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Abstract

Tracking the correct directions of monotonicity in multi-dimensional modeling plays an important role in
interpreting functional associations. In the presence of multiple predictors, we provide empirical evidence
that the observed monotone directions via parametric, nonparametric or semiparametric fit of commonly
used multi-dimensional models may entirely violate the actual directions of monotonicity. This breakdown
is caused primarily by the dependence structure of covariates, with negligible influence from the bias of
function estimation. To examine the linkage between the dependent covariates and monotone directions,
we first generalize Stein’s Lemma for random variables which are mutually independent Gaussian to two
important cases: dependent Gaussian, and independent non-Gaussian. We show that in both two cases,
there is an explicit one-to-one correspondence between the monotone directions of a multi-dimensional
function and the signs of a deterministic surrogate vector. Moreover, we demonstrate that the second case
can be extended to accommodate a class of dependent covariates. This generalization further enables us to
develop a de-correlation transform for arbitrarily dependent covariates. The transformed covariates preserve
modeling interpretability with little loss in modeling efficiency. The simplicity and effectiveness of the
proposed method are illustrated via simulation studies and real data application.
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1. Introduction

Monotone functions are central to order theory. In statistical applications, some notable shape
property, such as monotonicity, is particularly useful for interpreting functional associations
between a response variable and predictor variables. For example, in the environmental study
of ozone data [12], one may naturally ask whether the measurement of ozone concentration
is monotone increasing in temperature and monotone decreasing in wind speed. In socio-
economical studies, much theoretical and empirical literature predicts that wages increase
with age and education [17]. In many other similar applications arising from biomedical and
engineering studies, one would postulate a statistical model such that the modeling function of
covariates preserves the isotonic assumptions on a subset of the covariates. Most importantly, one
would expect the monotonicity property to be inherited by data-based estimates of the function.

Nevertheless, in the presence of multiple covariates, preserving the functional monotonicity,
from finite-sample estimates, will be much more challenging than in the case of a univariate
predictor. As will be seen, the observed directions of monotonicity from parametric or
nonparametric estimates may deviate significantly from the actual directions of monotonicity.
In statistical literature, while many useful asymptotic results have been established for the
consistency of parametric and nonparametric estimates, the results could not directly explain
the discrepancy between the observed directions of monotonicity and the actual directions of
monotonicity.

Fig. 1 illustrates the extent to which the observed functional monotonicity in two covariates
departs from the actual monotonicity. There, the response variable follows a bivariate additive
model in which the true regression function is monotone increasing in X1 and monotone
decreasing in X2. For random samples generated from this model, the component functions are
estimated by the local linear backfitting procedure. The asymptotic normality of the resulting
estimates has been shown in [22]. To evaluate whether the fitted curves correctly reveal the
actual isotonic directions, three types of dependence structure between covariates X1 and X2 are
examined. In the first case where X1 and X2 are dependent Gaussian as well as in the second case
where they are independent non-Gaussian, both the observed directions of monotonicity from the
function estimates agree with the actual monotone directions. Curiously, in the third case where
X1 and X2 follow a mixture of bivariate normal distributions, it is apparent that the estimated
curve with respect to X2 entirely violates the assumption of monotone decreasing. Fig. 1 makes
it evident that the structure and magnitude of dependence between covariates need to be taken
into account when a multi-dimensional model is employed.

The empirical evidence provided from the above third case is not pathological. Indeed,
similar phenomena arise from many popular multi-dimensional models, as will be exemplified
by extensive studies in Section 4. This is an interesting problem of both theoretical and practical
importance. However, addressing the issue raised above is a nontrivial task. In a parametric
multiple linear regression model, this phenomenon may be qualitatively attributed to collinearity.
Nonetheless, for non-parametric and semi-parametric modeling, little published information
exists to explain this empirical result. Hence a more careful, unified and quantitative study is
needed. We will investigate the issues of how the dependence affects monotonicity and how the
lack of monotonicity could be reduced in statistical analysis with multivariate covariates.

There is diverse and extensive literature addressing monotonicity. These include [8,5,17,24],
among many others. Most of the published results are confined to one or two dimensions and,
in those circumstances, the majority of the function estimates are monotone and only a small
fraction violate the isotonic requirement; after that, we develop refined procedures for improving
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Fig. 1. Component functions m1 and m2 in the additive model (4.1). Solid curve: true function; dashed curve: fitted
function via local linear backfitting procedure.

the original estimates and ensure that the modified estimates are monotone on its entire domain.
An implicit assumption underlying the above developments is the independence between all
covariates.

This paper differs from existing results in a number of ways. First, this paper discusses,
in particular for multi-dimensional parametric, non-parametric and semi-parametric models,
that due to dependence mechanism, some function estimates completely violate the monotone
requirement (as observed in the third case of Fig. 1). Thus it is impossible to locally modify
or improve the original estimates. Secondly, this paper intends to help provide a better
understanding of why this occurs and how to circumvent it. Stein’s Lemma ([21] Lemma 2),
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which is important in the theory of statistics and probability and in applications to capital asset
pricing models ([19, Sec. 4.5]; [2, p. 164]), will be used as a technical tool in our investigation.

The rest of the article is organized as follows. Section 2 extends the ordinary Stein’s Lemma
for mutually independent Gaussian random variables to jointly dependent Gaussian random
variables, and then to independent non-Gaussian random variables. An interesting connection to
support vector machine is mentioned there. Section 3 proposes a de-correlation transform which
deals with arbitrarily dependent random variables. Section 4 applies the results to commonly
used multi-dimensional models. Section 5 analyzes real data, and Section 6 ends the paper with
a brief concluding remark. Technical proofs are relegated to the Appendix.

2. Stein’s lemma and functional monotonicity

In this section, we demonstrate that under mild conditions, the isotonic directions of a multi-
dimensional function can be captured on a numerical scale. For convenience, we first introduce
some necessary notation. We consider a d-variate random vector, X = (X1, . . . , Xd)

T, where
the superscript T denotes transpose. Denote by µ = (µ1, . . . , µd)

T
= E(X) the mean vector

and by Γ = cov(X,X) the covariance matrix. Throughout the paper, we assume the existence
and finiteness of µ and the positive definiteness of Γ . Write I for an identity matrix. A function
m : Rd

→ R is said to be almost differentiable if there exists a function f : Rd
→ Rd such that,

for all z ∈ Rd , m(x + z) − m(x) =
∫ 1

0 zT f (x + tz)dt for almost all x = (x1, . . . , xd)
T
∈ Rd .

Then f is essentially unique; f is called the gradient of m and denoted by ∂m(x)/∂x =
(∂m(x)/∂x1, . . . , ∂m(x)/∂xd)

T. Define

θ = (θ1, . . . , θd)
T
= Γ−1 cov{X,m(X)}. (2.1)

Since a function m(x) is not necessarily monotone in all its variables, we consider, throughout
the paper, a partially monotone function m(x) which is monotone in a subset of its coordinates,
say in its first J components, where 1 ≤ J ≤ d and J is known. This arises naturally from multi-
dimensional modeling where the number d of covariates far exceeds the number J of monotone
directions. We would anticipate that an estimate of the unknown m(x) from noisy data inherits the
monotone directions in those J coordinates. To this end, we will first study the linkage between
the signs of θ and the isotonic directions of m(x).

The study on the linkage property is motivated from the celebrated Stein’s Lemma. For a
random vector X ∼ N (µ, I) consisting of mutually independent Gaussian random variables,
Stein’s Lemma states that

E{(X − µ)m(X)} = E

{
∂m(X)
∂X

}
, (2.2)

for an almost differentiable function m(x) with E{|∂m(X)/∂X j |} < ∞, j = 1, . . . , d . In this
case, since Γ = I and the left side of (2.2) can be rewritten as cov{X,m(X)}, we observe the
coincidence θ = E{∂m(X)/∂X}. Thus for any index j ∈ {1, . . . , J }, m(x) being monotone
increasing in x j implies ∂m(x)/∂x j ≥ 0 and therefore θ j ≥ 0; similarly, θ j ≤ 0 if m(x) is
monotone decreasing in x j . Hence, if the component variables of X have the distribution,

Case 0: both jointly Gaussian and mutually independent, (2.3)

then the first J signs of θ map the J monotone directions of m(x), with a positive sign
corresponding to the monotone increasing direction and a negative sign the monotone decreasing
direction.
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Thus, under the assumption (2.3), θ serves as a surrogate vector for characterizing the
monotone directions of m(x). This nice linkage property enjoyed by θ offers technical
convenience and practical guidance for studying functional monotonicity. A more careful study
is needed to investigate whether assumption (2.3) can be extended to other situations without
losing generality.

In realistic applications, covariates may be neither mutually independent nor normally
distributed, i.e., assumption (2.3) is too restrictive. To learn whether the linkage property between
the surrogate vector and the monotone directions continues to hold for covariates that are either
dependent or non-Gaussian, there is a need to generalize Stein’s Lemma to incorporate random
vectors X whose distribution deviates from (2.3). Three cases below are of primary interest to
the generalization and will be discussed in Sections 2.1, 2.2 and 3, respectively.

Case I: jointly Gaussian and mutually dependent (i.e., dropping the independence assumption
in (2.3)).

Case II: jointly non-Gaussian and mutually independent (i.e., dropping the normality
assumption in (2.3)).

Case III: jointly non-Gaussian and mutually dependent (i.e., dropping both the normality and
independence assumptions in (2.3)).

Remark 1. From a statistical point of view, θ is a vector of parameters. In practice, we do not
know its true value, but could estimate the desired quantity. Consider, for example, m(x) =
E(Y |X = x), whose applications are detailed in Section 4. For a random sample {(Xi , Yi )}

n
i=1

consisting of i.i.d. observation pairs, where Xi = (X1i , . . . , Xdi )
T, set µ̂ = (µ̂1, . . . , µ̂d)

T,
where µ̂ j =

∑n
i=1 X j i/n, j = 1, . . . , d . By the law of large numbers, a consistent estimator for

Γ is Γ̂ =
∑n

i=1(Xi − µ̂)(Xi − µ̂)T/(n− 1), and ĉov =
∑n

i=1(Xi − µ̂)Yi/(n− 1) is a consistent
estimator of cov{X,m(X)}. Hence a consistent estimator for θ in Cases 0, I, II and III can be
formed by

θ̂ = Γ̂−1 ĉov.

Clearly, θ̂ is easy to obtain and conveniently facilitates data analysis. Even if θ̂ is biased, we
could rely on signs of θ̂ to correctly identify the monotone directions, as long as the signs
are right. In contrast, the monotonicity of an unknown function m(x) is an inherent analytical
property, i.e., directly checking the direction of monotonicity from noisy data will be much
more challenging and complicated. This approach is similar in spirit to the support vector
machine [12], in which the corresponding classification rule is induced only by the sign of some
discriminating function, but not by its actual value.

2.1. Case I

For a trivariate normal random vector, a three-dimensional version of Stein’s Lemma can
be found in [7]. Here, the present paper concerns the linkage property for distributions of X
belonging to Case I. An example below lends numerical support for the desired linkage property.

Example 1. Consider a bivariate normal random vector X = (X1, X2)
T with mean vector zero

and covariance matrix given by

Γ =
[

1 ρ

ρ 1

]
, (2.4)
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where |ρ| < 1. For a function m(x1, x2) = x3
1 − x2, which is monotone increasing in x1 and

decreasing in x2, the signs of θ defined in (2.1) give the correct monotone directions in x1 and
x2, i.e., θ1 > 0 and θ2 < 0. To verify this, an explicit evaluation of θ can be obtained from the
derivations,

Γ−1
=

1

1− ρ2

[
1 −ρ

−ρ 1

]
,

cov{X1,m(X)} = 3− ρ, and cov{X2,m(X)} = E(X3
1 X2)− 1, in which E(X3

1 X2) = 3ρ, thus

cov{X,m(X)} =
[

3− ρ
3ρ − 1

]
.

By the definition of θ in (2.1),

θ =
1

1− ρ2

[
1 −ρ

−ρ 1

] [
3− ρ
3ρ − 1

]
=

[
3
−1

]
.

Theorem 1 formalizes the assertion that in Case I there is an explicit one-to-one
correspondence between the j th monotone direction of a multi-dimensional function and the j th
sign of the surrogate vector. For notational simplicity, we denote by X− j the part of X excluding
X j .

Theorem 1 (Case I). For an index j ∈ {1, . . . , J }, suppose that X j and X− j have a jointly
Gaussian distribution. For an almost differentiable function m : Rd

→ R, assume that for each
k = 1, . . . , d, ∂m(x)/∂xk exists almost everywhere fulfilling E{|∂m(X)/∂Xk |} < ∞. We have
that

(i) If m(x) is monotone increasing in the j th coordinate x j , then θ j ≥ 0; moreover, in this case,
θ j > 0 if and only if P{∂m(X)/∂X j > 0} > 0.

(ii) If m(x) is monotone decreasing in the j th coordinate x j , then θ j ≤ 0; moreover, in this case,
θ j < 0 if and only if P{∂m(X)/∂X j < 0} > 0.

2.2. Case II

Regarding Case II, Theorem 2 below demonstrates that the assumption of jointly Gaussian
distribution in Theorem 1 can indeed be replaced by independence. For j = 1, . . . , d, suppose
that X j takes values in the domain Ω j .

Theorem 2 (Case II). For an index j ∈ {1, . . . , J }, suppose that X j is independent of X− j .
Assume that m : Ω1 × · · · × Ωd → R is a measurable function. Assume that E{|m(X)|} < ∞
and E{|X j m(X)|} <∞. Define B j = E{(X j − µ j )m(X)|X− j }. We have that

(i) If m(x) is monotone increasing in the j th coordinate x j , then θ j ≥ 0; moreover, in this case,
θ j > 0 if and only if P(B j > 0) > 0.

(ii) If m(x) is monotone decreasing in the j th coordinate x j , then θ j ≤ 0; moreover, in this case,
θ j < 0 if and only if P(B j < 0) > 0.

Remark 2. For a univariate (d = 1) random variable X with expectation µ = E(X), following
the Tchebychef’s inequality ([10], p. 43 and 168) used in the proof of Theorem 2, we observe
that if m(x) is monotone increasing in x , then θ ≥ 0 (namely, cov{X,m(X)} ≥ 0); moreover,
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in this case, θ > 0 (namely, cov{X,m(X)} > 0) if and only if P{(X − µ)m(X) > 0} > 0.
Analogous results definitely hold for monotone decreasing functions. As such, the utility of the
surrogate vector θ is particularly reflected in applications to larger-dimensional models with two
or more explanatory variables.

A number of insights can be obtained from a comparison of Theorems 1 and 2. First,
the proof of Theorem 1 depends on the conventional form (2.2) of Stein’s Lemma, whereas
the proof of Theorem 2 does not use Stein’s Lemma. Second, in terms of the distributional
assumption, Theorem 1 requires joint normality of X j and X− j , whereas Theorem 2 demands
independence of X j and X− j , but does not require the existence of either their joint probability
density function or their marginal probability density functions. This relaxation is especially
useful for applications to non-Gaussian input variables, such as Bernoulli and Poisson variables.
Third, with respect to the smoothness assumption, Theorem 1 constrains the function m(x) to
be almost differentiable in all its arguments, even if m(x) is monotone in some of them but
is not monotone in the remaining arguments. It should be stressed that in some applications
verifying the almost differentiability of an unknown m is not easy. Indeed, this strong assumption
is removed from Theorem 2. Actually, by standard analysis arguments [20, p. 96], if m(x)
is monotone in x j ∈ Ω j , then m(x), when viewed as a univariate function of x j , can only
have countably many discontinuities (of jump type) in x j . Thus Theorem 2 avoids an explicit
smoothness assumption on m(x) with respect to the remaining arguments.

2.3. Case III

The most challenging case is Case III. The comparison in the preceding paragraph indicates
that Case II is fully adaptive to non-Gaussian distributions of covariates. This relaxation inspires
us to explore an extension of Theorem 2 to Case III. However, it is worth mentioning that
the proof of Theorem 2 depends critically on the validity of (A.8) (in the Appendix). Namely,
(A.8) may not be ensured if the independence assumption is substituted by an arbitrary structure
of dependence. To elaborate this point, Example 2 below illustrates the potential effects of
dependent covariates on the breakdown of (A.8). Hence, for covariates that are dependent,
the signs of the surrogate vector may fail to reveal the monotone directions. A more thorough
discussion of Case III will be given in Section 3.

Example 2. Consider dependent covariates (X1, X2)
T which follow a mixture of bivariate

normal distributions N {(a1, 1)T, I} and N {−(a1, 1)T, I} with equal mixing proportions.
Apparently, this joint distribution does not fall in either Case I or Case II. For a function
m(x1, x2) = exp(−x1)− x2, which decreases in both x1 and x2, it can be shown that for j = 1,
the left side of (A.8) is

B1 =
{e1/2−a1(a1 − 1)− a1 X2}φ(X2 − 1)− {e1/2+a1(a1 + 1)− a1 X2}φ(X2 + 1)

φ(X2 − 1)+ φ(X2 + 1)
,

whereas the right side of (A.8) equals

2−1
{e1/2−a1(a1 − 1)− e1/2+a1(a1 + 1)}.

Hence, (A.8) does not hold.
As a consequence, the explicit evaluation of θ follows directly from

Γ =
[

a2
1 + 1 a1
a1 2

]
and cov{X,m(X)} =

[
{e1/2−a1(a1 − 1)− e1/2+a1(a1 + 1)}/2− a1

{e1/2−a1 − e1/2+a1}/2− 2

]
.
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For a1 = 3, it is readily seen that θ1 < 0 but θ2 > 0. This indicates that the sign of θ2 does not
correctly mirror the monotone decreasing direction of m(x) in x2.

Interestingly, Stein’s Lemma has recently been generalized to the class of Elliptical
distributions, which includes the multivariate Gaussian, Student-t , Cauchy, symmetric stable and
many other distributions (see [6]). In [13,14], the generalization of Stein’s Lemma for bivariate
and multivariate Elliptical distributions are discussed, respectively. It remains unclear whether,
and under which assumptions, the linkage property can be extended to the broader class of
Elliptical distributions.

3. De-correlation transform for dependent random variables

In Case III, there are infinitely many varieties of dependence mechanism between covariates.
Though we do not intend to exhaust all possibilities, we will focus on cases of more direct
relevance to practical applications. Emphasis will be sequentially put on unspecified dependence,
un-correlation, and de-correlation.

In the meanwhile, for modeling and interpretation purposes, the structure of a multi-
dimensional function m(x) should be as flexible as possible, but not excessively arbitrary.
Interestingly, Theorem 3 shows that when m(x) is linearly associated with x, signs of the
surrogate vector θ continue to reveal the monotone directions, regardless of the dependence
mechanism of X.

Theorem 3 (Unspecified Dependence). Suppose that the covariance matrix Γ of a random
vector X = (X1, . . . , Xd)

T exists and is positive definite. If m(x) = β0 + βTx with parameters
β0 and β = (β1, . . . , βd)

T, then θ ≡ β. Thus the signs of θ invariably accord with the monotone
directions of m(x).

Theorems 4 and 5 below will remove the linearity relationship in Theorem 3. In particular,
Theorem 4 permits the partially non-linear association, whereas Theorem 5 further allows the
non-linear association in an additive manner.

Theorem 4 (Un-correlation). For an index j ∈ {1, . . . , J }, assume the conditions

(C1) X j is un-correlated with X− j ;
(C2) m : Ω1×· · ·×Ωd → R is a measurable function, and m(x) can be represented in the form,

m(x) = m j (x j ) + βT
− j x− j , in which the function m j (·) is unspecified, β− j is a vector of

d − 1 parameters and x− j is the part of x excluding x j .

Also, suppose E{|m j (X j )|} <∞ and E{|X j m j (X j )|} <∞. We have that

(i) If m(x) is monotone increasing in the j th coordinate x j , then θ j ≥ 0; moreover, in this case,
θ j > 0 if and only if P{(X j − µ j )m j (X j ) > 0} > 0.

(ii) If m(x) is monotone decreasing in the j th coordinate x j , then θ j ≤ 0; moreover, in this case,
θ j < 0 if and only if P{(X j − µ j )m j (X j ) < 0} > 0.

Before proceeding with Theorem 5, we will need the following definition.

Definition 1. A random variable X1 is called “de-correlated” with a ` × 1 random vector X2 if
X1 is un-correlated with any f (X2), where f : R`→ R is a measurable function.
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Table 1
Summary of Theorems 3 up to 5 in Case III with m(x) = m j (x j )+ M j (x− j )

m j (x j ) M j (x− j )

Linear Unspecified

linear Theorem 3: arbitrary dependence of X Theorem 5: X j de-correlated with X− j
unspecified Theorem 4: X j un-correlated with X− j Theorem 5: X j de-correlated with X− j

The condition of “de-correlated” is stronger than that of “un-correlated” assumed in
Theorem 4, but indeed weakens the assumption of independence in Theorem 2. Based on
this notion, Theorem 5 offers an extension of Theorem 2. It can be seen that major technical
arguments used in Theorem 2 go through to those in Theorem 5.

Theorem 5 (De-correlation). For an index j ∈ {1, . . . , J }, assume the conditions

(D1) X j is de-correlated with X− j ;
(D2) m : Ω1×· · ·×Ωd → R is a measurable function, and m(x) can be represented in the form,

m(x) = m j (x j )+ M j (x− j ), in which both functions m j (·) and M j (·) are unspecified and
x− j is the part of x excluding x j .

Also, suppose E{|m j (X j )|} <∞ and E{|X j m j (X j )|} <∞. We have that

(i) If m(x) is monotone increasing in the j th coordinate x j , then θ j ≥ 0; moreover, in this case,
θ j > 0 if and only if P{(X j − µ j )m j (X j ) > 0} > 0.

(ii) If m(x) is monotone decreasing in the j th coordinate x j , then θ j ≤ 0; moreover, in this case,
θ j < 0 if and only if P{(X j − µ j )m j (X j ) < 0} > 0.

Is assumption (D1) purely for the ease of technical proofs or practically unrealistic to be
achieved? To answer this question, we notice the fact that for any random variable X1 and any
random vector X2, if E(|X1|) <∞, then a transformed variable defined by

X1|2 = X1 − E(X1|X2),

is un-correlated with not only any linear function of X2 but also any measurable function of X2.
Moreover, if X2 is univariate, then the projection part, E(X1|X2 = x2), can easily be estimated
by a one-dimensional nonparametric regression technique, such as smoothing splines, regression
splines, and the local polynomial regression method. Likewise, the smoothing parameter can
simply be chosen to minimize the cross-validation criterion. Thus, the “de-correlation” procedure
is applicable to achieve both assumption (C1) in Theorem 4 and assumption (D1) in Theorem 5.

Assumption (D2) in Theorem 5 is also very broad, including modeling functions arising from
the additive regression model, semi-parametric partially linear model, generalized linear model,
and many others. These models relax the stringent assumption of linearity in Theorem 3, which
restricts applications to the linear regression model, and they will be addressed in detail in the
next section.

Before ending this section, Table 1 summarizes the domains of applications of Theorems 3–5.

4. Applications to estimating monotone functions in multi-dimensional models

Theorems 1–5 of the preceding Sections 2 and 3 discuss the relation between the signs of θ

and the monotone directions of m(x). In practice, m(x) is unknown and needs to be estimated.
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Table 2
Percentage of samples from the additive model (4.1) with correct direction of monotonicity

Sample size Case 1 Case 2 Case 3

200 96.75% 100% 25.50%
400 98.25% 100% 26.75%

Let m̂(x) denote a data-based estimate of m(x), using a random sample {(Xi , Yi )}
n
i=1. In this

section, we will apply the general results of Theorems 1–5 to m(x) = E(Y |X = x), the mean
regression function of a response variable Y on covariates X, and will investigate the discrepancy
between the observed monotone directions of m̂(x) and the actual monotone directions of m(x).

4.1. Nonparametric estimation of monotone functions in additive regression model

Estimating a multi-dimensional regression function is a challenging task. To overcome the
“curse of dimensionality”, additive modeling has been proposed as an efficient technique [11].
An additive regression model assumes that Y = m(X) + ε, where E(ε|X = x) = 0, and the
regression function is a sum of smooth functions of component variables, i.e.,

m(x) = α + m1(x1)+ · · · + md(xd),

for a parameter α and univariate functions m1, . . . ,md . To ensure identifiability, the conditions
E{m j (X j )} = 0, j = 1, . . . , d, are usually imposed. Since the change in m(x) with respect to
x j is precisely the change in m j (x j ) with respect to x j , the monotone direction of m(x) in x j is
exactly the same as that of the j th component function m j (x j ) in x j .

As an illustration, we revisit Fig. 1 in Section 1. Random samples of (X1, X2, Y ) are generated
according to a bivariate additive model,

Y = α + m1(X1)+ m2(X2)+ ε, (4.1)

with α = 0, m1(x1) = x3
1 − E(X3

1) and m2(x2) = −{x2 − E(X2)}. Clearly, m(x) has
two monotone directions, increasing in x1 and decreasing in x2. The error ε ∼ N (0, σ 2) is
independent of X1 and X2. The distributions of X1 and X2 are examined in three cases, and in
each case the magnitude of σ is chosen so that the signal-to-noise ratio (SNR) is about 5. Here
SNR is defined as var{E(Y |X)}/E{var(Y |X)}.

Case 1: (X1, X2)
T follows a bivariate normal distribution N (0,Γ ), with Γ given by (2.4) where

ρ = .7; σ = 1.5.
Case 2: X1 and X2 are independent where X1 ∼ Uniform(−1.8, 1.8) and X2 ∼

Uniform(0, 1.5); σ = 1.
Case 3: (X1, X2)

T follows a mixture of bivariate normal distributions N {(a1, 1)T, I} and
N {−(a1, 1)T, I} with equal mixing proportions and a1 = −3; σ = 22.

Fig. 1 presents the fitted curves via local-linear backfitting procedure. The data-driven choice
of bandwidth in the backfitting iterations is selected by the cross-validation criterion. Throughout
the paper, the Epanechnikov kernel is used. In Cases 1–2, direct calculations give θ1 > 0 and
θ2 < 0. Theorems 1 and 2 guarantee that the monotone directions of m(x) agree with the
signs of θ . The fitted curves indeed follow the correct monotone directions. In Case 3, explicit
calculations give θ1 > 0 but θ2 > 0. However, we do not have theoretical results concluding
that the monotone directions of m(x) concur with the signs of θ . Actually, the fitted curve for
m1(x1) produces a correct monotone direction in x1, but the fitted curve for m2(x2) produces an
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incorrect monotone direction in x2. To assess whether the observed discrepancy is likely to be
due to chance fluctuations, we repeat the simulations for 400 times. Only if both fitted curves
in one simulation correctly reveal the monotone directions did we report a correct direction
of monotonicity. The percentage of samples with correct direction of monotonicity is given in
Table 2. Table 2 lends further support that for X with dependent covariates such as in Case 3, the
nonparametric function estimates for the additive model, which is commonly used in practice,
may produce incorrect monotone directions, with a non-ignorable high probability (around 75%).
This undesirable result could hardly be eased with an increase in sample size (from 200 to 400),
in which case the performance of function estimates will enhance. This in turn indicates that
the discrepancy between the actual monotone directions and the observed monotone directions
is mainly caused by the dependence of covariates, and is negligibly influenced by the bias of
nonparametric function estimates.

The phenomenon observed from Case 3 is not unique to the example given there. Similar
examples could be constructed. For instance, consider X1 ∼ Uniform(−1, 1), X2 = X2

1 ,
m1(x1) = exp(−x1)− E{exp(−X1)}, m2(x2) = −.1{x3

2 − E(X3
2)}, and σ = .3. Clearly, m(x) is

monotone decreasing in both x1 and x2. The local linear backfitting produces a correct monotone
direction of m(x) in x1, but an incorrect monotone direction in x2. This also coincides with the
explicit calculations θ1 < 0 and θ2 > 0. For constructions of other types of dependent covariates,
we refer to [4,15] for many interesting and insightful results on dependence structures of random
variables.

4.2. Parametric estimation in semi-parametric partially linear model

In the semi-parametric partially linear model with the covariate vector X = (U, Z1, . . . , Zq)
T,

the regression function at (u, z) takes the form,

m(u, z) = a(u)+ zTβ,

where u ∈ R, z = (z1, . . . , zq)
T, β = (β1, . . . , βq)

T is a vector of unknown parameters,
and the unknown smooth function a(u) nonparametrically describes the effect of U on the
mean response. For detailed information, we refer in particular to [9]. Often, interest centers
on the statistical estimation and inference for the parametric component β. It is easy to see that
∂m(u, z)/∂u = a′(u) if a(u) is differentiable, and that ∂m(u, z)/∂z j = β j , j = 1, . . . , q .
Thus m(u, z) is monotone in each of the arguments z1, . . . , zq , with directions of monotonicity
completely determined by the signs of β.

For the purpose of illustration, we consider a partially linear model

Y = a(U )+ β1 Z1 + β2 Z2 + ε, (4.2)

consisting of three covariates, where a(u) = u3, β1 = −1, β2 = 1, (U, Z1) follows the joint
distribution specified in three cases of Section 4.1, and Z2 ∼ Uniform(0, 1) is independent of
(U, Z1). The error ε ∼ N (0, σ 2) is independent of (U, Z1, Z2), with the same choice of σ as
specified in Section 4.1. Fig. 2 displays the local linear estimate of a(u) and the profile least-
squares estimate of β. The selection of bandwidth used in estimating a(u) applies the method
in [23]. In Cases 1–2, the signs of the estimates of β are correct. Nonetheless, in Case 3, we
observe incorrect signs of the estimates of β. We run the simulation 400 times, and Table 3
summarizes the proportions of times both the fitted curves and parametric estimates correctly
reveal the monotone directions with respect to U , Z1 and Z2. The implication further supports
our analysis in Section 4.1.
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Fig. 2. Nonparametric and parametric components in the partially linear model (4.2). In the left column, solid curves
denote true functions and dashed curves denote the fitted functions. In the right column, circles denote the true values of
β1 and β2 (connected by solid lines), and stars denote the estimated values of β1 and β2 (connected by dashed lines).

Table 3
Percentage of samples from the partially linear model (4.2) with correct direction of monotonicity

Sample size Case 1 Case 2 Case 3

200 99.5% 100% 41.75%
400 100% 100% 53.25%

4.3. Parametric estimation in generalized linear model

The generalized linear model (GLM) is commonly used for the response variable Y which,
conditional on the covariate vector X = (X1, . . . , Xd)

T, has a distribution in the exponential
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Table 4
Percentage of samples from the generalized linear model (4.4) with correct direction of monotonicity

Response variable Sample size Case 1 Case 2 Case 3

Gaussian 200 100% 100% 43.5%
400 100% 100% 54.5%

family, taking the form

fY |X(y; θ(x)) = exp[{yθ(x)− b(θ(x))}/a(ψ)+ c(y, ψ)],

for some known functions a(·), b(·) and c(·, ·), where θ(x) is called a canonical parameter and
ψ is called a dispersion parameter, respectively. It is well known that m(x) ≡ E(Y |X = x) =
b′(θ(x)) and σ 2(x) ≡ var(Y |X = x) = a(ψ)b′′(θ(x)). See [18,16]. The GLM assumes that the
transformation of the regression function, via a link function g, can be linearly modeled by

g(m(x)) = β0 + β1h1(x1)+ · · · + βd hd(xd), (4.3)

for unknown parameters (β0, β1, . . . , βd) and known monotone functions h j , j = 1, . . . , d.
When g is invertible, (4.3) is equivalent to m(x) = g−1(β0+

∑d
j=1 β j h j (x j )). For any monotonic

differentiable link function g, it can be shown that

∂m(x)
∂x j

=
β j h′j (x j )

g′(m(x))
, j = 1, . . . , d,

and hence the monotone direction of m(x) in x j is exclusively determined by the sign of the
coefficient β j . For instance, if b′(·) is invertible and b′′(·) is bounded away from 0 and∞, then
for the routinely used canonical link, g(·) = (b′)−1(·) (resulting in g(m(x)) = θ(x)), it follows
that

g′(m(x)) =
1

b′′(θ(x))
> 0.

Examples of the canonical links include g(m) = m, g(m) = ln{m/(1 − m)} and g(m) = ln(m)
for Gaussian, Bernoulli and Poisson responses, respectively, and in all cases we see that g′(m) >
0.

To see whether the monotone directions of the estimates m̂(x) in the GLM are correct, we first
generate 400 sets of random samples from a Gaussian regression model,

Y = β0 + β1 X3
1 + β2 X2 + β3 X3 + ε, (4.4)

for Gaussian responses. The variables (X1, X2, X3, ε) have the joint distribution identical to that
of (U, Z1, Z2, ε) specified in the three cases of Section 4.2, and the true regression parameters are
set to be (β0, β1, β2, β3) = (0, 1,−1, 1). Table 4 summarizes the proportions of times (among
400 replicated simulations) the signs of the estimated values of (β1, β2, β3) completely match the
signs of the true values of (β1, β2, β3). The non-monotonicity phenomenon continues to occur
in Case 3 associated with the generalized linear model.

Next, we conduct a similar simulation study for Bernoulli responses generated from a logistic
regression model,

ln
{

m(X)
1− m(X)

}
= β0 + β1 exp(−X1)+ β2 X3

2 + β3 X3,
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Fig. 3. Additive regression model for ln(wage) on age and education. The top panel corresponds to the female group,
whereas the bottom panel corresponds to the male group.

with true parameters (β0, β1, β2, β3) = (−3.2679, 1,−.1, 3.5496), two dependent covariates
X1 ∼ Uniform(−1, 1) and X2 = X2

1 . The third covariate X3 ∼ Uniform(0, 1) is independent
of (X1, X2). This example is designed in a similar fashion to the one discussed at the end
of Section 4.1. Among 400 replicated simulations, the proportions of times the signs of the
estimated values of (β1, β2, β3) completely match the signs of the true values of (β1, β2, β3)

are .5975 for n = 200, and .5800 for n = 400, respectively. The non-monotonicity phenomenon
continues to be evident.

5. Real data application

5.1. Example 1

We consider the data set studied in [17]. The data consist of 2447 observations on three
variables, ln (wage), age and education, for women. Of interest is to learn how wages vary
with years of age and years of education. The scatter plot in the top left corner of Fig. 3
clearly indicates that variables X1 = age and X2 = education can practically be treated as
independent. Although the distributions of X1 and X2 are unknown and deviate significantly
from normality, the signs of the estimator θ̂ associated with X = (X1, X2)

T reveal that θ̂1 > 0
and θ̂2 > 0. According to Theorem 2, we would expect to find an isotonic increasing regression
function of Y = ln(wage) in X1 as well as in X2. Furthermore, to better distinguish the
separate effects of covariates, we fit an additive model for regressing Y on X1 and X2. The fitted
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Fig. 4. Additive regression model for the bank salary data. Top panel: pairwise scatter plots of X1, X2 and X3. Middle
panel: nonparametric estimates of the component functions. Bottom panel: nonparametric estimates of the component
functions, with X1 replaced by the de-correlated variable X1|2.

component functions via local-linear backfitting procedure indeed exhibit the overall upward
trend in age and education. The observed violation of monotonicity mainly occurs at boundary
sections, where the “boundary bias” problem due to sparseness of data points is well known
in nonparametric regression estimation. Similar plots for men are shown in the bottom panel
of Fig. 3. Our evaluation, based on the signs of θ̂ and nonparametric fits, lends support to the
predicted result in theoretical and empirical literature in socio-economical studies.

5.2. Example 2

We analyze an employee dataset (Example 11.3 of [1]) of the Fifth National Bank of
Springfield, based on year 1995 data. For each of its 208 employees, the dataset consists of
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eight variables, including

• YrHired: year that an employee was hired;
• YrBorn: year that an employee was born;
• YrsPrior: years of work experience at another bank before working at the Fifth National bank;
• Salary: current annual salary in thousands of dollars.

To explain variation in salary, we fit an additive model for Y = ln(Salary) on X1 = Age,
X2 = YrsExper and X3 = YrsPrior, where YrsExper is years of experience with Fifth
National Bank and is calculated as 95 minus YrHired. The top panel of Fig. 4 depicts pairwise
scatter plots of the three explanatory variables. The variables X1 and X2 appear to be highly
linearly correlated. The observation with YrsPrior greater than 15 is deleted in our data analysis.
The central panel of Fig. 4 displays the fitted component functions via local-linear backfitting
procedure. The fitted component curve of Age presents a monotone descending pattern, which
would seem to be a most unlikely attribute of the salary/age relation. This phenomenon is
accounted for by the dependence between X1 and X2. The bottom panel gives the nonparametric
estimates of the component functions in the additive model, with X1 replaced by the de-correlated
variable X1|2 introduced in Section 3. Clearly, the profile of the estimate of m1 removes the
unexpected decreasing trend, and the de-correlation transform has negligible impact on the
estimates of m2 and m3.

6. Concluding remarks

In many fields of applications, monotone association in the functional mapping of effects of
partial covariates on the response variable needs to be preserved in building multi-dimensional
models.

In this paper, we introduce a surrogate vector θ and show that in Case I and Case II, the signs
of θ regulate the actual directions of monotonicity. For practical purposes, θ can be consistently
estimated by θ̂ and the signs of θ̂ facilitates our understanding of whether a proposed multi-
dimensional model well reflects the expected directions of monotonicity.

To incorporate covariates in Case III that are jointly non-Gaussian and mutually dependent,
we further examine three types of multi-dimensional models which are representative and also
easily interpretable. We show that under relaxed assumptions on dependence, the above linkage
property between θ and monotone directions continue to hold. Furthermore, a de-correlation
transform is proposed to achieve the relaxed assumption on dependence. The resulting procedure
enhances modeling interpretability, with little loss of modeling efficiency.
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Appendix. Proofs of main results

A.1. Proof of Theorem 1

From the assumption, we write X ∼ N (µ,Γ ). Using the equivalent representation X =
µ+ Γ 1/2Z, where Z ∼ N (0, I), it follows that
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cov{X,m(X)} = cov{µ+ Γ 1/2Z,m(X)}

= Γ 1/2cov{Z,m(X)}. (A.1)

For a standard multivariate normal random vector Z, an application of Stein’s Lemma ([21,
Lemma 2]; also see (2.2)) implies that

cov{Z,m(X)} = E

{
∂m(X)
∂Z

}
. (A.2)

For the right side of (A.2), we further deduce that

E

{
∂m(X)
∂Z

}
= E

{
∂X
∂Z

∂m(X)
∂X

}
= Γ 1/2 E

{
∂m(X)
∂X

}
. (A.3)

Hence the combination of (A.1)–(A.3) yields

Γ−1cov{X,m(X)} = E

{
∂m(X)
∂X

}
,

namely, θ = E{∂m(X)/∂X}. Define D j = ∂m(X)/∂X j , which gives

θ j = E(D j ). (A.4)

Thus if m(x) is monotone increasing with x j , then D j ≥ 0 a.e. and thus θ j ≥ 0. Moreover,
since D j is a non-negative random variable, it can be shown that P(D j > 0) > 0 is equivalent to
E(D j ) > 0. In addition, (A.4) implies the equivalence between the strict inequalities E(D j ) > 0
and θ j > 0. Similar arguments can be obtained when m(x) is monotone decreasing with x j . This
completes the proof.

A.2. Proof of Theorem 2

In our proof, we shall need the following definition.

Definition 2. Two functions F and G are called “similarly ordered” if {F(x) − F(y)}{G(x) −
G(y)} ≥ 0 for all x in the domain of F and all y in the domain of G.

The notion of “similarly ordered” means that the corresponding functions are monotone in the
same direction.

We now prove Theorem 2. Without loss of generality, we write X = (X j ,XT
− j )

T and

correspondingly θ = (θ j , θ
T
− j )

T. If X j is independent of X− j , then the matrix Γ in (2.1) reduces
to the form,

Γ =
[

var(X j ) 0T

0 cov(X− j ,X− j )

]
, (A.5)

where 0 = (0, . . . , 0)T, and by definition we can write

θ j = {var(X j )}
−1cov{X j ,m(X)}. (A.6)

Thus, the sign of θ j equals the sign of cov{X j ,m(X)}.
It follows that

cov{X j ,m(X)} = E{(X j − µ j )m(X)} = E(B j ). (A.7)
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Thus, we only need to discuss the sign of B j in (A.7). Since X j is independent of X− j , it follows
from [3, p. 92] that the equality,

B j = [E{(X j − µ j )m(X j , x− j )}]|x− j=X− j , (A.8)

holds with probability 1. This is to say that X− j , which is a random sub-vector of B j , can simply
be treated as a deterministic sub-vector.

We only prove result (i), but result (ii) can be shown similarly. Assume that m(x) is monotone
increasing with x j . On the right-side of (A.8), for any fixed x− j , it is easy to verify that x j − µ j
and m(x j , x− j ), as univariate functions of x j , are “similarly ordered”. By the Tchebychef’s
inequality ([10], p. 43 and 168), we observe that for any fixed x− j ,

E{(X j − µ j )m(X j , x− j )} ≥ E(X j − µ j ) E{m(X j , x− j )} = 0. (A.9)

It follows from (A.8) and (A.9) that B j ≥ 0 a.e. Thus E(B j ) ≥ 0. This combined with (A.6) and
(A.7) leads to θ j ≥ 0.

We now study conditions for the strict inequality, θ j > 0. For a non-negative random variable
B j , it can be shown that P(B j > 0) > 0 is equivalent to E(B j ) > 0 which, according to (A.6)
and (A.7), is equivalent to θ j > 0. The proof is completed. �

A.3. Proof of Theorem 3

Since ∂m(x)/∂x = β for a linear function m(x), the monotone direction of m(x) with respect
to x j is completely determined by the sign of β j . Furthermore, it is straightforward to see that

cov{X,m(X)} = cov(X,βTX) = cov(X,X)β = Γβ,

thus by definition,

θ = Γ−1Γβ = β.

This completes the proof.

A.4. Proof of Theorem 4

Condition (C1) implies that the matrix Γ in (2.1) reduces to the form (A.5) and (A.6) continues
to hold. Thus, the sign of θ j equals the sign of cov{X j ,m(X)}. It follows immediately that

cov{X j ,m(X)} = cov{X j ,m j (X j )} + cov(X j ,β
T
− j X− j )

= cov{X j ,m j (X j )},

where the first equality is due to condition (C2) and the second equality is due to condition (C1).
Hence, the sign of θ j equals the sign of cov{X j ,m j (X j )}.

We only show result (i), but result (ii) can be proved similarly. If m(x) is monotone
increasing with the j th coordinate x j , then this is equivalent to say, from assumption (C2),
that m j (x j ) is monotone increasing with x j . In this univariate case, it follows from Remark 2
that cov{X j ,m j (X j )} ≥ 0; moreover, in this case, cov{X j ,m j (X j )} > 0 if and only if
P{(X j − µ j )m j (X j ) > 0} > 0. The proof is completed.
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A.5. Proof of Theorem 5

Condition (D1) implies that X j is un-correlated with X− j . Again, the matrix Γ in (2.1)
reduces to the form (A.5) and (A.6) continues to hold. Thus, the sign of θ j equals the sign of
cov{X j ,m(X)}. It follows immediately that

cov{X j ,m(X)} = cov{X j ,m j (X j )} + cov{X j ,M j (X− j )}

= cov{X j ,m j (X j )},

where the first equality is due to condition (D2) and the second equality is due to condition (D1).
Hence, the sign of θ j equals the sign of cov{X j ,m j (X j )}.

The rest of the proof resembles the arguments used in Theorem 4 and is omitted. The proof is
completed.
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