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Accounting for Time Series Errors in Partially
Linear Model With Single- or Multiple-Runs

Chunming ZHANG, Yu HAN, and Shengji JIA

This article concerns statistical estimation of the partially linear model (PLM) for
time course measurements, which are temporally correlated and allow multiple-runs for
repeated measurements to enhance experimental accuracy without extending the number
of time points within each trial. Such features arise naturally from biomedical data, for
example, in brain fMRI, and call for special treatment beyond classical methods in either
a purely nonparametric regression model or a PLM with independent errors. We develop
a stepwise procedure for estimating the parametric and nonparametric components of
the multiple-run PLM and making inference for parameters of interest, adaptive to either
single- or multiple-run, in the presence of error temporal dependence. Simulation study
and real fMRI data applications illustrate the computational simplicity and effectiveness
of the proposed methods. Supplementary material for this article is available online.
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1. INTRODUCTION

Semiparametric models, such as the partially linear model (PLM), play an important
role in statistics, biostatistics, economics, and engineering studies (Andrews 1994; Yatchew
1997; Robinson 1988; Speckman 1988). The conventional PLM when applied to time-
course responses Y (ti), observed at time points ti = i/n, i = 1, . . . , n, and covariates
X i = (Xi1, . . . , Xid )T ∈ Rd , describes the model structure according to

Y (ti) = XT
i βo + ηo(ti) + ε(ti), E{ε(ti) | X i} = 0, (1.1)

where βo = (β1;o, . . . , βd;o)T is a vector of unknown parameters, ηo(·) is an unknown
smooth function, and {ε(ti)} are error terms. Denoting y = (Y (t1), . . . , Y (tn))T , X =
(X1, . . . , Xn)T , ηo = (ηo(t1), . . . , ηo(tn))T , and ε = (ε(t1), . . . , ε(tn))T , model (1.1) is
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124 C. ZHANG, Y. HAN, AND S. JIA

rewritten as

y = Xβo + ηo + ε. (1.2)

A two-step procedure (see, e.g., Fan and Huang 2005) is commonly used for estimating
βo and ηo by

β̂ = {
XT

(
In − ST

b

)
(In − Sb)X

}−1{
XT

(
In − ST

b

)
(In − Sb)y

}
, (1.3)

η̂ = Sb

(
y − Xβ̂

)
,

where In denotes an n × n identity matrix, b > 0 is the bandwidth parameter, and Sb is an
n × n smoothing matrix (to be defined in Section 2). The classical PLM and estimation
method have some limitations. First, to enhance statistical estimation efficiency of model
(1.2), it is preferable to increase the number n of time points. But in some real applications,
a smaller number of time points will be more feasible and advantageous to experimental
outcomes. Second, the estimator (1.3) ignores the temporal correlation of ε in many appli-
cations, that is, assumes cov(ε, ε | X) = σ 2In. Third, the bandwidth parameter b is used in
estimating both the parametric and nonparametric components, but most of existing work
on data-driven selection of b, which is suitable to either a purely nonparametric regression
model (i.e., y = ηo + ε in Hart 1991 and Xiao et al. 2003) or a PLM with independent
errors, is not directly applicable to the PLM with time series errors. For example, the cross-
validation method does not account for temporal autocorrelation directly and, furthermore,
is computationally intensive. Some recent work on dimension reduction of the generalized
additive PLM includes Lian et al. (2014) and references therein.

1.1 PLM WITH TIME SERIES ERRORS ALLOWING MULTIPLE-RUN

This article concerns statistical estimation of the partially linear model (PLM) for time
course measurements, which are temporally correlated and allow multiple-runs for repeated
measurements to enhance experimental accuracy without extending the number n of time
points within each trial. The multiple-run PLM can be described as follows:

Yk(ti) = XT
k;iβo + ηo;k(ti) + εk(ti), i = 1, . . . , n; k = 1, . . . , Run,

that is, ⎛⎜⎝ yrun 1
...

yrun Run

⎞⎟⎠ =

⎛⎜⎝ Xrun 1
...

Xrun Run

⎞⎟⎠βo +

⎛⎜⎝ ηo;run 1
...

ηo;run Run

⎞⎟⎠ +

⎛⎜⎝ εrun 1
...

εrun Run

⎞⎟⎠, (1.4)

where Run denotes the total number of runs, and for the kth run, yrun k =
(Yk(t1), . . . , Yk(tn))T , Xrun k = (Xk;1, . . . , Xk;n)T , ηo;run k = (ηo;k(t1), . . . , ηo;k(tn))T with an
unknown smooth function ηo;k(·), and εrun k = (εk(t1), . . . , εk(tn))T . Measurements made
across different runs are independent. Model (1.4) can also be rewritten as

y = Xβo + η∗
o + ε, (1.5)

for which we assume that within each run k, (εk(t1), . . . , εk(tn)) | X are stationary, and

E(ε | X) = 0, cov(ε, ε | X) = � = IRun ⊗ �n, (1.6)
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ACCOUNTING FOR TIME SERIES ERRORS IN PLM 125

where Ik denotes a k × k identity matrix, ⊗ denotes the Kronecker product (Golub and
Van Loan 1996). Here, �n = σ 2Rn, where σ 2 = var{εk(ti) | X}, Rn is the autocorrelation
matrix of εrun k | X, namely, Rn(i, j ) = cov(εk(ti), εk(tj ) | X)/σ 2, for each k = 1, . . . , Run.
Clearly, if Run = 1 with single-run, then model (1.4) reduces to the classical PLM (1.2). As
a comparison, model (1.2) suits better with a larger number n of time points, whereas model
(1.4) adapts to a smaller number n of time points but allows multiple-run. Such features
of the multiple-run PLM arise naturally from biomedical data in, for example, brain fMRI,
where n = 185 and Run = 6 in our real data in Section 5.

Typically, the parametric component βo is of primary interest, while the nonparamet-
ric components {ηo;k(·)}Run

k=1 serve as nuisance functions. An important application of the
multiple-run PLM to brain fMRI data was introduced in Zhang and Yu (2008) for detecting
activated brain voxels in response to external stimuli. There, βo corresponds to the part of
hemodynamic response function (HRF) values which is the object of primary interest to
neuroscientists; {ηo;k(·)}Run

k=1 are the slowly drifting baseline of time. Determining whether
a voxel is activated or not can be formulated as testing for the linear form of hypotheses,

H0 : Aβo = g0 versus H1 : Aβo �= g0, (1.7)

where A is a given k × d full row rank matrix, and g0 is a known k × 1 vector. To detect
brain regions of activation, multiple testing procedures will be applied for large-scale
simultaneous inference (Efron 2007, 2010).

Three issues are addressed in this article for the multiple-run PLM.

Issue 1: We develop a computationally effective procedure for estimating βo and η∗
o in the

multiple-run PLM (1.5) by β̂ and η̂∗, which incorporate the covariance matrix of
stationary time series errors, without constraining the distribution of ε | X to be
parametric or Gaussian.

Issue 2: We develop theoretical and empirical criterions for the selection of bandwidth b in
estimating βo and η∗

o. For the former, we propose to minimize MSE(β̂ | X) and
derive its explicit form in Proposition 1, where MSE is the mean-squared error.
For the latter, we propose and compare two criterions: one is based on minimizing
the covariance penalty motivated from Efron (2004), and another is to minimize
MSE(̂η∗ | X), which is explicitly given in Proposition 2. It is interesting to note
that all three criterions characterize the reliance on b and �n, but do not depend
on βo.

Issue 3: Simulation studies reveal that when testing an individual null hypothesis (1.7),
ignoring the error correlation will yield inaccurate detection. The resulting test
statistics, when testing multiple sequences of hypotheses (1.7) simultaneously,
will lead to more false detection and thus increase the false discovery rate, even if
test statistics under true null hypotheses are independent. In contrast, the proposed
method which integrates the temporal correlation performs comparably well with
the oracle method.

Computationally efficient algorithms play a vital role in statistical analysis of massive
fMRI data. This article aims to develop a stepwise algorithm for estimating βo and η∗

o in the
multiple-run PLM, bringing computational simplicity, flexibility, and efficiency to model
fitting and estimation. The validity and applicability of this full scheme of numerical tasks
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126 C. ZHANG, Y. HAN, AND S. JIA

also rely on analytical justification (some of which given in other work) for statistical
properties of procedures involved in the algorithm and during subsequent analyses. For
example, Step 2 requires a consistent n × n matrix estimator R̂n. Among other options,
difference-based estimators R̂n and R̂−1

n are computationally transparent with explicit rates
of stochastic convergence derived in Guo and Zhang (2013), which assumed that Rn is gn-
banded with data-driven selection of gn. Likewise, performing a subsequent significance
test, such as (1.7), after estimating βo and η∗

o typically involves a test statistic which is
asymptotically distribution free under the null hypothesis. A χ2-type test statistic Kbc (given
in (4.2)) was examined in Zhang and Yu (2011), which assumed that Rn is g-banded with
g = 2.

The rest of the article proceeds as follows. Section 2 proposes a stepwise procedure for
estimating βo and η∗

o in the multiple-run PLM. Section 3 justifies the validity of each step.
Section 4 presents numerical evaluation of the proposed method. Section 5 illustrates real
fMRI data application.

2. PROPOSED METHODOLOGY FOR ESTIMATING βO AND η∗
O

We first introduce some necessary notation. Define Vn = R−1
n , and V = IRun ⊗ R−1

n =
IRun ⊗ Vn. For any matrix A ∈ Rn×m, we useDorderA orDorder(A) for an (n -order) × m ma-
trix, where Dorder denotes the difference operator, with order ∈ {1, 2, . . .}. For example, the
commonly used first-order and second-order differences correspond to using

D1 =

⎛⎜⎜⎜⎜⎝
−1 1 0 0 · · · 0 0

0 −1 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −1 1

⎞⎟⎟⎟⎟⎠
(n−1)×n

;

D2 =

⎛⎜⎜⎜⎜⎝
1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1 −2 1

⎞⎟⎟⎟⎟⎠
(n−2)×n

.

Let Sb be an n × n smoothing matrix using nonparametric local-linear regression (Fan and
Gijbels 1996), associated with the time points {t1, . . . , tn}, with the (i, j )th entry equal to

Sb(i, j ) = (1, 0){T(ti)
T W(ti)T(ti)}−1(1, tj − ti)

T Kb(tj − ti), (2.1)

where K(t) is a kernel function, b > 0 is a bandwidth parameter, Kb(t) = K(t/b)/b,

T(t) =

⎛⎜⎜⎝
1 t1 − t

...
...

1 tn − t

⎞⎟⎟⎠, and W(t) = diag{Kb(t1 − t), . . . , Kb(tn − t)}.

Define Mb = (In − ST
b )Vn(In − Sb), and Ab = XT (IRun ⊗ Mb). Unless otherwise stated,

‖ · ‖ denotes the L2 norm of a vector.
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ACCOUNTING FOR TIME SERIES ERRORS IN PLM 127

Sections 2.1 and 2.2 will introduce the proposed method for estimating the parametric
and nonparametric components. For illustrative simplicity, justification of each step will be
given in Section 3.

2.1 PROPOSED METHODOLOGY FOR ESTIMATING βO

Step 1: For the kth run, k = 1, . . . , Run, compute the lag-one differences D1(yrun k) and
D1(Xrun k). Combine all runs to obtain an initial estimator of βo via

β̂ init = {diff(X, 1)T diff(X, 1)}−1diff(X, 1)T diff(y, 1), (2.2)

where

diff(X, 1) =

⎛⎜⎝ D1(Xrun 1)
...

D1(Xrun Run)

⎞⎟⎠, diff(y, 1) =

⎛⎜⎝ D1(yrun 1)
...

D1(yrun Run)

⎞⎟⎠.

Compute the vector of residuals, defined as res(β̂ init), where

res(β̂) = y − Xβ̂ =

⎛⎜⎝ resrun 1(β̂)
...

resrun Run(β̂)

⎞⎟⎠.

Step 2: For the kth run, k = 1, . . . , Run, compute êrun k(β̂ init) = D2(resrun k(β̂ init)). Based
on {̂erun 1(β̂ init), . . . , êrun Run(β̂ init)} from all runs, obtain estimators σ̂ 2, R̂n and V̂n.
Thus �̂n = σ̂ 2R̂n, and V̂ = IRun ⊗ V̂n.

Step 3: For the kth run, k = 1, . . . , Run, note from (1.4) that resrun k(βo) ≡ yrun k −
Xrun kβo = ηo;run k + εrun k . This motivates us to estimate the nonparametric com-
ponent ηo;run k by η̂run k(b1k; β̂ init), where

η̂run k(b; β̂) = Sb(yrun k − Xrun kβ̂). (2.3)

Here, the optimal bandwidth parameter b1k in the smoothing matrix Sb1k
is chosen

to minimize the covariance-penalty cov penrun k(b; β̂ init) as a function of b, where

cov penrun k(b; β̂) = ‖resrun k(β̂) − Sb resrun k(β̂)‖2 + 2σ 2 tr(Sb Rn). (2.4)

For unknown σ 2 and Rn, their estimates from Step 2 will be used in
cov penrun k(b; β̂ init).
The vector of nonparametric components is then estimated by
η̂∗(b11, . . . , b1Run; β̂ init), where

η̂∗(b1, . . . , bRun; β̂) = (̂ηT
run 1(b1; β̂), . . . , η̂T

run Run(bRun; β̂))T . (2.5)

Step 4: For the kth run, k = 1, . . . , Run, and any bandwidth parameter b > 0, no-
tice from (1.4) that (In − Sb)yrun k = (In − Sb)Xrun kβo + (In − Sb)ηo;run k + (In −
Sb)εrun k, or rewritten as

ỹrun k = X̃run kβo + η̃o;run k + ε̃run k.
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128 C. ZHANG, Y. HAN, AND S. JIA

Thus⎛⎜⎝ ỹrun 1
...

ỹrun Run

⎞⎟⎠ =

⎛⎜⎝ X̃run 1
...

X̃run Run

⎞⎟⎠βo +

⎛⎜⎝ η̃o;run 1
...

η̃o;run Run

⎞⎟⎠ +

⎛⎜⎝ ε̃run 1
...

ε̃run Run

⎞⎟⎠, (2.6)

namely,
ỹ = X̃βo + η̃∗

o + ε̃, (2.7)

where ỹ = {IRun ⊗ (In − Sb)}y, X̃ = {IRun ⊗ (In − Sb)}X, η̃∗
o = {IRun ⊗ (In −

Sb)}η∗
o, and ε̃ = {IRun ⊗ (In − Sb)}ε. Then the parameter βo is estimated by

β̂(b) = (
X̃T VX̃

)−1
X̃T Ṽy = (AbX)−1Aby. (2.8)

The optimal bandwidth parameter b used in Sb for obtaining β̂(b) is chosen to
minimize

MSE{β̂(b) | X};
see Proposition 1 for the explicit expression. Call such optimal parameter b2. For
unknown (σ 2, Rn, Vn; η∗

o), their estimates from Steps 2–3 will be used in β̂(b) and
MSE{β̂(b) | X}.

Step 5: Using b2 chosen in Step 4, obtain the smoothing matrix Sb2 and estimate βo by

β̂(b2).

This completes the procedure for estimating βo.

2.2 PROPOSED METHODOLOGY FOR ESTIMATING η∗
O

Recall that the nonparametric estimator in Step 3 is rough, since β̂ init is some initial
estimator of the parametric component. It is thus natural to improve the performance of the
nonparametric estimator after obtaining a more efficient estimator of βo.

Step 6: For the kth run, estimate the nonparametric component ηo;run k in a way similar to
that in Step 3, except that β̂ init is replaced by β̂(b2) obtained from Step 5, leading
to η̂run k(b1k; β̂(b2)). The optimal choice of the bandwidth parameter b1k minimizes
cov penrun k(b; β̂(b2)). Then the estimator of η∗

o is η̂∗(b11, . . . , b1Run; β̂(b2)).

We will make remarks on alternative approaches for estimating ηo;run k . Options include,
η̂run k(b1k; β̂(b2)) or η̂run k(b1k; β̂(b1k)), where b1k minimizes

MSE
{̂
ηrun k

(
b; β̂(b2)

)∣∣X}
, or MSE

{̂
ηrun k

(
b; β̂(b)

)∣∣X}
, (2.9)

respectively; see Proposition 2 for the closed-form expressions of (2.9). It can be shown
that minimizing (2.9) with respect to b is asymptotically equivalent to minimizing (2.4).
In finite-sample cases, the covariance penalty criterion (2.4) depends on (σ 2, Rn), thus
gains computational simplicity and is applicable to both Step 3 and Step 6, whereas the
MSE criterion (2.9) relies on (σ 2, Rn, Vn; η∗

o), thus is computationally more involved and
only applicable to Step 6.

For simulation studies, if we wish to obtain optimal constant bandwidths, one for estimat-
ing βo and one for estimating η∗

o, the criterions can be based on minimizing MSE{β̂(b)} =
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ACCOUNTING FOR TIME SERIES ERRORS IN PLM 129

E[MSE{β̂(b) | X}] for the former, and MSE{̂ηrun k(b; β̂(b))} = E[MSE{̂ηrun k(b; β̂(b)) |
X}] for the latter, where the expectations can be approximated by averages across sim-
ulations.

2.3 MULTIPLE-RUN WITH IDENTICAL NONPARAMETRIC COMPONENTS

For multiple-run with Run ≥ 2, if ηo;run 1 = · · · = ηo;run Run ≡ ηo, then the estimation in
Step 3 and Step 6 can be further improved as follows. The estimator of ηo common to all
runs is given by η̂(b; β̂(b2)), where

η̂(b; β̂) = Sb res�(β̂), (2.10)

with res�(β̂) = y� − X�β̂, y� = (1/Run)
∑Run

k=1 yrun k = (Y�(t1), . . . , Y�(tn))T , and X� =
(1/Run)

∑Run
k=1 Xrun k . The optimal bandwidth b is chosen to minimize cov pen(b; β̂(b2)),

where β̂(b2) is from Step 5, and

cov pen(b; β̂) = ∥∥res�(β̂) − Sb res�(β̂)
∥∥2 + 1

Run
2σ 2 tr(Sb Rn). (2.11)

Similarly, alternative approaches use either η̂(b; β̂(b2)) or η̂(b; β̂(b)) to estimate ηo com-
mon to all runs. In that case, the optimal choice of b minimizes MSE{̂η(b; β̂(b2)) | X} or
MSE{̂η(b; β̂(b)) | X}, respectively, where

MSE{̂η(b1; β̂(b)) | X} = I3(b1; b) + I4(b1; b), (2.12)

with

I3(b1; b) = ∥∥(
In − Sb1

)
ηo + Sb1 X�(AbX)−1

(
Abη

∗
o

)∥∥2
,

I4(b1; b) = σ 2 tr
(
Sb1 [(1/Run)Rn − X�(AbX)−1(RnMbX�)T − (RnMbX�)(AbX)−1XT

�

+X�(AbX)−1XT {IRun ⊗ (MbRnMb)}X(AbX)−1XT
� ]ST

b1

)
.

Derivations of (2.10), (2.11), and (2.12) are given in the Appendix. For the real fMRI data in
Section 5, which consists of six runs, there is little difference between options of assuming
nonparametric components to be identical or not in estimating the parametric component.

3. JUSTIFICATION OF EACH STEP IN SECTION 2

As observed from Section 2, the implementation of β̂(b2) in Step 5 hinges on estimat-
ing (σ 2, Rn, Vn; η∗

o) used in Step 4. Steps 1–2 together serve for estimating (σ 2, Rn, Vn),
whereas Step 3 aims to estimate η∗

o.

3.1 LEAST-SQUARES ESTIMATION IN STEP 1

For the kth run, we observe from model (1.4) that

Yk(ti+1) = XT
k;i+1βo + ηo;k(ti+1) + εk(ti+1),

Yk(ti) = XT
k;iβo + ηo;k(ti) + εk(ti).
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130 C. ZHANG, Y. HAN, AND S. JIA

The first-order difference thus gives

Yk(ti+1) − Yk(ti) = (Xk;i+1 − Xk;i)
T βo + O(n−1) + {εk(ti+1) − εk(ti)}, i = 1, . . . , n − 1,

namely,

D1(yrun k) ≈ D1(Xrun k)βo + D1(εrun k), k = 1, . . . , Run,

provided that ηo;k(·) has the bounded derivative. Hence, βo can be estimated by an ordinary
least-squares regression method applied to the set of differenced data from all runs.

3.2 VARIANCE AND COVARIANCE MATRIX ESTIMATION IN STEP 2

Recall that within each run, the error covariance matrix �n = σ 2Rn is an n × n matrix.
Unlike most of existing approaches for estimating large covariance matrices (e.g., Bickel
and Levina 2008a,b) in which the number of replicates diverges to infinity, the number
of runs in our application is either 1 or at most finite. As an illustration, we will adopt
the banded covariance matrix estimator in Guo and Zhang (2013), which has derived the
explicit rate of convergence under a wide range of stationary time series error models,
although other types of consistent estimators may also exist and perform well.

As for the order of difference, Fan and Zhang (2003) demonstrated that in diffusion
models for financial time series data, a higher order difference will escalate the asymptotic
variance of nonparametric function estimation. Thus, we adopt the second-order difference.

3.3 BANDWIDTH SELECTION METHOD IN STEP 3

Recall that in Step 3, for any kth run, k = 1, . . . , Run, estimating ηo;run k corresponds to
the nonparametric estimation of the signals in a signal plus noise model. More generally,
we consider the nonparametric regression model,

Yi = μ(X i) + εi, i = 1, . . . , n,

where E(Yi | X1, . . . , Xn) = μ(X i) = μi and cov(εi, εj | X1, . . . , Xn) = �n(i, j ). It is
thus natural to choose the bandwidth parameter which minimizes the prediction errors, by
using the covariance penalty approach in Efron (2004).

For a future test sample (Xo
i , Y

o
i ), which is an iid copy of (X i , Yi) in the set Tn =

{(X i , Yi) : i = 1, . . . , n} of training samples, suppose that μ̂i = μ̂i(Tn) is the estimate of
μi . The true (random) predictive error of using μ̂i to predict Y o

i is

Erri = E
{(

Y o
i − μ̂i

)2∣∣Tn

}
= E

[{(
Y o

i − μi

) − (
μ̂i − μi

)}2∣∣Tn

]
= E

{(
Y o

i − μi

)2 − 2
(
Y o

i − μi

)(
μ̂i − μi

) + (
μ̂i − μi

)2∣∣Tn

}
= E

{(
Y o

i − μi

)2 + (
μ̂i − μi

)2∣∣Tn

}
= E

{(
Y o

i − μi

)2∣∣Tn

} + E
{(

μ̂i − μi

)2∣∣Tn

}
= E

{(
Y o

i − μi

)2} + (
μ̂i − μi

)2 = E
{(

Yi − μi

)2} + (
μ̂i − μi

)2
, (3.1)
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ACCOUNTING FOR TIME SERIES ERRORS IN PLM 131

where we use the fact that

E
{(

Y o
i − μi

)(
μ̂i − μi

)∣∣Tn

} = (
μ̂i − μi

)
E

{(
Y o

i − μi

)∣∣Tn

}
= (

μ̂i − μi

)
E

(
Y o

i − μi

) = (
μ̂i − μi

)
E

(
Yi − μi

) = 0.

Then (3.1) together with an identity (y − μ)2 + (μ̂ − μ)2 = (y − μ̂)2 + 2(y − μ)(μ̂ −
μ) implies

E(Erri) = E{(Yi − μi)
2} + E{(μ̂i − μi)

2}
= E{(Yi − μi)

2 + (μ̂i − μi)
2}

= E{(Yi − μ̂i)
2 + 2(Yi − μi)(μ̂i − μi)}

= E(erri) + 2E{(Yi − μi)(μ̂i − μi)}
= E(erri) + 2E{cov(Yi, μ̂i | X1, . . . , Xn)},

where erri = (Yi − μ̂i)2. Define

Êrri = erri + 2ĉov
(
Yi, μ̂i | X1, . . . , Xn

)
to be the estimator of Erri , where ĉov(Yi, μ̂i | X1, . . . , Xn) is an estimator of cov(Yi, μ̂i |
X1, . . . , Xn) when it contains unobserved quantities. Then the total predictive error is
estimated by

n∑
i=1

Êrri =
n∑

i=1

erri + 2
n∑

i=1

ĉov(Yi, μ̂i | X1, . . . , Xn)

=
n∑

i=1

(Yi − μ̂i)
2 + 2

n∑
i=1

ĉov(Yi, μ̂i | X1, . . . , Xn)

= ‖y − μ̂‖2 + 2
n∑

i=1

ĉov(Yi, μ̂i | X1, . . . , Xn), (3.2)

where y = (Y1, . . . , Yn)T and μ̂ = (μ̂1, . . . , μ̂n)T .
For any linear predictor μ̂, that is, μ̂ = My, where entries M(i, j ) of M depend only on

(X1, . . . , Xn), but not on (Y1, . . . , Yn), we obtain

cov(Yi, μ̂i | X1, . . . , Xn) = cov

⎛⎝Yi,

n∑
j=1

M(i, j )Yj

∣∣∣∣∣ X1, . . . , Xn

⎞⎠
=

n∑
j=1

M(i, j ) cov(Yi, Yj | X1, . . . , Xn)

=
n∑

j=1

M(i, j )�n(i, j ) =
n∑

j=1

M(i, j )�n(j, i) = (M�n)(i, i),

n∑
i=1

cov(Yi, μ̂i | X1, . . . , Xn) =
n∑

i=1

(M�n)(i, i) = tr(M�n).
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132 C. ZHANG, Y. HAN, AND S. JIA

In this case, (3.2) becomes the covariance-penalty,

cov pen = ∥∥y − μ̂
∥∥2 + 2 tr(M�n). (3.3)

For Step 3, the vector resrun k(βo) is retrieved by the nonparametric linear predic-
tor Sb resrun k(βo). Such correspondence applied to (3.3) leads to the covariance-penalty,
‖resrun k(βo) − Sb resrun k(βo)‖2 + 2σ 2 tr(Sb Rn). This criterion, when βo is estimated by an
estimator β̂, coincides with (2.4).

3.4 BANDWIDTH SELECTION METHOD IN STEP 4 AND STEP 5

Ideally, we wish to choose the bandwidth b to minimize SSE(b) = ‖β̂(b) − βo‖2.
But this is practically infeasible, since βo is unknown. Proposition 1 indicates that
MSE{β̂(b) | X} is free of βo. This criterion will offer a practically more useful and effective
approach.

Proposition 1. For β̂(b) in (2.8), and any b > 0, we obtain

MSE{β̂(b) | X} = ‖(AbX)−1(Abη
∗
o)‖2 + σ 2 tr[(AbX)−1XT {IRun ⊗ (MbRnMb)}X(AbX)−1],

where

Mb = (
In − ST

b

)
Vn(In − Sb) ∈ Rn×n,

Ab = XT (IRun ⊗ Mb),

AbX =
Run∑
k=1

XT
run kMbXrun k ∈ Rd×d ,

Abη
∗
o =

Run∑
k=1

XT
run kMbηo;run k ∈ Rd×1,

XT {IRun ⊗ (MbRnMb)}X =
Run∑
k=1

XT
run kMbRnMbXrun k ∈ Rd×d .

In practice, the true values of σ 2, Rn, Vn, and η∗
o in Proposition 1 are un-

known and need to be estimated. This motivates us to substitute (σ 2, Rn, Vn; η∗
o) by

their estimates (̂σ 2, R̂n, V̂n, η̂
∗) to form ̂MSE(β̂ | X), an empirical plug-in estimate of

MSE(β̂ | X), and then select the bandwidth parameter which minimizes ̂MSE(β̂ | X).
Among the four estimates, (̂σ 2, R̂n, V̂n) are obtained from Step 2; η̂∗ is obtained from
Step 3.
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ACCOUNTING FOR TIME SERIES ERRORS IN PLM 133

3.5 BANDWIDTH SELECTION METHOD IN STEP 6

Similar to Proposition 1, Proposition 2 states that the MSE of nonparametric estimators
is free of βo.

Proposition 2. For β̂(b) in (2.8), η̂∗(b1, . . . , bRun; β̂) in (2.5), and any b1 > 0, . . . , bRun >

0 and b > 0, we obtain

MSE
{̂
η∗(b1, . . . , bRun; β̂(b)

)∣∣X} =
Run∑
k=1

MSE
{̂
ηrun k

(
bk; β̂(b)

)∣∣X}
,

MSE
{̂
ηrun k

(
bk; β̂(b)

)∣∣X} = I3;k(bk; b) + I4;k(bk; b),

where

I3;k(bk; b) = ∥∥(
In − Sbk

)
ηo;run k + Sbk

Xrun k(AbX)−1(Abη
∗
o

)∥∥2
,

I4;k(bk; b) = σ 2 tr
(
Sbk

[
Rn − Xrun k(AbX)−1(RnMbXrun k)T − (RnMbXrun k)(AbX)−1XT

run k

+Xrun k(AbX)−1XT {IRun ⊗ (MbRnMb)}X(AbX)−1XT
run k

]
ST

bk

)
,

and Mb and Ab are as defined in Proposition 1.

4. SIMULATION STUDY

We conduct simulation studies to evaluate the stepwise estimation procedure in Section
2 for the multiple-run PLM, with Run = 2 and n = 300. The data-generating process
mimics that from the fMRI experiment (Glover 1999). The true parameter vector βo =
(βo;1, . . . , βo;d )T is quantified by

βo;j =
{

g1(1.5(j − 1) − ts)

g1(a1b1)
− c

g2(1.5(j − 1) − ts)

g2(a2b2)

}
I(1.5(j − 1) − ts > 0), (4.1)

for j = 1, . . . , d, where g1(t) = ta1 exp(−t/b1) and g2(t) = ta2 exp(−t/b2), with d = 20,
a1 = 5, b1 = 0.9, a2 = 12, b2 = 0.7, c = 0.4, ts = 5.5 and I(·) is an indicator function.
Within the kth run,

Xrun k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sk;1(0) 0 · · · 0

sk;1(t2 − t1) sk;1(0) · · · 0
...

...
. . .

...

sk;1(td − t1) sk;1(td − t2) · · · sk;1(0)
...

... · · · ...

sk;1(tn − t1) sk;1(tn − t2) · · · sk;1(tn − td )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where {sk;1(ti)}ni=1
iid∼ Bernoulli(1/2), and the nonparametric function ηo;k(ti) =

10 sin{π (ti − 0.21)}, at ti = i/n. The errors {εk(ti)}ni=1 are generated from the fourth-order
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134 C. ZHANG, Y. HAN, AND S. JIA

moving average (MA(4)) process (Cryer and Chan 2008),

εk(ti) = z(ti) + θ1z(ti−1) + θ2z(ti−2) + θ3z(ti−3) + θ4z(ti−4),

where θ1 = 0.75, θ2 = 0.5, θ3 = 0.25, and θ4 = 0.35; {z(ti)} iid∼ N (0, σ 2
Z); σ 2

Z =
0.47862/1 and 0.47862/8 for noise levels ranging from large to small. Local-linear regres-
sion method combined with Epanechnikov kernel (Silverman 1986) supported on [−1, 1] is
used for nonparametric estimation. Unless otherwise stated, Monte Carlo simulations are
replicated for 500 times.

4.1 ESTIMATION OF PARAMETRIC COMPONENT

First, we assess the performance of a parametric estimator β̂ by SSE(β̂) = ‖β̂ − βo‖2.
Comparison is made between the following methods for β̂.

“iid-V-b-0.1”: β̂(b) given in (2.8) with V incorrectly set to IRun ⊗ In and b = 0.1;

“iid-V-b-0.5”: β̂(b) given in (2.8) with V incorrectly set to IRun ⊗ In and b = 0.5;

“iid-V-b-dd”: β̂(b) given in (2.8) with V incorrectly set to IRun ⊗ In and b chosen via
data-driven method to minimize ̂MSE{β̂(b) | X}, which replaces (σ 2, Rn, Vn; η∗

o) in
MSE{β̂(b) | X} by setting Vn = In and Rn = In and estimators (̂σ 2; η̂∗) in Steps 1–3;

“est-V-b-0.1”: β̂(b) given in (2.8) with V estimated by V̂ and b = 0.1;

“est-V-b-0.5”: β̂(b) given in (2.8) with V estimated by V̂ and b = 0.5;

“full-data-driven”: β̂(b) given in (2.8) with V estimated by V̂ and b chosen via data-driven
method to minimize ̂MSE{β̂(b) | X}, which replaces (σ 2, Rn, Vn; η∗

o) in MSE{β̂(b) |
X} by their estimators in Steps 1–3;

“oracle-random”: β̂(b) given in (2.8) with true V and b chosen to minimize MSE{β̂(b) | X};
“oracle-constant”: β̂(b) given in (2.8) with true V and (constant) b chosen to minimize

MSE{β̂(b)}, approximated from 100 sets of simulated samples.

Boxplots of SSE using different methods are compared in Figure 1; Figure 2 compares
boxplots of estimated parameters resulting from those methods. We observe the following
aspects. (i) For a fixed bandwidth, ignoring the correlation structure will tend to degrade
the estimation of parametric component, compared with that of incorporating the correla-
tion. See “iid-V-b-0.1” versus “est-V-b-0.1,” and “iid-V-b-0.5” versus “est-V-b-0.5.” (ii) A
smaller bandwidth will tend to reduce SSE, whereas an excessively large bandwidth has an
adverse affect on the parametric estimator; the data-driven counterpart is preferable. This is
seen from “iid-V-b-0.1” versus “iid-V-b-0.5” versus “iid-V-b-dd,” and “est-V-b-0.1” versus
“est-V-b-0.5” versus “full-data-driven.” (iii) For the two versions of oracle methods, the
random choice of bandwidth performs similarly to the constant choice, but none of them
can be practically implemented. (iv) The “full-data-driven” procedure compares well with
the oracle counterpart, but is practically feasible, and is thus recommended for real data
application.
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Figure 1. Boxplots of SSE(β̂) using different methods for β̂, indicated below each boxplot. Left panel: with
large noise level; right panel: with small noise level.

Second, we examine the null distribution of test statistics for testing H0 : βo = 0. We
adopt the semiparametric test statistic Kbc (given in Zhang and Yu (2008) for testing
H0 : Aβo = g0) in the form,

(
Aβ̂∗ − g0

)T {
A

(
X̃T VX̃

)−1
AT

}−1(
Aβ̂∗ − g0

)
r̂T∗ V̂r∗

/
(Run × n − d)

, (4.2)

Figure 2. Boxplots of β̂j , j = 1, . . . , d (from left to right within each panel), using different methods for β̂,
with large noise level. Solid curves connect true values of parameters.
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136 C. ZHANG, Y. HAN, AND S. JIA

by setting A = Id and g0 = 0, where Kbc corresponds to using β̂∗ = β̂bc(β̂(b)) and r̂∗ =
r̂bc(β̂(b)), with

β̂bc(β̂) = β̂(b) − (AbX)−1

{
Run∑
k=1

XT
run kMbη̂run k

(
b; β̂

)}
,

r̂bc(β̂) = {IRun ⊗ (In − Sb)}̂r(β̂).

Zhang an Yu (2008) showed that under H0, Kbc
D→ χ2

d . Figure 3 compares the cubic root
transform of empirical (1st to 99th) percentiles of Kbc, based on parametric estimators
β̂(b) and associated V described at the start of Section 4.1, versus cubic root transform
of percentiles of the χ2

d distribution, where the data are generated as before except that
βo = 0 is set in accordance with H0. We observe from “iid-V-b-0.1” and “iid-V-b-0.5” that
the sampling null distributions of test statistics, when ignoring the correlation structure,
depart substantially from the χ2

d distribution, causing the testing procedures to detect many
false significance (and thus inaccurate detection of brain activity in the fMRI data). The
data-driven counterpart “iid-V-b-dd” does not ameliorate the discrepancy either. Among
the methods that do incorporate the error correlation structure, both “est-V-b-0.1” and
“est-V-b-0.5” improve but specify the bandwidths in an ad hoc way. In contrast, the
“full-data-driven” method is genuinely practical and compares reasonably well with the
two oracle counterparts.

Third, we evaluate the impact of ignoring error correlation on testing multiple sets of
null hypotheses H0 : βo = 0 simultaneously. As an illustration, the Benjamini-Hochberg
multiple testing procedure (Benjamini and Hochberg 1995) is adopted to determine the
threshold of p-values calculated from test statistics Kbc. We generate 2000 sets of data

Figure 3. Cubic root transform of empirical percentiles (on the y axis) of Kbc versus cubic root transform of
percentiles (on the x axis) of the χ2 distribution, with large noise level. Solid line: the 45-degree reference line.
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Figure 4. Compare the calculated FDP of Kbc , with large noise level.

independently according to the multiple-run PLM as before, where 20% of them are
associated with an alternative hypothesis (βo in (4.1)) and the remaining 80% are null
(βo = 0). The calculated false discovery proportion (FDP) are given in Figure 4, where the
control level α varies from 0.01 to 0.30 in increments of 0.01. Clearly, all three methods
“iid-V-b-0.1,” “iid-V-b-0.5” and “iid-V-b-dd,” which ignore the error correlation structure,
fail to control the FDR at the desired control level. As seen, they inflate the FDP, particularly
serious when α is small. The performance is improved by “est-V-b-0.1,” “est-V-b-0.5” and
“full-data-driven” which integrate the error correlation. Among them, the “full-data-driven”
method compares well with two oracle counterparts.

4.2 ESTIMATION OF NONPARAMETRIC COMPONENT

As all runs share a common nonparametric component, we evaluate the nonparametric
estimator η̂(b; β̂) in (2.10). Similar comparison can be made without assuming nonparamet-
ric components to be identical. In general, the optimal bandwidths for estimating parametric
and nonparametric components typically disagree, since the criterions for estimating para-
metric and nonparametric components do not match. For example, Figure 5 illustrates that
the optimal bandwidth that minimizes MSE{β̂(b)} is typically larger than that minimizes
MSE{̂η(b; β̂(b))}. Estimators of the nonparametric component using 8 types of bandwidth
parameters are compared below.

Method 1: η̂(b; β̂(b)) in (2.10), where β̂(b) is given in (2.8) with V incorrectly set to
IRun ⊗ In and b = 0.1;

Method 2: η̂(b; β̂(b)) in (2.10), where β̂(b) is given in (2.8) with V incorrectly set to
IRun ⊗ In and b = 0.5;
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138 C. ZHANG, Y. HAN, AND S. JIA

Figure 5. Plots of MSE{β̂(b)} and MSE{̂η(b; β̂(b))} versus the bandwidth parameter b, with large noise level.
Dashed vertical lines indicate the location (on the x axis) of the minimum.

Method 3: η̂(b; β̂(b2)) in (2.10), where b minimizes ̂cov pen(b; β̂(b2)) in (2.11), which
replaces (σ 2, Rn) in (2.4) by their estimates in Steps 1–2, and b2 minimizes
̂MSE{β̂(b) | X}; β̂(b2) is given in (2.8) with V estimated by V̂;

Method 4: η̂(b; β̂(b2)) in (2.10), where b minimizes cov pen(b; β̂(b2)) in (2.11), and b2 min-
imizes MSE{β̂(b) | X}; β̂(b2) is given in (2.8) with true V;

Method 5: η̂(b; β̂(b)) in (2.10), where b minimizes ̂cov pen(b; β̂(b)) in (2.11); β̂(b) is given
in (2.8) with V estimated by V̂;

Method 6: η̂(b; β̂(b)) in (2.10), where b minimizes cov pen(b; β̂(b)) in (2.11); β̂(b) is given
in (2.8) with true V;

Method 7: η̂(b; β̂(b2)) in (2.10), where b minimizes ̂MSE{̂η(b; β̂(b2)) | X} in (2.12), which
replaces (σ 2, Rn; η∗

o) in (2.9) by their estimates in Steps 1–3, and b2 minimizes
̂MSE{β̂(b) | X}; β̂(b2) is given in (2.8) with V estimated by V̂;

Method 8: η̂(b; β̂(b2)) in (2.10), where b minimizes MSE{̂η(b; β̂(b2)) | X} in (2.12), and
b2 minimizes MSE{β̂(b) | X}; β̂(b2) is given in (2.8) with true V;

Method 9: η̂(b; β̂(b)) in (2.10), where b minimizes ̂MSE{̂η(b; β̂(b)) | X} in (2.12), which
replaces (σ 2, Rn; η∗

o) in (2.9) by their estimates in Steps 1–3; β̂(b) is given in
(2.8) with V estimated by V̂;

Method 10: η̂(b; β̂(b)) in (2.10), where b minimizes MSE{̂η(b; β̂(b)) | X} in (2.12); β̂(b) is
given in (2.8) with true V;

Method 11: η̂(b; β̂(b2)) in (2.10), where b minimizes ̂MSE{β̂(b) | X}, and b2 minimizes
̂MSE{β̂(b) | X}; β̂(b2) is given in (2.8) with V estimated by V̂;

Method 12: η̂(b; β̂(b2)) in (2.10), where b minimizes MSE{β̂(b) | X}, and b2 minimizes
MSE{β̂(b) | X}; β̂(b2) is given in (2.8) with true V;

Figure 6 reveals that all methods, except “Method 2,” perform comparably well in es-
timating nonparametric components. This indicates that estimation of the nonparametric

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
] 

at
 1

3:
38

 1
2 

M
ar

ch
 2

01
6 



ACCOUNTING FOR TIME SERIES ERRORS IN PLM 139

Figure 6. Compare estimators of nonparametric components, with large noise level. Solid curves denote the true
nonparametric function, and the estimated curves from two typical samples are presented corresponding to the
25th (the dashed curve) and the 75th (the dash-dotted curve) percentiles among the ASE–ranked values, where
ASE = ∑n

i=1 {̂η(ti ) − ηo(ti )}2/n.

component is relatively less sensitive to the specification of error correlation structures
than estimation of the parametric component. The larger biases from “Methods 11–12”
are because the optimal bandwidths minimizing MSE{β̂(b) | X} are larger and tend to
oversmooth than that minimizing MSE{̂η(b; β̂(b)) | X}, evidenced in Figure 5. Among
all data-driven approaches, “Method 3” performs slightly better (and faster) than the
others.
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5. REAL DATA APPLICATION

In an emotional control study, subjects saw a series of negative or positive emotional
images, and were asked to either suppress or enhance their emotional responses to the
image, or to simply attend to the image. Thus, there were six types of trial (i.e., six types of
stimuli). The sequence of trials was randomized. The time between successive trials also
varied. The size of the whole brain dataset is 64 × 64 × 30. At each voxel, the time series
has 6 runs, each containing 185 observations with a time resolution of 2 sec. The study
aims to estimate the BOLD response to each of the trial types for 1–18 sec following the
image onset. The length of the estimated HRF parameters is set equal to 18.

The multiple-run PLM (1.4) is used to describe the data, with Run = 6 and n = 185.
The parametric component

βo = (
βT

o;1, . . . , βT
o;6

)T ∈ Rd

is the vector of true HRF coefficients at 18 time points, where βo;1 = (h1(1), . . . , h1(18))T ,
. . . , βo;6 = (h6(1), . . . , h6(18))T are associated with six types of stimuli, thus d = 6 × 18,
and η∗

o is the true drift function. Two voxels at coordinates (24, 32, 7) and (49, 41, 10) are
declared to be activated using the test statistics Kbc. Figures 7–8 present the estimates of
HRF parameters (on the top panels) for each of six stimuli, and estimates of the drift function
(on the bottom panels). As a comparison, the first two columns use “full-data-driven”
method as in Section 4.1 for the parametric component, and “Method 3” as in Section 4.2
for the nonparametric components, whereas the last two columns use “iid-b-dd” method
(specifying Rn = In) as in Section 4.1, and “Method 3” (specifying Rn = In), respectively.
The second and fourth columns assume that all runs share a common drift function; the
first and third columns remove this constraint. It is seen that there is negligible difference

Figure 7. Top panels: compare estimates of HRF values (hr (1), . . . , hr (18)) (connected within the rth
stimulus) for each of six stimuli; bottom panels: compare estimates of the drift function for each of six runs.
The first and third columns: without assuming all runs sharing identical nonparametric components; the second
and fourth columns: assuming all runs sharing identical nonparametric components. The voxel is at (24, 32, 7).
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Figure 8. The caption is identical to that for Figure 7, except that the voxel is at (49, 41, 10).

between assuming the nonparametric functions to be either identical or not in estimating
the parametric component. Due to the lack of space, comparisons performed at other voxels
are omitted.

6. DISCUSSION

We have developed a method for estimating parametric and nonparametric components
of the PLM with multiple-runs, in the presence of temporally correlated error terms. We
have devised a stepwise algorithm (with justification in each step) for implementing our
approach in practice, which is applicable to the analysis of large datasets, such as fMRI data.
Matlab implementation of the algorithm is available in the online supplement.

This approach can be extended in several directions. For example, in Section 5, values
{hr (1), . . . , hr (18)} may follow a smooth curve hr (t), for some r ∈ {1, . . . , 6}. How do
we incorporate some shape information of βo (based on results of prior investigations)
into the modeling and to what extent will this affect the computation complexity and
estimation efficiency? It is also desirable to develop estimators R̂n with faster convergence
rates without losing computational efficiency. We leave these issues for future research.

SUPPLEMENTARY MATERIALS

Online appendix: The appendix collects detailed derivations of Proposition 1, Propo-
sition 2, (2.10), (2.11), and (2.12). (JCGS_online_appendix.pdf, pdf file).

Matlab package: All the Matlab script files (along with a readme file) used for simula-
tion studies in the article. (JCGS_online_Matlab_codes.zip, zipped file).
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Online Supplement to “Accounting for time series errors in

partially linear model with single- or multiple-run”

Appendix: Proofs of Main Results

Lemma 1 For a random vector X and a sigma-field F , E(‖X‖2 | F) = ‖E(X | F)‖2 +
tr{var(X | F)}.

Proof :

E(‖X‖2 | F) = E(‖E(X | F) + {X −E(X | F)}‖2 | F)

= E[‖E(X | F)‖2 + 2{X − E(X | F)}TE(X | F) + ‖X −E(X | F)‖2 | F ]

= ‖E(X | F)‖2 + E{‖X − E(X | F)‖2 | F},

where

E{‖X − E(X | F)‖2 | F} = E( tr[{X − E(X | F)}{X − E(X | F)}T ] | F)

= tr(E[{X − E(X | F)}{X − E(X | F)}T | F ])

= tr{var(X | F)}.

This completes the proof. �

Proof of Proposition 1. For β̂(b) in (2.8), we now derive MSE{β̂(b) | X} = E{‖β̂(b)−
βo‖2 | X}. Lemma 1 indicates that

MSE{β̂(b) | X} = ‖E{β̂(b)− βo | X}‖2 + tr[var{β̂(b) | X}]
≡ I1(b) + I2(b). (A.1)

Recall ỹ = {IRun ⊗ (In − Sb)}y and X̃ = {IRun ⊗ (In − Sb)}X. Then from (2.7)–(2.8) and

(1.5),

β̂(b) = (AbX)−1Aby

≡ βo + (AbX)−1Abη
∗

o + (AbX)−1Abǫ,

where

Ab = X̃TV{IRun ⊗ (In − Sb)}

1



= XT{IRun ⊗ (In − Sb)
T}(IRun ⊗ Vn){IRun ⊗ (In − Sb)}

= XT [IRun ⊗ {(In − Sb)
TVn(In − Sb)}]

= XT (IRun ⊗Mb) ∈ R

d×(Run×n). (A.2)

Hence

β̂(b)− βo = (AbX)−1Abη
∗

o + (AbX)−1Abǫ. (A.3)

Thus from (A.3) and (1.6),

E{β̂(b)− βo | X} = (AbX)−1Abη
∗

o. (A.4)

Similarly,

var{β̂(b) | X} = var{(AbX)−1Abǫ | X}
= (AbX)−1AbΣAT

b (AbX)−1

= σ2(AbX)−1Ab(IRun ⊗ Rn)A
T
b (AbX)−1,

where Σ = IRun ⊗ (σ2Rn) = σ2(IRun ⊗ Rn), and from (A.2),

Ab(IRun ⊗ Rn)A
T
b = XT (IRun ⊗Mb)(IRun ⊗ Rn)(IRun ⊗Mb)X

= XT{IRun ⊗ (MbRnMb)}X.

Thus

var{β̂(b) | X} = σ2(AbX)−1XT{IRun ⊗ (MbRnMb)}X(AbX)−1. (A.5)

Collecting (A.4) and (A.5) to (A.1) gives

I1(b) = ‖(AbX)−1(Abη
∗

o)‖2,
I2(b) = σ2 tr[(AbX)−1XT{IRun ⊗ (MbRnMb)}X(AbX)−1],

in which (A.2) indicates that

AbX = XT (IRun ⊗Mb)X =
Run∑

k=1

XT
run kMbXrunk,

Abη
∗

o = XT (IRun ⊗Mb)η
∗

o =
Run∑

k=1

XT
run kMbηo;runk,

XT{IRun ⊗ (MbRnMb)}X =

Run∑

k=1

XT
run kMbRnMbXrunk.

This completes the proof. �

2



Proof of Proposition 2. For η̂
∗ = (η̂T

run 1, . . . , η̂
T
runRun)

T , note that MSE(η̂∗ | X) =

E(‖η̂∗ − η∗

o‖2 | X) =
∑Run

k=1 E(‖η̂runk − ηo;run k‖2 | X) =
∑Run

k=1 MSE(η̂runk | X). It suffices

to derive MSE(η̂runk | X). From (2.3) and (1.4),

η̂run k(bk; β̂(b)) = Sbk{yrun k −Xrunkβ̂(b)}
= Sbk{Xrunkβo + ηo;run k + ǫrunk −Xrunkβ̂(b)}
= Sbk [ηo;runk + ǫrun k −Xrun k{β̂(b)− βo}]
= Sbkηo;runk + Sbk [ǫrunk −Xrunk{β̂(b)− βo}],

η̂runk(bk; β̂(b))− ηo;run k = Sbkηo;runk − ηo;run k + Sbk [ǫrun k −Xrunk{β̂(b)− βo}].(A.6)

From (A.6) and (A.4), we obtain

E{η̂run k(bk; β̂(b))− ηo;runk | X}
= Sbkηo;run k − ηo;runk − SbkXrun kE{β̂(b)− βo | X}
= Sbkηo;run k − ηo;runk − SbkXrun k(AbX)−1Abη

∗

o. (A.7)

Similarly, from (A.6) and (A.5), we obtain

var{η̂run k(bk; β̂(b)) | X}
= Sbkvar(ǫrunk −Xrunk{β̂(b)− βo} | X)ST

bk

= Sbk [var(ǫrunk | X)

−cov(ǫrun k,Xrunk{β̂(b)− βo} | X)

−cov(Xrunk{β̂(b)− βo}, ǫrun k | X)

+var(Xrunk{β̂(b)− βo} | X)]ST
bk

= Sbk{I4;k;1 − I4;k;3(b)− I4;k;2(b) + I4;k;4(b)}ST
bk
, (A.8)

where from (1.6),

I4;k;1 = Σn = σ2Rn;

from (A.5),

I4;k;4(b) = var(Xrun k{β̂(b)− βo} | X)

= Xrunkvar{β̂(b)− βo | X}XT
runk

= σ2Xrunk(AbX)−1XT{IRun ⊗ (MbRnMb)}X(AbX)−1XT
runk,

3



and

I4;k;3(b) = cov(ǫrun k,Xrunk{β̂(b)− βo} | X)

= cov{ǫrunk,Xrunk(AbX)−1Abǫ | X}
= cov(ǫrun k, ǫ | X)AT

b (AbX)−1XT
runk

= (eT
k,Run ⊗ In)cov(ǫ, ǫ | X)AT

b (AbX)−1XT
runk

= (eT
k,Run ⊗ In)σ

2(IRun ⊗ Rn)A
T
b (AbX)−1XT

runk

= (eT
k,Run ⊗ In)σ

2(IRun ⊗ Rn)(IRun ⊗Mb)X(AbX)−1XT
run k

= σ2{eT
k,Run ⊗ (RnMb)}X(AbX)−1XT

run k

= σ2(RnMbXrunk)(AbX)−1XT
runk,

by using the fact that ǫrun k = (eT
k,Run ⊗ In)ǫ with ek,N denoting the kth column vector of

a N ×N identity matrix, (A.3) and (A.2), and similarly,

I4;k;2(b) = cov(Xrunk{β̂(b)− βo}, ǫrunk | X) = {I4;k;3(b)}T

= σ2Xrunk(AbX)−1(RnMbXrun k)
T .

Applying Proposition 1 again gives

MSE{η̂runk(bk; β̂(b)) | X}
= ‖E{η̂run k(bk; β̂(b))− ηo;runk | X}‖2 + tr[var{η̂runk(bk; β̂(b)) | X}]
= I3;k(bk; b) + I4;k(bk; b),

where from (A.7),

I3;k(bk; b) = ‖Sbkηo;runk − ηo;run k − SbkXrunk(AbX)−1Abη
∗

o‖2

= ‖(In − Sbk)ηo;run k + SbkXrunk(AbX)−1Abη
∗

o‖2,

and from (A.8),

I4;k(bk; b) = tr[Sbk{I4;k;1 − I4;k;3(b)− I4;k;2(b) + I4;k;4(b)}ST
bk
]

= σ2 tr
(
Sbk

[
Rn − I∗4;k;2(b)− I∗4;k;3(b)

+Xrunk(AbX)−1XT{IRun ⊗ (MbRnMb)}X(AbX)−1XT
runk

]
ST
bk

)
,

where

I∗4;k;2(b) = Xrunk(AbX)−1(RnMbXrunk)
T ,

I∗4;k;3(b) = {I∗4;k;2(b)}T .

This completes the proof. �
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Proof of (2.10). Assume that ηo;run 1 = · · · = ηo;runRun = ηo. Then model (1.4) becomes

Yk(ti)−XT
k;iβo = ηo(ti)+ǫk(ti), i = 1, . . . , n and k = 1, . . . ,Run. The local-linear estimation

of ηo(t) proceeds as follows. For ti ≈ t, Taylor expansion gives ηo(ti) ≈ ηo(t)+η′o(t)(ti−t) ≡
T i(t)

T (ηo(t), η
′

o(t)), where T i(t) = (1, ti − t)T . For any given β̂, the local-linear estimation

method in Fan and Gijbels (1996) estimates ηo(t) by

η̂(t) = eT
1,2

[
argmin

α

1

Run

Run∑

k=1

n∑

i=1

{Yk(ti)−XT
k;iβ̂ − T i(t)

Tα}2Kb(ti − t)
]

= eT
1,2Fn(α),

where e1,2 = (1, 0)T and Fn(α) = (1/Run)
∑Run

k=1

∑n

i=1{Yk(ti)−XT
k;iβ̂−T i(t)

Tα}2Kb(ti−t).

Note that

F ′

n(α) = −2
1

Run

Run∑

k=1

n∑

i=1

T i(t){Yk(ti)−XT
k;iβ̂ − T i(t)

Tα}Kb(ti − t)

= −2

n∑

i=1

T i(t){Y�(ti)−XT
�;iβ̂ − T i(t)

Tα}Kb(ti − t).

Hence η̂(·) corresponds to the estimated nonparametric regression function, based on data

{(ti, Y�(ti)−XT
�;iβ̂)}ni=1. Such correspondence indicates that the estimator (η̂(t1), . . . , η̂(tn))

T

of (ηo(t1), . . . , ηo(tn))
T is Sb(y� −X�β̂) = Sb res�(β̂), where Sb is given in (2.1). �

Proof of (2.11). Utilizing the derivation given in Section 3.3 for (2.4) and the fact var(ǫ� |
X) = (1/Run)σ2Rn, completes the proof. The details are omitted. �

Proof of (2.12). The proof completes by utilizing the proof for Proposition 2, along with

var(ǫ� | X) = (1/Run)σ2Rn and cov(ǫ�, ǫ | X) = (1/Run)(1T
Run ⊗ In)cov(ǫ, ǫ | X), where

1k = (1, . . . , 1)T ∈ R

k. The details are omitted. �
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