Denote by

rz }| {
K ¤ ¢ ¢ ¢ ¤ K .x/ the r-times convolution

product of K.x/. Then

1

2¼

Z C1

¡1
.1 C t2q/¡r dt D

rz }| {
K ¤ ¢ ¢ ¢ ¤ K .0/; r D 1;2; : : : :
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In particular, .2¼/¡1 R C1
¡1 .1 C t2q/¡2` dt D

R
.

`z }| {
K ¤ ¢ ¢ ¢ ¤ K/2.x/ dx for

` D 1;2; : : : .

Lemma A.3. Let K.x/ D .2¼/¡1 R C1
¡1 .1 C t2q/¡1 exp.¡itx/ dt. Set

c.f / D
R 1
0 f .t/1=.2q/ dt. Then for q ¸ 2, as n ! 1, ¸ ! 0, and n¸ !

1, it holds that

tr.Sr
¸/ D q C ¸¡1=.2q/c.f /.2¼/¡1

Z C1

¡1
.1 C t2q/¡r dt f1 C o.1/g;

r ¸ 1: (A.19)

Proof. From (25), � rst observe that tr.Sr
¸/ D q C

Pn
jDqC1.1 C

¸°jn/¡r , for integers r ¸ 1. Speckman (1981) showed that if q ¸ 2,
then °jn D j2qc0 f1 C o.1/g for 1 · j · n, where c0 D
¼2qf

R 1
0 f .t/1=.2q/ dtg¡2q , and the o.1/ term is uniform for j D o.n2=5/.

Combining this result, it can be deduced that
X

qC1·j·n3=.4q/

.1 C ¸°jn/¡r D
X

qC1·j·n3=.4q/

.1 C ¸c0 j2q/¡r f1 C o.1/g

D .¸c0/¡1=.2q/
Z 1

0

dt

.1 C t2q/r
f1 C o.1/g:

On the other hand, the sequence f°jngn
jD1 is nondecreasing, and there-

fore °jn ¸ O.n3=2/ for j ¸ n3=.4q/, so that
X

n3=.4q/<j·n

.1 C ¸°jn/¡r · Ofn.n3=2¸/¡rg: (A.20)

The upper bound in (A.20) is thus of¸¡1=.2q/g if r ¸ 2. Hence
tr.Sr

¸/ D q C ¸¡1=.2q/c.f /.2¼/¡1 R C1
¡1 .1 C t2q/¡r dt f1 C o.1/g for

r ¸ 2. For r D 1, a similar expression for tr.S¸/ was given by Eubank
(1988, p. 327). This � nishes the proof of Lemma A.3.

To obtain the asymptotic representations of tr.S¸/ and tr.S2
¸/,

in terms of Silverman’s kernel function K, a direct application of
Lemma A.2 to Lemma A.3 leads to the desired conclusions.

Proof of Theorem 3

First, according to the de� nition (41),eSn.Ui/ DKh.0/.e1 Xi/.eT
1 

XT
i / C Ai, where Ai D

P
k: k 6Di Zk.Ui/fZk.Ui/gT Kh.Uk ¡ Ui/. Set

dij D Uj¡Ui
h . Thus the use of

©eSn.Ui/
ª¡1 D A¡1

i ¡
A¡1

i .e1 Xi/.eT
1 XT

i /A¡1
i

h=K.0/ C .eT
1 XT

i /A¡1
i .e1 Xi/

;

together with (44) and (45), implies that

eSh.i; j/ D
Bij

h=K.0/ C Bii
; (A.21)

where

Bij D .eT
1 XT

i /A¡1
i .H Id/f.1; dij; : : : ;d p

ij /
T XjgK.dij/=K.0/;

i; j D 1; : : : ;n: (A.22)

It can be shown via some standard arguments that

Ai D .n ¡ 1/f.HSH/ 0.Ui/gf1 C oP.1/g (A.23)

and

A¡1
i D .n ¡ 1/¡1[.H¡1S¡1H¡1/ f0.Ui/g¡1]f1 C oP.1/g; (A.24)

Ui, where 0.u/ D fU.u/E.XXT jU D u/. This results in

Bii D K .0/

.n ¡ 1/K.0/
XT

i f0.Ui/g¡1Xif1 C oP.1/g; (A.25)

eSh.i; i/ D
K .0/XT

i f0.Ui/g¡1Xi

.n ¡ 1/h C K .0/XT
i f0.Ui/g¡1Xi

f1 C oP.1/g; (A.26)

Ui, and

tr.eSh/ D
nX

iD1

eSh.i; i/

D K .0/

.n ¡ 1/h

³ nX

iD1

XT
i f0.Ui/g¡1Xi

´
f1 C oP.1/g; (A.27)

which, combined with EfXT
i f0.Ui/g¡1Xig D djÄj, � nishes the proof

of the � rst part.
Now consider tr.eST

h
eSh/. According to (A.22) and (A.24), it can be

deduced that

Bij D
K .dij/

.n ¡ 1/K.0/
XT

i f0.Ui/g¡1Xif1 C oP.1/g (A.28)

and

eSh.i; j/ D
K .dij/X

T
i f0.Ui/g¡1Xj

.n ¡ 1/h C K .0/XT
i f0.Ui/g¡1Xi

f1 C oP.1/g; (A.29)

IjUi. Veri� cation of
X

j: j 6Di

K 2.dij/XjX
T
j D .n ¡ 1/h0.Ui/K ¤ K .0/f1 C oP.1/g;

Ui, implies that

X

j: j 6Di

feSh.i; j/g2 D
K ¤ K .0/.n ¡ 1/hXT

i f0.Ui/g¡1Xi

[.n ¡ 1/h C K .0/XT
i f0.Ui/g¡1Xi]2

f1 C oP.1/g;

Ui, and thus

tr.eST
h
eSh/ D K ¤ K .0/

.n ¡ 1/h

³ nX

iD1

XT
i f0.Ui/g¡1Xi

´
f1 C oP.1/g:

This completes the proof of the second part.

Proof of Expressions (5) and (54)

It is necessary to show only (54), which includes (5) as a special
case. To ease the notation, consider � rst the local linear � t, the con-
clusion of which [(54)] can be extended straightforwardly to that of
higher-degree local polynomial � t. Recall from (43) that Omh.¢; ¢/ rep-
resents the local polynomial estimates of the regression function based
on the raw data f.U`;X`;Y`/n`D1g.

For 1 · j · d, let Oaj; ¡i.¢/ and Oa[1]
j; ¡i.¢/ denote the local linear es-

timates of the varying-coef�cient function aj.¢/ and its derivative,
based on the data f.U`;X`;Y`/n

`D1g with the ith pair .Ui; Xi;Yi/

removed. Let Omh; ¡i.Ui;Xi/ D
Pd

jD1 Oaj; ¡i.Ui/Xji represent the re-
sulting estimated response at .Ui; Xi/. Analogously, let Oaj; ¤i.¢/ and

Oa[1]
j; ¤i.¢/ denote similar quantities as before, except based on the data

f.U`;X`;Y`/n
`D1g, with the ith response Yi replaced by Omh; ¡i.Ui;Xi/.

In this case, let Omh; ¤i.Ui;Xi/ D
Pd

jD1 Oaj; ¤i.Ui/Xji represent the result-
ing estimated response at .Ui;Xi/.

Put Kji D Kh.Uj ¡ Ui/ and g`; i.a0; a1/ D
Pd

jD1fa0 C .U` ¡
Ui/a1gXj`. For each i D 1; : : : ; n,

X

1·`·n: ` 6Di

£
Y` ¡ g`;i.Oaj;¡i.U`/; Oa[1]

j;¡i.U`//
¤2K`i

D min
fajg; fa[1]

j g

X

1·`·n: ` 6Di

£
Y` ¡ g`;i.aj; a[1]

j /
¤2K`i

·
X

1·`·n: ` 6Di

£
Y` ¡ g`;i.Oaj;¤i.Ui/; Oa[1]

j;¤i.Ui//
¤2K`i: (A.30)
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In contrast,
X

1·`·n: ` 6Di

£
Y` ¡ g`;i.Oaj;¡i.U`/; Oa[1]

j;¡i.U`//
¤2K`i

¸ min
fajg; fa[1]

j g

» X

1·`·n: ` 6Di

£
Y` ¡ g`;i.aj; a[1]

j /
¤2K`i

C
£

Omh;¡i.Ui;Xi/ ¡ gi;i.aj;a[1]
j /

¤2Kii

¼

D
X

1·`·n: ` 6Di

£
Y` ¡ g`;i.Oaj;¤i.U`/; Oa[1]

j;¤i.U`//
¤2K`i

C f Omh;¡i.Ui;Xi/ ¡ Omh;¤i.Ui;Xi/g2Kii: (A.31)

Inequalities (A.30) and (A.31) imply that f Omh; ¡i.Ui;Xi/ ¡ Omh; ¤i.Ui ,
Xi/g2Kii D 0 for each i D 1; : : : ;n, and thus, according to K.0/ > 0,
indicate Omh; ¡i.Ui;Xi/ D Omh; ¤i.Ui;Xi/. This equality in turn yields

Omh; ¡i.Ui; Xi/ D Omh; ¤i.Ui;Xi/

D
X

1·j·n: j 6Di

eSh.i; j/Yj CeSh.i; i/ Omh; ¡i.Ui; Xi/

D
nX

jD1

eSh.i; j/Yj CeSh.i; i/f Omh; ¡i.Ui;Xi/ ¡ Yig

D Omh.Ui;Xi/ CeSh.i; i/f Omh; ¡i.Ui;Xi/ ¡ Yig:

Hence Yi ¡ Omh;¡i.Ui;Xi/ D Yi ¡ Omh.Ui; Xi/ C eSh.i; i/fYi ¡ Omh;¡i£
.Ui; Xi/g, which leads to the stated result, Yi ¡ Omh;¡i.Ui;Xi/ D fYi ¡
Omh.Ui;Xi/g=f1 ¡eSh.i; i/g, for i D 1; : : : ;n.

[Received May 2002. Revised January 2003.]
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