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In this paper, we develop a simple procedure for goodness-of-fit test. One feature of its construction is the use of
‘‘binning’’ transform of the sample observations. This enables us to define suitably a design variable and a
response variable and they are shown to follow asymptotically a nonparametric regression model, under which
the regression function corresponds to the population density function. As a result, the problem of testing density
is formulated as assessing the parametric fits of a regression function against its nonparametric alternatives. Many
nonparametric tests based on curve estimation technique could be incorporated, and we shall extend here the tests
(Fan et al., 2001; Zhang, 2001) based on local polynomial smoother combined with nonparametric likelihood-
ratio. The resulting procedure is capable of testing not only the conventional simple null hypotheses, but also
certain types of composite null hypotheses. Simulation studies illustrate the power of this procedure.
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1 INTRODUCTION

For a given set of observations X1; . . . ;Xn from a distribution with a continuous distribution

function F, one important task is directed at developing procedures that are useful for drawing

statistical inferences about the underlying population. Namely, one wishes to test

FðxÞ ¼ F0ðxÞ, where F0ðxÞ denotes the hypothetical distribution. For a simple null hypothesis

where the form of F0ðxÞ is completely specified, such as uniformity or normality, many exist-

ing tests could be employed in a straightforward manner. One could also carry out tests based

on the transformed sample F0ðX1Þ; . . . ;F0ðXnÞ, leading to tests for uniformity on the interval

½0; 1�. However under many of the practical situations, only partial information about F0

could be specified, in other words, the null hypothesis about F0 is composite. Indeed, only

a few proposals have been made for handling extensions to cover the case of composite

null hypotheses.

There is a long list of literature on goodness-of-fit tests. This includes Pearson’s Chi-square

test, based on the L2 distance between the null density and the histogram density estimator;

Kolmogorov–Smirnov (KS) test and Cramér–Von Mises (CVM) test, based on the empirical
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distribution function; and Neyman’s (1937) smooth test, based on the exponential family

assumption of the underlying distribution. The power of Pearson’s Chi-square test depends

heavily on the number of histogram cells. Data driven versions of Pearson’s Chi-square

test for uniformity were studied in Bodgan (1995). The KS and CVM tests suffer from

low power against alternatives containing high frequency components (Fan, 1996).

Neyman’s smooth test requires selecting the number of components, which acts as a smooth-

ing parameter. Further development along this line focuses on seeking the number of com-

ponents in a data-driven manner, which yields the adaptive Neyman’s tests for uniformity

(Ledwina, 1994; Kallenberg and Ledwina, 1995; Fan, 1996).

Kernel-based density estimation (KDE) introduced by Rosenblatt (1956) has also attracted

several research efforts in tests for goodness-of-fit. As in the Neyman’s smooth test, it is

assumed implicitly that F possesses a probability density f, and therefore the original testing

problem becomes equivalent to checking

H0: f ¼ f0 against H1: f 6¼ f0; ð1:1Þ

where f0 corresponds to the probability density of F0. Bickel and Rosenblatt (1973) proposed

a test statistic based on the weighted L2 distance between the KDE of f and its expected value

computed under the null hypothesis, in which f0 is fully specified. A test based on the deri-

vative of a KDE was considered in Huang (1997). One drawback of these kernel-based tests

arises from the ‘‘boundary bias’’ problem well-known in kernel density estimation. To

improve the performance of KDE, boundary kernel functions (Gasser and Müller, 1979)

may be employed; however the resulting test procedure becomes complicated in both imple-

mentation and asymptotic analysis. Furthermore, in carrying out the tests, the tuning method

for bandwidth parameter in KDE is not available as yet.

In this paper, we take a nonparametric regression model approach to the identification of a

density function. With a ‘‘binning’’ transform defined in Section 2, we will see that a density

function can be regarded as a nonparametric regression function. As a result, many tests con-

structed from nonparametric smoothing techniques could be applied, such as the kernel

regression in Azzalini et al. (1989), Azzalini and Bowman (1993), and Härdle and

Mammen (1993), among others. In this paper, we mainly concentrate on the tests developed

by local polynomial smoother combined with ‘‘generalized likelihood-ratio’’ (Fan et al.,

2001) and with ‘‘multi-scale generalized likelihood-ratio’’ (Zhang, 2001), abbreviated as

GLR test and MGLR test respectively. The purpose of the present paper intends to address

three questions: how to test a composite null hypothesis, how to ameliorate boundary bias

effects, and how to select smoothing parameter? For the first question, we shall see that

our procedure benefits from the appealing feature that the null distribution of the GLR-

type of tests based on local polynomial smoother is asymptotically free of the nuisance para-

meters, when the regression curve admits a polynomial structure. With regard to the second

issue, gains can also be made from the superior behaviour of local polynomial approach at

the edges of the sample space as compared to the kernel regression counterpart. Moreover,

we could use the data-dependent optimal choice of smoothing parameter proposed in Zhang

(2001). In this way, one could carry out simply the (M)GLR test for a density function.

Computationally, the proposed new test is very simple to implement. The remaining key pro-

blem lies in bridging connections between density estimation and nonparametric regression,

for which the ‘‘binning’’ strategy proves to be quite useful.

A similar binning idea was also considered in the adaptive-Neyman test (ANT) of Fan

(1996), from which our testing procedure is essentially different. The goal of ANT is to

assess the appropriateness of zero mean of a multivariate normal random vector, based on

an orthogonal (Fourier) transform of the binned response vector, therefore no regression

model or regression function will be incorporated in ANT.
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The remainder of the paper is organized as follows. Section 2 contains the description of

the binning transform and the proposed (M)GLR test procedure. Applications to goodness-

of-fit tests for simple and composite null hypotheses are presented in Section 3, while in

Section 4 we demonstrate the simulation studies on the powers of our proposed tests, in com-

parison to several other existing procedures. Concluding remarks are given in Section 5.

2 BACKGROUND

2.1 Binning Transform

We now illustrate how the binning procedure operates in goodness-of-fit. Assume that the

true density function f ðxÞ has a bounded support, I ¼ ½0; 1�, without loss of generality.

Partition I into N subintervals fI j; j ¼ 1; . . . ;Ng, of equal length D ¼ 1=N for simplicity.

Let xj be the center point of I j. Denote by nj the number of observations from the sample

fXig
n
i¼1 falling into the jth bin, namely, nj ¼

Pn
i¼1 I ðXi 2 I jÞ, where I ð�Þ represents the indi-

cator function. Then it follows trivially that

ðn1; . . . ; nN Þ
T
� Multinomialðn; p1; . . . ; pN Þ; where pj ¼

ð
I j

f ðxÞ dx; j ¼ 1; . . . ;N :

Provided that N gets sufficiently large and hence the partition is finer, we could assume that

the approximation, pj � f ðxjÞD, holds with good accuracy. Setting yj ¼ ðnDÞ�1nj will thus

result in

EðyjÞ ¼ ðnDÞ�1npj � f ðxjÞ;

covðyj; ykÞ ¼
ðnDÞ�2npjð1 � pjÞ � ðnDÞ�1f ðxjÞ; if j ¼ k;

�ðnDÞ�2npjpk � �n�1f ðxjÞf ðxkÞ; if j 6¼ k:

(

Now we take xj as a predictor variable, and yj a response variable, respectively. Then the

bivariate data fðxj; yjÞg
N
j¼1 can be reasonably assumed to follow a nonparametric regression

model represented by

yj ¼ m1ðxjÞ þ s1ðxjÞej; j ¼ 1; . . . ;N ; ð2:1Þ

where the regression function and variance function are expressed as

m1ðxÞ ¼ f ðxÞ; and s2
1ðxÞ ¼ ðnDÞ�1f ðxÞ; ð2:2Þ

whereas the errors ej have zero mean, unit variance and are weakly-dependent. In this man-

ner, the binning procedure transforms the original goodness-of-fit problem (1.1) into asses-

sing the functional form of the smooth regression function under (2.1), the nonparametric

regression model. If N is chosen in a way that n=N ! 1, then (2.2) suggests readily that

regression model (2.1) possesses very high values of signal to noise ratio, and thus

the regression function f can be estimated and identified efficiently.

2.2 Test Statistics

For a nonparametric regression model with homoscedastic errors, many diagnostic tests for

assessing the regression function have been developed based on nonparametric curve fitting

technique, such as kernel smoothing, local polynomial regression (Wand and Jones, 1995),

and smoothing spline (Eubank, 1999). It should be stressed that, in principle, it is possible
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to integrate any of these tests into our present setup (2.1), in the event of constant variance

function, which is equivalent to testing uniformity. However, for testing the null other than

uniformity, application of this procedure will encounter difficulty. For this reason, we shall

extend the idea of ‘‘generalized likelihood ratio’’ (Fan et al., 2001) test, which possesses

the desirable property of adaptation to heteroscedasticity.

To briefly describe the GLR test, let us begin by considering a general set-up of nonpara-

metric regression model,

Yi ¼ mðXiÞ þ sðXiÞei; i ¼ 1; . . . ; n; ð2:3Þ

with independent observations fðXi; YiÞg
n
i¼1, of the predictor variable X and the response vari-

able Y. Assume that X has a density function pðxÞ, with a bounded support O. The errors in

(2.3) are assumed to fulfill EðeijXiÞ ¼ 0 and varðeijXiÞ ¼ 1. Call mðxÞ ¼ EðY jX ¼ xÞ, and

s2ðxÞ ¼ varðY jX ¼ xÞ the regression function and variance function, respectively. In particu-

lar, when the weak correlation structure of errors in model (2.1) is negligible, model (2.1) can

be treated as a special case of (2.3). Back to model (2.3), suppose that we wish to test a

hypothesis, asserting that

H0: mðxÞ ¼ a0 þ a1xþ � � � þ akxk ; ð2:4Þ

with the vector of unknown parameters a ¼ ða0; a1; . . . ; akÞ
T. Under the null assumption

above, the parameters can be estimated consistently, for instance, by least squares estimates.

Call them âa0; âa1; . . . ; âak . When the alternative holds, the unknown regression curve can be

fitted nonparametrically. For example, the qth degree local polynomial estimate m̂mhð�Þ, as

applied to estimate mð�Þ at a fitting point x0, corresponds to the first component of the coeffi-

cient vector ðb0; b1; . . . ; bqÞ
T that minimizes

Pn
i¼1fYi � b0 � b1ðXi � x0Þ � � � � � bq

ðXi � x0Þ
q
g2KfðXi � x0Þ=hg, where Kð�Þ and h > 0 are referred to as kernel function and

bandwidth parameter respectively. The GLR statistic based on model (2.3) is constructed

in terms of

lnðhÞ ¼
n

2
log

RSS0

RSS1ðhÞ
; ð2:5Þ

where RSS0 ¼
Pn

i¼1fYi � âa0 � âa1Xi � � � � � âakX k
i g

2, and RSS1ðhÞ ¼
Pn

i¼1fYi � m̂mhðXiÞg
2.

Certainly, in the event that a at (2.4) is given, its true value will be used for obtaining RSS0.

The finite sample performance of the GLR statistic and the effective data-based rule for

bandwidth selection have been studied in Zhang (2001). Furthermore, based on the power

considerations, a ‘‘multi-scale generalized likelihood ratio’’ (MGLR) statistic was proposed

in the same paper. Under mild regularity conditions, it was shown there that, when the

null hypothesis (2.4) holds and q � k,

max
1�j�J

rKð
Ð
s2ðxÞ dx=

Ð
s4ðxÞ dxÞEfs2ðX ÞglnðhjÞ � ½rKcKðf

Ð
s2ðxÞ dxg2=

Ð
s4ðxÞ dxÞh�1

j

�ðrKK
2
ð0Þ=2nh2

j Þð
Ð
s2ðxÞ dx=

Ð
s4ðxÞ dxÞ

Ð
ðs2ðxÞ=pðxÞÞ dx�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rKcKðf
Ð
s2ðxÞ dxg2=

Ð
s4ðxÞ dxÞh�1

j

q
!
L

max
1�j�J

Zj; ð2:6Þ

where!
L

denotes converges in distribution. In this result,K denotes the equivalent kernel func-

tion induced from the qth degree local polynomial fit (refer to Appendix 1 for the expression of

K), with cK ¼ Kð0Þ � 2�1K � Kð0Þ, and rK ¼ ðKð0Þ � 2�1K � Kð0ÞÞ=ð
Ð
fKðtÞ � 2�1K�

KðtÞg2 dtÞ, where � denotes the convolution operator, and ðZ1; . . . ; ZJ Þ
T
� N ð0;RÞ is a
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J-variate normal random vector with mean zero and correlation matrix R, the entries of which

rely solely on the kernel function and ratios between bandwidths fh1; . . . ; hJ g, but not on the

parameter a. In such a case, the MGLR test rejects the null hypothesis (2.4) for large values

of MGLR, namely, large values of max1�j�J GLRðhjÞ, where GLRðhjÞ represents the standar-

dized form of lnðhjÞ or, the fraction on the left-hand side of (2.6). It is readily observed that

for J ¼ 1, the MGLR test reduces to the GLR test. However, the MGLR test enjoys the adaptive

feature that it is nearly as powerful as if a GLR test with a favorable bandwidth were used

(Zhang, 2001). For convenience, the numerical work in this paper assumes the K to be

Epanechnikov kernel function used frequently in practice. The associated quantities Kð0Þ, cK
and rK, as well as the critical values of the MGLR test, were tabulated in Zhang (2001) (see

Tab. I in Appendix 2 for Epanechnikov kernel, Kð0Þ, cK and rK); P-value calibration was

also described there in detail. Furthermore, under the null hypothesis (2.4), if the model (2.3)

is homoscedastic with s2ðxÞ 	 s2 for all x, then whether the value of s2 is known or not, we

shall establish from (2.6) that,

max
1� j�J

rKlnðhjÞ � frKcKjOjh�1
j � ðrKK

2
ð0Þ=2nh2

j Þ
Ð
ð1=pðxÞÞ dxgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rKcKjOjh�1
j

q !
L

max
1� j�J

Zj; ð2:7Þ

where jOj represents the length of O. Statements (2.6) and (2.7) provide useful insights into

understanding the sampling distributions of our proposed goodness-of-fit test statistics.

3 GOODNESS-OF-FIT TEST

As exhibited in (2.2), the linkage between density and regression functions, allows us to test

directly the density itself, under the nonparametric regression model (2.1). With the binning

method described in Section 2.1 above, the equally-spaced design variable xj in (2.1) can be

regarded as distributed uniformly on the interval ½0; 1�. Bearing in mind that fðxj; yjÞg
N
j¼1 is the

current set of observations to obtain RSS0, RSS1 and lN, one can therefore put O ¼ ½0; 1�

and pðxÞ 	 1 in (2.6) and (2.7). There, the grid of bandwidths fh1; . . . ; hJ g is chosen accord-

ing to the empirical rule proposed in Zhang (2001); that is, set J ¼ 3, and take the bandwidth

grid f1:5�1h0; h0; 1:5h0g, with h0 ¼ stdðfxjgÞN
�2=ð4qþ5Þ, where N�2=ð4qþ5Þ stands for the

optimal rate of bandwidth (Fan et al., 2001) for nonparametric hypothesis testing.

According to Section 2.1, the construction of fxjg does not rely on the configuration of

fXig. This lends the empirical (constant) bandwidth easily to simple hand calculations. For

our current applications to goodness-of-fit problem (1.1) and the induced model (2.1), we

can also verify that, when f0 is a polynomial function, the conclusion of (2.6) continues to

hold with s2ðxÞ replaced by ðnDÞ�1f0ðxÞ, leading to

max
1�j�J

rKlN ðhjÞ � frKcKh
�1
j � ðrKK

2
ð0Þ=2Nh2

j Þgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rKcKh

�1
j

Ð
f 2
0 ðxÞ dx

q !
L

max
1�j�J

Zj: ð3:1Þ

Notice in (3.1) the occurrence of f0. In the following subsections, we will address two situa-

tions about, f0, the null density function.

3.1 Simple Null Hypothesis

We first consider the case where f0 is completely specified. In this instance, we offer two

options of conducting tests for (1.1). In the first option, we require that f0ðxÞ relates to x
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via a given polynomial function. Then we can use directly MGLR test (3.1) for

H0: m1ðxÞ ¼ f0ðxÞ, under the model,

yj ¼ m1ðxjÞ þ ðnDÞ�1=2m
1=2
1 ðxjÞej; 1 � j � N : ð3:2Þ

Alternatively, the equivalent problem of testing uniformity, based on the transformed sam-

ple X �
i ¼ F0ðXiÞ, i ¼ 1; . . . ; n, amounts to testing for the hypothesis of no predictor effect in

regression curve. That is to say, assess the adequacy of H0: m1ðxÞ 	 1, under the model

y�j ¼ m1ðxjÞ þ ðnDÞ�1=2m
1=2
1 ðxjÞej; 1 � j � N ; ð3:3Þ

where f y�j g
N
j¼1 represent the binned responses when the binning procedure is applied to the

set of transformed sample fX �
i g

n
i¼1. After this adjustment, one can directly proceed with

(2.7) by replacing fðXi; YiÞg
n
i¼1 with fðxj; y

�
j Þg

N
j¼1. This step is identical to using (3.1), in

which we have jOj ¼ 1, pðxÞ 	 1, and the null density of X �
i equals one. Compared with

the first option of testing f0 restricted to be a given polynomial, the second option provides

more flexibility to accommodate various types of f0.

3.2 Composite Null Hypothesis

We now consider more interesting cases where f0ðxÞ may not be fully known, but is assumed

to be a member of a parametric family of densities, such as,

f0ðx; aÞ ¼ ða0 þ a1xþ � � � þ akxkÞ
2; ð3:4Þ

for some unspecified parameters fajg. In this context, the uniform density corresponds to

either degree k ¼ 0, or degree k � 1 but with a1 ¼ � � � ¼ ak ¼ 0. More generally, this family

includes the ‘‘symmetric Beta densities’’ (Wand and Jones, 1995, p. 31) of the form

B
1

2
; ‘þ 1

� �� ��1

ð1 � x2Þ
‘
þ; ‘ ¼ 0; 2; 4; . . . ; ð3:5Þ

where xþ ¼ maxðx; 0Þ, and Bð�; �Þ represents the beta function. In particular, a Gaussian den-

sity belongs to this family as the index ‘ above tends to infinity. Clearly, the null hypothesis

above is composite and we are not aware of other conventional tests that can be applicable. In

this case, the left-hand side of (3.1) contains the unknown quantity f0ðx; aÞ and thus can not

be used as a test statistic. One may substitute f0 by its consistent estimate, such as the kernel

density estimate. However doing so will cause again the boundary bias problem, and hence

deteriorate the power. An approach more effective is by means of ‘‘variance stabilizing trans-

form’’ so as to achieve homoscedasticity in model (2.1). Naturally, the Poisson-type of link at

(2.2) between mean and variance suggests the square-root transform
ffiffiffiffi
yj

p
. As a consequence,

fðxj;
ffiffiffiffi
yj

p
ÞgNj¼1 can be viewed as following a homoscedastic nonparametric regression model,

ffiffiffiffi
yj

p
� m2ðxjÞ þ sej; j ¼ 1; . . . ;N ; ð3:6Þ

where m2ðxÞ ¼
ffiffiffiffiffiffiffiffi
f ðxÞ

p
, and s > 0 serves as a nuisance parameter. Under this model, one

could then directly apply (2.7) to carry out tests for the presence of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðx; aÞ

p
or, equivalently,

for the validity of a polynomial regression function. Hence, the asymptotic null distribution

of (M)GLR will be free of the nuisance parameter a. Formally, the nonparametric regression

formulation (3.6) for fðxj;
ffiffiffiffi
yj

p
ÞgNj¼1 is justified by the following theorem.
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THEOREM 1 Let f ðxÞ > 0 be bounded and continuous. Suppose that N ! 1 and

Nn�1 logðnÞ ! 0; as n ! 1. Then by changing a probability space; if necessary; we have
the following stochastic representation:

ffiffiffiffi
yj

p
¼ yj þ

ej
2

ffiffiffiffiffiffiffiffiffi
n=N

p þ OPfn
�1=2 þ Nn�1ðlog nÞ1=2

g ð3:7Þ

uniformly in j, where fejg is a sequence of i.i.d. N ð0; 1Þ variables and yj ¼
ffiffiffiffiffiffiffiffi
pjN

p
.

Furthermore, if f 0ðxÞ is continuous for x 2 ½0; 1�, and f 00ðxÞ exists for x 2 ð0; 1Þ, then (3.7)

becomes
ffiffiffiffi
yj

p
¼

ffiffiffiffiffiffiffiffiffi
f ðxjÞ

p
þ ej=ð2

ffiffiffiffiffiffiffiffiffi
n=N

p
Þ þ OPfN

�2 þ n�1=2 þ Nn�1ðlog nÞ1=2
g.

Evidently, Theorem 1 reveals that, when the sample size n and partition number N grow suffi-

ciently large, little information of yj will be lost from the square-root transform. The main ingredi-

ents of the proof are analogous to those used in Fan (1996, Theorem 4.1) and are thus omitted here.

The parameterN controls the degree to which the data are binned to build the density function=
regression function so that our proposed tests can be applied. Compared with the bandwidth

parameter selectors familiar in kernel density estimation or nonparametric regression techni-

que, this quantity N appears relatively easier to select for practical usage. For instance, it is

readily seen that the choice N ¼ Ofnrðlog nÞsg, either taking 0 < r < 1 and s � 0, or taking

r ¼ 0 and s > 0, satisfies the conditions of Theorem 1. Throughout our simulations described

next, we shall set N ¼ n2=3 logðnÞ.

4 SIMULATIONS

To demonstrate the power comparison of our proposed (M)GLR test with other existing tests, we

perform simulation studies. We shall first consider in Examples 1 up to 4, testing simple null

hypotheses. To facilitate the comparisons, the sequences of alternatives are taken from those stu-

died in Fan (1996, p. 682). The second option, as described in Section 3.1, will be adopted in our

implementation. That is, the test statistic (2.7) combined with local linear fit ðq ¼ 1Þ will be

applied to tests for the null hypothesis H0:m1ðxÞ 	 1, under model (3.3). The empirical critical

values are simulated at nominal level 5% and sample size n ¼ 200, on 10,000 independent sam-

ples. In Figure 1, we illustrate the estimated density functions (using KDE method) of the GLR

and MGLR test statistics under the null hypothesis of Example 1; similar plots for Examples 2–4

have also been obtained but are omitted herein. These graphs provide evidence that the asymp-

totic normal distributions at (2.7) are reflected in the finite-sample situation of model (3.3) with

weakly dependent random noises. The empirical powers are estimated by the proportion of

observed rejections in 1600 samples of size n. The power curves of GLRðhjÞ, j ¼ 1; 2; 3, and

MGLR are displayed in Figure 2. For power comparison, the KS test, CVM test, ANT (Fan,

1996), and the H15 test recommended in Bodgan (1995) are also included, where the choice

for the number of bins used in ANT follows the suggestion of Fan (1996, p. 682).

Example 1 Consider the problem

H0: F ¼ Uniformð�1; 1Þ versus H1: F ¼ Fm; with density

F 0
mðxÞ ¼ 2�1 þ

2xðm� jxjÞ

m2I ðjxj < mÞ
; 0 � m � 1:

The null hypothesis corresponds to the index m ¼ 0.

This example serves to reflect how a test is capable of detecting local features.
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Example 2 This example tests the global features with different frequencies:

H0: F ¼ Uniformð�1; 1Þ versus H1: F ¼ Fs;with density

F 0
sðxÞ ¼ 2�1f1 þ sinð2psxÞg; 0 � s � 5:

The null hypothesis corresponds to s ¼ 0.

Example 3 This example is designed to identify the normal scale mixture model

H0: F ¼ N ð0; 1Þ versus

H1: F ¼ 0:8N 0;
1

0:8 þ 0:2s2

� �
þ 0:2N 0;

s2

0:8 þ 0:2s2

� �
;

1

8
� s � 1:

When s ¼ 1, the alternative hypothesis agrees with the null.

Example 4 Consider the normal mean mixture model

H0: F ¼ N ð0; 1Þ versus H1: F ¼ 0:7N
m

0:7
; 1

� �
þ 0:3N

�m
0:3

; 1
� �

; 0 � m � 1:

When m ¼ 0, the alternative hypothesis corresponds to the null.

FIGURE 1 The estimated densities for the test statistics GLRðhjÞ, j ¼ 1; 2; 3, and MGLR test statistics at (2.7), for
n ¼ 200, based on 10,000 simulations. In panels (1)–(3), solid curve – the estimated density, based on kernel density
estimation; dashed curve – standard normal density.
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In summary, the power of the GLR test depends on the choice of bandwidth parameter. At

each fixed alternative under consideration, the highest power of the three GLR tests occur in

Examples 1 and 2 at the smallest bandwidth h1, whereas the largest bandwidth h3 in

Examples 3 and 4. Nonetheless, the MGLR test performs always close to the best of the

three GLR tests, which is GLR(h1) in Examples 1 and 2, and GLR(h3) in Examples 3

and 4. This adaptive feature is important because it means that, we could always take the

MGLR test to avoid loss of power, although GLR tests demand different amount of smooth-

ing in detecting alternatives of different patterns.

Moreover, examination of Figure 2 indicates that our proposed MGLR test outperforms the

other types of existing tests, except in Example 2 where ANT is more powerful against alter-

natives of very high frequency.

Next we consider Example 5 which consists of composite null hypotheses. The empirical

powers are evaluated in ways similar to those described above for simple null hypotheses.

Example 5 Consider the composite null hypothesis

H0: f ðxÞ ¼ ða0 þ a1xþ a2x
2Þ

2 versus

H1: f ðxÞ ¼ ð1 � yÞða0 þ a1xþ a2x
2Þ

2
þ yf1 þ sinð2pxÞg=2; 0 � y � 1;

where f ðxÞ is supported on ½�1; 1�, and the nuisance parameters ða0; a1; a2Þ
T are present. The

null hypothesis corresponds to the case y ¼ 0. Evidently, all the other existing tests mentioned

above can not be exploited for this example. According to Section 3.2, this example is equiva-

lent to detecting departures from the hypothesized regression curve m2ðxÞ ¼ a0 þ a1xþ a2x
2

under model (3.6). To demonstrate the capacity of our test statistic (2.7), local quadratic fitting

method ðq ¼ 2Þ will be conducted. Furthermore, the values, a0 ¼ �a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
15=16

p
and a1 ¼ 0,

will be used in the alternatives from which simulated samples are to be generated. The result-

ing power comparisons are depicted in Figure 3. Once again, we observe that all GLR-type of

test statistics achieve the given level of significance. Specifically, GLR(h3) offers the maximal

power of GLR(hj), j ¼ 1; 2; 3, and consistently outperforms MGLR. Nonetheless, the adaptive

feature of the MGLR test continues to be reflected in this example.

FIGURE 3 Estimated power functions of each test procedure against alternatives given in Example 5. The bottom
dotted line denotes the 5% significance level.
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5 CONCLUSION

We have demonstrated that the (M)GLR test in regression models performs reasonably well

in tests for goodness-of-fit based on binned data. This procedure ameliorates the drawbacks

of boundary bias problem arising from kernel density estimation approach, and benefits from

the properties of local polynomial regression techniques, such as, data-driven selection of

optimal smoothing parameter and allowing for extensions to certain types of composite

null hypotheses. The simplicity, flexibility, adaptive feature, and competitive power of our

proposed MGLR test indicate that it is a useful diagnostic tool. Extending our current

scope of goodness-of-fit to multivariate setting and multiple-sample situation will be

interesting topics for future research.

Acknowledgement

The authors thank the associate editor and the referee for valuable comments that improved

the presentation. Part of the work on this paper was performed while the first author was

visiting Centre for Mathematics and its Applications at the Australian National University.

The first author is most grateful to Peter Hall for financial support.

References
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APPENDIX 1

Set mj ¼
Ð
tjKðtÞ dt, j ¼ 0; 1; 2; . . .. Define the vector e1;qþ1 ¼ ð1; 0; . . . ; 0ÞT of length qþ 1,

and the ðqþ 1Þ 
 ðqþ 1Þ matrix Sq ¼ ðmjþlÞ0�j;l�q. Then the equivalent kernel function K

of the qth degree local polynomial fit is expressed in the form KðtÞ ¼ eT
1;qþ1S

�1
q

ð1; t; . . . ; tqÞTKðtÞ, for t 2 R.
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APPENDIX 2

Epanechnikov kernel function is define by, KðtÞ ¼ 3=4ð1 � t2Þ if jtj < 1 and 0 otherwise.

TABLE I Values of rK, cK and Kð0Þ Induced from the qth
Degree Local Polynomial Estimation with Epanechnikov
Kernel Function (Excerpted from Zhang, 2001).

q¼ 0 or 1 q¼ 2 or 3 q¼ 4 or 5

rK 2.1153 1.9755 1.9336
cK 0.4500 0.7812 1.1043
Kð0Þ 0.7500 1.4062 2.0507
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