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ABSTRACT
Improving estimation efficiency for regression coefficients is an
important issue in the analysis of longitudinal data, which involves
estimating the covariance matrix of errors. But challenges arise in
estimating the covariance matrix of longitudinal data collected at
irregular or unbalanced timepoints. In this paper, we develop a regu-
larisation method for estimating the covariance function and a step-
wise procedure for estimating theparametric components efficiently
in the varying-coefficient partially linearmodel. This procedure is also
applicable to the varying-coefficient temporal mixed-effects model.
Ourmethodutilises the structure of the covariance function and thus
has faster rates of convergence in estimating the covariance func-
tions and outperforms the existing approaches in simulation studies.
This procedure is easy to implement and its numerical performance
is investigated using both simulated and real data.
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1. Introduction

There has been substantial recent interest in nonparametric and semiparametric meth-
ods for longitudinal or clustered data with dependence within subjects (or clusters) (see
Lin and Carroll 2001; Diggle, Heagerty, Liang, and Zeger 2002; Wu and Zhang 2002b).
Improving estimation efficiency is an important issue in the analysis of longitudinal data.
In the nonparametric setting, Lin and Carroll (2001) recommended an approach which
ignores the within-subject correlation completely and treats the data as if they were inde-
pendent. However, Wang, Carroll, and Lin (2005) showed that, in the semiparametric
setting, the estimator for parametric component in the model will achieve the semipara-
metric efficiency bound if the within-subject correlation structure is specified correctly.
Thus estimating the covariance function is an important issue in the semiparametricmodel
for longitudinal data.

Many authors have investigated the problem of within-subject correlation in longitu-
dinal data. For example, Wu and Pourahmadi (2003) proposed nonparametric estimation
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of large covariance matrices using a two step estimation procedure. But their method can
only deal with balanced or nearly balanced longitudinal data. Challenges arise in estimat-
ing the covariance function if the data are collected at irregular or subject-specific time
points. Wu and Zhang (see Wu and Zhang 2002a, 2006) proposed another method called
local polynomial linear mixed-effects model (LLME) to analyse longitudinal data, which
estimated the within-subject error directly instead of estimating the covariance function
of the errors. Other methods for modelling the covariance function include the functional
principal component analysis (FPCA) proposed by Yao, Müller, and Wang (2005).

In this paper, we consider a semiparametric varying-coefficient partially linear model

Y(t) = X(t)Tα(t)+ Z(t)Tβ + η(t)+ ζ(t), (1)

where α(t) comprises p unknown smooth functions, β is a q-dimensional unknown
parameter vector, and η(t) captures the within-subject dependence with smooth covari-
ance function Rη(t1, t2), ζ(t) is just the measurement error with covariance function
σ 2
ζ (t1)I(t1 = t2). All the temporal correlations are relegated to η(t), so this decomposi-

tion is unique. Nonparametric models for longitudinal data can be viewed as special cases
of model (1). Moreover, model (1) is an extension of the partially linear model and the
time-varying-coefficient model.

We focus on estimating the covariance function Rη(t1, t2) (defined in (5)) when obser-
vations are collected at irregular and possibly subject-specific time points. In this paper,

(i) A varying-coefficient temporal mixed-effects model is introduced as a good approxi-
mation of model (1). The within-subject correlated error η(t) can be considered as a
combination of some common random factors (not related to t) and some temporal
functions.

(ii) A general framework of the regularisation method is applied to estimate the covari-
ance function, which can be viewed as an extension of one-dimensional smoothing
splines. This method is introduced through a careful characterisation of the function
space (tensor product of Hilbert space) in which the covariance function Rη(t1, t2)
resides, and thus has faster rates of convergence compared to other methods which
only assume Rη(t1, t2) is a bivariate continuous function.

(iii) An explicit spectral decomposition of the estimated covariance function is estab-
lished, and we can easily guarantee the estimated covariance function to be positive
definite after truncating the negative eigenvalues. To improve the efficiency of esti-
mating the regression coefficients, the weight matrix is chosen by the inverse of the
adjusted covariance matrix in the weighted least squares method.

(iv) Our proposed method can be applied to both the sparse longitudinal data and the
densely sampled functional data. Besides, our method also works quite well for the
missing longitudinal/functional data, which can be considered as a special case of
longitudinal/functional data collected at irregular time points.

There also has been a vast volume of work on modelling covariance functions in longi-
tudinal data in literature. Fan, Huang, and Li (2007) and Fan and Wu (2008) proposed a
quasi-maximum likelihoodmethod tomodel covariance function of η(t). In their method,
the variance function var{η(t)} ismodelled nonparametrically, but the correlation function
corr{η(t1), η(t2)} is assumed to be a member of a known family of parametric correlation
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functions (e.g. an AR or ARMA correlation structure). The quasi-maximum likelihood
method relies on correctly assuming the form of the correlation functions and can be
misspecified easily. Li (2011) applied bivariate kernel smoothing techniques to estimate
covariance functions. But the techniques of bivariate kernel smoothing do not utilise the
structures of the covariance functions, and thus have slower rates of convergence compared
with our method. Besides, the kernel covariance estimator is not guaranteed to be positive
semidefinite, and an adjustment procedure is required by discretizing the kernel estimator
on a dense grid, followed by taking the eigenvalue decomposition of the resulting covari-
ance matrix. This discretizing procedure is quite subjective, since it depends heavily on the
choice of dense grids.

The rest of the article is organised as follows. Section 2 describes the semiparametric
varying-coefficient model for longitudinal data and decomposition of covariance function.
A nonparametric estimation of the covariance function and an efficient estimation proce-
dure for parameters based on profile least squares techniques is described in Section 3.
Sampling properties of the proposed procedure are presented in Section 4. In Sections 5
and 6 the proposed method is illustrated via simulation studies and real data examples,
respectively. All technical proofs are relegated to Appendix.

2. Model and covariance structure

Suppose all longitudinal observations from different subjects (or clusters) are made on a
fixed time interval T ⊂ R, e.g. T = [0, 1]. The data consist of n independent subjects. For
the ith subject, i = 1, . . . , n, the response variable Yi(t) and the covariates {Xi(t),Zi(t)} are
collected at time points t = ti,j, j = 1, . . . , Ji, where Ji is the total number of observations
for the ith subject. In this article, we consider a semiparametric varying-coefficient partially
linear model

Y(t) = X(t)Tα(t)+ Z(t)Tβ + ε(t)

i.e.

Yi(ti,j) = Xi(ti,j)Tα(ti,j)+ Zi(ti,j)Tβ + εi(ti,j), i = 1, . . . , n, j = 1, . . . , Ji, (2)

where α(t) comprises p unknown smooth functions, β is a q-dimensional unknown
parameter vector, and {εi(t) : i = 1, . . . , n} are i.i.d. error processes with E{εi(t) |
Xi(t),Zi(t)} = 0. To consider the within-subject dependence, we assume that εi(t) can be
decomposed into two independent error processes:

εi(t) = ηi(t)+ ζi(t),

where {ηi(t) : i = 1, . . . , n} are i.i.d. mean zero error processes capturing the within-
subject dependence or temporal correlation, and {ζi(t) : i = 1, . . . , n} are the i.i.d. mea-
surement error (see Yao et al. 2005; Hall, Müller, andWang 2006). For t1 ∈ T and t2 ∈ T ,
suppose

cov{ηi(t1), ηi(t2)} = Rη(t1, t2),

cov{ζi(t1), ζi(t2)} = σ 2
ζ (t1)I(t1 = t2), i = 1, . . . , n, (3)
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where I(·) is an indicator function, Rη(·, ·) and σ 2
ζ (·) are smooth functions. Then the

covariance function R(t1, t2) of εi(t) is given by

R(t1, t2) ≡ cov{εi(t1), εi(t2)} = Rη(t1, t2)+ σ 2
ζ (t1)I(t1 = t2), i = 1, . . . , n, (4)

which is a smooth surface except on the diagonal points where t1 = t2. In Section 3, we
will estimate Rη(·, ·) and σ 2

ζ (·) separately.
There are many different methods to analyse the within-subject error ηi(t). For exam-

ple, Wu and Zhang (2002a) used the local polynomial method to decompose ηi(t).
Here let us consider functional principal component analysis model for ηi(t). Let λ(1) ≥
λ(2) ≥ · · · ≥ 0 be ordered values of the eigenvalues of the linear operator determined by
Rη(·, ·) with

∑∞
k=1 λ(k) < ∞, and the ψk(·)’s be the corresponding orthonormal eigen-

functions or principal components, see Hall et al. (2006). Then, Rη(·, ·) admits the spectral
decomposition:

Rη(t1, t2) =
∞∑
k=1

λ(k)ψk(t1)ψk(t2), (5)

and ηi(t) admits the Karhunen-Loeve expansion as follows,

ηi(t) =
∞∑
k=1

ξi,kψk(t),

where ξi,k = ∫
t∈T ηi(t)ψk(t) dt are uncorrelated random variables with E(ξi,k) = 0 and

E(ξi,kξi,j) = λ(k)I(j = k). If λ(k) ≈ 0 for k ≥ L + 1, then model (2) can be approximated
by

Yi(ti,j) ≈ Xi(ti,j)Tα(ti,j)+ Zi(ti,j)Tβ +
L∑

k=1

ξi,kψk(ti,j)+ ζi(ti,j). (6)

Model (6) can be regarded as a varying-coefficient temporal mixed-effects model, since ξi,k
are random variables and ψk(t) are ‘unknown’ but fixed basis functions.

As for the estimation of σ 2
ζ (·) and Rη(·, ·), we assume that σ 2

ζ (·) is a smooth function
so that smoothing techniques such as the local linear regression can be applied to estimate
the variance function σ 2

ζ (·). By the covariance function decomposition (5), we assume that
Rη(·, ·) resides in a tensor product of Hilbert spaceW2

2 (T )⊗ W2
2 (T ), which is the closure

of the following linear space

span{f (s)g(t) : f (·), g(·) ∈ W2
2 (T )}, (7)

where W2
2 (T ) = {f : f ′, f ′′ are absolutely continuous, f ′′ ∈ L2(T )} is a Sobolev space

endowed with the squared norm
∫
T (f

′′)2. Because W2
2 (T )⊗ W2

2 (T ) is dense in the
continuous bivariate function space, we can find an element in W2

2 (T )⊗ W2
2 (T ) that

approximates any continuous bivariate function very well.

3. Proposedmethodology for estimation

In practice, estimation of {α(t),β} must be done in multiple steps. Their initial esti-
mates are constructed by ignoring within-subject correlation. With the initial estimates
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of {α(t),β}, we can estimate R(·, ·) based on residuals. Finally, we can estimate {α(t),β}
more efficiently by using the estimate of R(·, ·). In this section, we propose the efficient
estimates for {α(t),β} using profile weighted least squares techniques.

3.1. Step 1: initial estimator

For a given β , model (2) reduced to a varying-coefficient model:

Yi(ti,j)− Zi(ti,j)Tβ = Xi(ti,j)Tα(ti,j)+ ηi(ti,j)+ ζi(ti,j). (8)

Ignoring the within-subject correlation or ηi(t), we use the profile local linear regression to
get initial estimates of {α(t),β}, see Fan andHuang (2005). For any t in the neighbourhood
of t0, the lth component αl(t) of α(t), admits Taylor’s expansion as follows:

αl(t) ≈ αl(t0)+ α′
l(t0)(t − t0)

≡ al + bl(t − t0), for l = 1, . . . , p.

Let K(·) be a kernel function and h1 be a bandwidth. Thus we can find the local lin-
ear estimator α̂β(t0) of α(t0), where α(t) is the true varying function in model (8). Let
(̂a1, . . . , âp, b̂1, . . . , b̂p) be the minimiser of

n∑
i=1

Ji∑
j=1

[
Yi(ti,j)− Zi(ti,j)Tβ −

p∑
l=1

{al + bl(ti,j − t0)}Xil(ti,j)

]2

Kh1(ti,j − t0), (9)

whereKh(·) = h−1K(·/h), and Xi(t)= (Xi1(t), . . . ,Xip(t))T . Then α̂β(t0)= (̂a1, . . . , âp)T .
Note that the profile least squares estimator of (α(t),β) has a closed form using the
following matrix notation. Let

Y = (YT
1 , . . . ,Y

T
n )

T , Y i = (Yi(ti,1), . . . ,Yi(ti,Ji))
T ,

Z = (ZT
1 , . . . ,Z

T
n )

T , Zi = (Zi(ti,1), . . . ,Zi(ti,Ji))
T ,

m = (mT
1 , . . . ,m

T
n )

T , mi = (Xi(ti,1)Tα(ti,1), . . . ,Xi(ti,Ji)
Tα(ti,Ji))

T .

Then model (8) can be written as

Y − Zβ = m + η + ζ , (10)

where η = (η1(t1,1), . . . , ηn(tn,Jn))T and ζ = (ζ1(t1,1), . . . , ζn(tn,Jn))T . Since the estimator
α̂β(·) is linear in Y − Zβ , given β , the estimator of m is of the form m̂ = S(Y − Zβ),
where S is a smoothing matrix of the local linear smoother, see Fan and Gijbels (1996).
Substituting m̂ into model (10) results in the linear model,

(I − S)Y ≈ (I − S)Zβ + η + ζ ,

where I is an identity matrix. So an initial estimator for β is

β̂
ini = {ZT(I − S)T(I − S)Z}−1ZT(I − S)T(I − S)Y . (11)

Then the profile least squares estimator for the nonparametric component α(·) is just
α̂

β̂
ini(·).
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3.2. Step 2: covariance estimator

After we get the initial estimators β̂
ini and α̂

β̂
ini(t) in Step 1, the residuals are

ε̂i(ti,j) = Yi(ti,j)− Xi(ti,j)T α̂
β̂
ini(ti,j)− Zi(ti,j)T β̂

ini, i = 1, . . . , n, j = 1, . . . , Ji. (12)

Then we will derive the nonparametric estimator of R(·, ·) based on ε̂i(ti,j). Since there
are too many parameters in Rη(·, ·) ∈ W2

2 (T )⊗ W2
2 (T ), similar to the idea of smoothing

spline, a penalty for over-parametrization is imposed to regularise the covariance function.
Let R̂η(s, t) ∈ W2

2 (T )⊗ W2
2 (T ) be the minimiser of

1∑n
i=1 Ji(Ji − 1)

n∑
i=1

∑ ∑
1≤j1 �=j2≤Ji

{̂
εi(ti,j1 )̂εi(ti,j2)− Rη(ti,j1 , ti,j2)

}2 + λnP(Rη) (13)

where λn ≥ 0 is a tuning parameter, and P(Rη) is a penalty function for Rη(s, t) =∑
j≥1 ajfj(s)gj(t) defined in (7).
The diagonal element ofR(·, ·) requires a special treatment since it involves bothRη(t, t)

and σ 2
ζ (t). Denote σ

2(t) ≡ R(t, t), which can be estimated by an one-dimensional local
linear smoother. Let (γ̂0, γ̂1) be the minimiser of

n∑
i=1

Ji∑
j=1

{̂ε2i (ti,j)− γ0 − γ1(ti,j − t)}2Kh2(ti,j − t), (14)

where h2 is a new bandwidth which can be different from h1 in Step 1. Define σ̂ 2(t) =
max{γ̂0, 0}, where we take themaximum to avoid a negative γ̂0. According to the definition
of R(s, t) in (4), R(s, t) can also be written as

R(s, t) = Rη(s, t)I(s �= t)+ σ 2(t)I(s = t),

that is, R(s, t) is Rη(s, t) when s �= t and σ 2(t) when s= t. So the estimator R̂(·, ·) of the
covariance function is a combination of R̂η(s, t) and σ̂ 2(t):

R̂(s, t) = R̂η(s, t)I(s �= t)+ σ̂ 2(t)I(s = t). (15)

By the definition of σ 2(t), σ 2(t) = Rη(t, t)+ σ 2
ζ (t) > Rη(t, t). Since σ̂ 2(t) is a consistent

estimator of σ 2(t), it can be shown that with probability tending to 1, σ̂ 2(t) > R̂η(t, t).

3.3. Step 3: refined estimator

First, let�i and �̂i be the true and estimated covariance matrix within the ith subject, i.e.

�i = [
R(ti,j, ti,k)

]Ji
j,k=1, �̂i = [̂

R(ti,j, ti,k)
]Ji
j,k=1. (16)

Since we ignore the within-subject correlation or ηi(t) in Step 1, the initial least squares
estimator β̂

ini in (11) is not efficient. To improve the efficiency for estimating β , we use the
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profile weighted least squares estimator as follows:

{ZT(I − S)TW(I − S)Z}−1ZT(I − S)TW(I − S)Y , (17)

whereW is a weight matrix, called a working covariance matrix. Then the initial estimate
β̂
ini in (11) is just a special case of (17) withW being an identity matrix. As usual, misspec-

ification of the working covariance matrix does not affect the consistency of the resulting
estimate, but does affect the efficiency. Fan et al. (2007) has shown that the most efficient
estimator for β among the profile weighted least squares estimates given in (17) is the one
that uses the inverse of the true variance-covariance matrix of errors as the weight matrix,
that is, W = diag(�−1

1 , . . . ,�−1
n ). Because �i’s are unknown, we can use the estimators

�̂i in (16), so the final refined estimator of β is

β̂ = {ZT(I − S)TŴ(I − S)Z}−1ZT(I − S)TŴ(I − S)Y , (18)

where Ŵ = diag(�̂−1
1 , . . . , �̂−1

n ). The profile least squares estimator for the nonparamet-
ric component is simply α̂β̂(·).

3.4. Adjusted covariance function estimator

It can be shown that R̂η in Step 2 is a consistent estimator of Rη, but is not guaran-
teed to be positive semidefinite, and therefore some adjustment is needed to enforce the
positive semidefinite condition, which is particularly important when the sample size is rel-
atively small. The idea is to take a spectral decomposition of R̂η and truncate the negative
components.

Computing the eigenvalues and eigenfunctions of a symmetric bivariate function is
generally nontrivial. Typically this is done by discretizing the covariance function estima-
tion and approximating its eigenfunctions by the respective eigenvectors (see Hall, Müller,
and Yao 2008). However, discretizing the covariance function is quite subjective since it
depends heavily on the choice of dense grids. Fortunately, if the choice of the penalty
function P(Rη) for Rη(s, t) = ∑

j≥1 ajfj(s)gj(t) follows Cai and Yuan (2010),

P(Rη) = ‖Rη‖2W2
2 (T )⊗W2

2 (T )
, (19)

then

P(Rη) =
∫∫

t∈T ,s∈T

{
∂4Rη(s, t)
∂2s∂2t

}2

ds dt

=
∫∫

t∈T ,s∈T

⎧⎨⎩∑
j≥1

ajf ′′j (s)g
′′
j (t)

⎫⎬⎭
2

ds dt

=
∑ ∑
i,j≥1

aiaj
∫
T

{f ′′i (s)f ′′j (s)} ds
∫
T

{g′′
i (t)g

′′
j (t)} dt,
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and the minimiser R̂η of (13) must have the following form

R̂η(s, t) =
n∑

i=1
Hi(s)TÂiHi(t) =

n∑
i=1

Ji∑
j,k=1

Âi(j, k)H(s, ti,j)H(t, ti,k), (20)

where Âi is a Ji × Ji symmetric matrix, Âi(j, k) is the element in the jth row and kth column
of Âi, and

Hi(s) = (
H(s, ti,1), . . . ,H(s, ti,Ji)

)T ∈ R
Ji ,

where H(s, t) = 1
4B2(s)B2(t)− 1

24B4(|s − t|) and Br is the rth Bernoulli polynomial, see
Milton and Irene (1972). Thanks to the representation (20), the eigenvalues and eigen-
functions of R̂η(s, t) = ∑n

i=1Hi(s)TÂiHi(t) can actually be computed explicitly. Leth(·) =
(H1(·)T , . . . ,Hn(·)T)T , and

Â =

⎛⎜⎜⎜⎝
Â1 0 . . . 0
0 Â2 . . . 0
...

...
. . .

...
0 0 . . . Ân

⎞⎟⎟⎟⎠
N×N

where Âi’s are defined in (20) and N = J1 + · · · + Jn is the total number of observations.
Assume that Â = Û�̂ÛT is the eigenvalue decomposition of Â, where �̂ =

diag{̂λ(1), λ̂(2), . . . , λ̂(N)} is the diagonalmatrix of the decreasing eigenvalues λ̂(1) ≥ λ̂(2) ≥
. . . ≥ λ̂(N), and Û ≡ (̂u1, û2, . . . , ûN) is the matrix of the corresponding eigenvectors.
Then R̂η(s, t) in (20) admits the following spectral decomposition:

R̂η(s, t) = h(s)TÂh(t)

= h(s)T
(
Û�̂ÛT)

h(t)

= h(s)T
{ N∑
k=1

λ̂(k)̂ukûTk

}
h(t)

≡
N∑
k=1

λ̂(k)ψ̂k(s)ψ̂k(t)

where ψ̂k(·) = ûTk h(·) is the estimator of ψk(·) in (6). Since λ̂(k)’s are not necessarily posi-
tive, we can first truncate the negative eigenvalues. Then the adjusted estimators for Rη and
R are defined as

R̃η(s, t) =
N∑
k=1

λ̂(k)I(̂λ(k) > τ)ψ̂k(s)ψ̂k(t), s, t ∈ T , (21)

R̃(s, t) = R̃η(s, t)I(s �= t)+ max{̃Rη(t, t), σ̂ 2(t)}I(s = t), (22)

where τ ≥ 0 is a predetermined threshold for the eigenvalues (e.g. 0.01) or a percentage
(e.g. 1 percent) of the sumof all the positive eigenvalues. It will be shown in the next section
that R̃(s, t) is positive definite. Thus when we want to take the inverse of �̂i in (16) to
estimate β , it is better to replace R̂(ti,j, ti,k) by R̃(ti,j, ti,k) in the expression of �̂i in (16) and
Ŵ in (18).
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4. Theoretical results

In this section we investigate sampling properties of the covariance function estimator as
n → ∞. The proposed estimation procedures are applicable for various formulations for
collecting longitudinal data. To facilitate the presentation, we assume that {Ji : i = 1, . . . , n}
are independent and identically distributed random variables with 0 < E(Ji) < ∞, and
{ti,1, . . . , ti,Ji | Ji}ni=1 are independent and identically distributed on T with a density fT(t),
see Fan et al. (2007). In this section and Sections 5–6, the penalty function P(Rη) takes the
special form (19).

First, we show that the residuals ε̂i(ti,j) in (12) are uniformly consistent estimators for
the true errors εi(ti,j).

Proposition 4.1: Assume regularity conditions C1–C5 in the Appendix. If E{X(t)X(t)T} is
positive definite for each t ∈ T , then

sup
i,j

|̂εi(ti,j)− εi(ti,j)| = OP(h21 + {− log(h1)/(nh1)}1/2).

From the proof of Proposition 4.1 and the definition of β̂ in (18), it is easy to derive the
consistency of the proposed estimators of α(t) and β in Corollary 4.1.

Corollary 4.1: Under the conditions of Proposition 4.1, we have

β̂ − β = OP(n−1/2);

sup
t∈T

∣∣̂αβ̂(t)− α(t)
∣∣ = OP(h21 + {− log(h1)/(nh1)}1/2).

Next, define σ 2(t) = γ 0, where (γ 0, γ 1)minimise

n∑
i=1

Ji∑
j=1

{ε2i (ti,j)− γ0 − γ1(ti,j − t)}2Kh2(ti,j − t) (23)

and Rη ∈ W2
2 (T )⊗ W2

2 (T ) be the minimiser of

1∑n
i=1 Ji(Ji − 1)

n∑
i=1

∑ ∑
1≤j1 �=j2≤Ji

{
εi(ti,j1)εi(ti,j2)− Rη(ti,j1 , ti,j2)

}2 + λnP(Rη). (24)

So (14) and (13) are data versions of (23) and (24) after we replace the unobserved εi(ti,j)
by residuals ε̂i(ti,j). σ 2 and Rη are called pseudo-estimators for σ 2 and Rη. The next
proposition showed the consistency of σ 2 and Rη.

Proposition 4.2: (i) Under the regularity conditions C1–C7 in the Appendix,

sup
t∈T

∣∣σ 2(t)− σ 2(t)
∣∣ = OP(h22 + {− log(h2)/(nh2)}1/2). (25)
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(ii) Under the regularity conditions C1–C7 in the Appendix,

‖Rη − Rη‖L2 = OP
({log(n)/n}2/5), (26)

if the tuning parameter λn � {log(n)/n}2/5. Here ‖Rη(·, ·)‖L2 = {∫∫s,t∈T R2η(s, t) ds
dt}1/2 denotes the integrated squared norm of a bivariate function, see Bosq (2000).

Now let’s consider the rates of convergence for the estimators σ 2 and Rη. From (25),
when h2 � {log(n)/n}1/5, we have supt∈T |σ 2 − σ 2| = OP({log(n)/n}2/5). Thus σ 2 has
the same optimal rates of convergence as Rη in (26). On the other hand, if we use two-
dimensional smoothing techniques to estimate Rη(·, ·), the optimal L2−convergence rate
is n−1/3, which is much larger than the convergence rate {log(n)/n}2/5 in Proposition 4.2.
This is because the bivariate continuous functions space with continuous second deriva-
tives C(2)(T ) is much larger than the tensor product Hilbert spaceW2

2 (T )⊗ W2
2 (T ).

Finally, we show in the next proposition that the adjusted covariance function estimator
defined in Section 3.4 is positive definite.

Proposition 4.3: The adjusted covariance function estimator R̃(s, t) in (22) is positive
definite almost surely.

5. Simulation study

5.1. Simulation 1

In this section, we investigate the finite sample properties of the estimators proposed in
Sections 3 through Monte Carlo simulations. Suppose the data are generated from the
following model:

Yi(ti,j) = Xi(ti,j)Tα(ti,j)+ Zi(ti,j)Tβ + ηi(ti,j)+ ζi(ti,j), i = 1, . . . , n, j = 1, . . . , Ji.
(27)

We set the sample size n be 200, and {Ji : 1 ≤ i ≤ n} be independent discrete uniform ran-
dom variables on {5, 6, 7}. Let T = [0, 1] and given Ji, the observation times {ti,j : 1 ≤ i ≤
n, 1 ≤ j ≤ Ji} be independent variables with uniform distribution on T . We let the coef-
ficients of α(t) and β be two dimensional in our simulation, and further set X1(t) ≡ 1 to
include an intercept term. We generate the covariates in the following way: For a given t,
(X2(t),Z1(t))T follows a bivariate normal distribution with mean 0, variance 1, and cor-
relation 0.5, and Z2(t) is a Bernoulli distributed random variable with success probability
0.5 and independent of X2(t) and Z1(t). In this simulation we set β = (1, 2)T , α1(t) = √

t,
and α2(t) = sin(2π t). For i = 1, . . . , n, the within-subject errors ηi(t) are generated from
a temporal mixed-effects model:

ηi(t) =
L∑

k=1

ξi,kψk(t), (28)

where ξi,k’s are independent standard normal random variables. Thus the covariance func-
tion is Rη(s, t) = ∑L

k=1 ψk(s)ψk(t). We set L=1, andψ1(t) = cos(π t). Finally we assume
the measurement errors ζi(ti,j) follow N(0, (

√
0.1)2) and are independent of ηi(ti,j).
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For comparison, in each simulated dataset, we fit the model using four different
estimators of the covariance function:

Method I. Working independence (WI) estimator (see Lin and Carroll 2001).
Method II. Our proposed method.
Method III. True covariance function.
Method IV. Misspecified ARMA(1, 1) method. We assume the covariance function

R(s, t) for εi(t) = ηi(t)+ ζi(t) is of the form

R(s, t) = Rη(s, t)I(s �= t)+ σ 2(t)I(s = t), (29)

where Rη(s, t) = σ(s)σ (t)γρ|s−t|, has the misspecified ARMA(1, 1) structure. The param-
eters γ ∈ [0, 1] and ρ ∈ [0, 1] in the Method IV are estimated using the quasi-maximum
likelihoodmethod (QL), see Fan et al. (2007). For a fair comparison, we use the same band-
width h1 = 0.1 when estimating α(·) for all three estimators. The bandwidth h2 in (14) is
selected by the plug-in method (Fan and Gijbels 1996). Throughout the simulations and
the real data examples in the next section, we use the Epanechnikov kernel, and the tuning
parameter λn in (13) is selected automatically by the package ‘ssfcov’, which is based on
the tuning parameter selection method in smoothing splines.

Table 1 summarises of the results over 200 simulations. We assess the performance
of different approaches by calculating the bias and standard errors of 200 estimates. In
the table, ‘Bias’ represents the median of the 200 estimates subtracting the true value,
‘SD’ represents the median absolute deviation of the 200 estimates divided by a factor
of 0.6745, and ‘RE’ of a current estimator represents the relative efficiency between the
oracle estimator (Method III) and the current estimator, which is defined as SD2(oracle
estimator)/SD2(current estimator). Intuitively, if the relative efficiency of a method is
larger, the SD of the coefficient using this method is smaller, so this method will be better
(i.e. more efficient).

FromTable 1, all parameter estimators considered are asymptotically unbiased, which is
confirmed from the numerical results: the biases aremuch smaller than the standard errors
in all cases. In terms of the efficiency, theoretically, the oracle estimator (Method III) using
the true covariance function should be the best, and our proposed approach (Method II)
should bemuchbetter than that using bothworking independence structurewhich ignored
ηi(t) (Method I) and themisspecified ARMA(1, 1) correlation structure for ηi(t) (Method
IV). The results in Table 1 agreed with this conjecture. For example, our proposed method
has 30% efficiency gain over the estimator assumingworking independence (Method I) for
β̂1, while theMethod IV has only 21% efficiency gain over the estimator assumingworking
independence (Method I) for β̂1.

Table 1. (Simulation 1) Compare the performance of β̂ using different methods (with n= 200).

β̂1 β̂2

Method Bias SD RE Bias SD RE

Method I −.0021 .0255 .33 −.0002 .0378 .22
our Method II .0013 .0184 .63 −.0033 .0294 .37
Method III .0005 .0146 1.0 −.0008 .0179 1.0
Method IV −.0031 .0198 .54 −.0034 .0298 .36
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Figure 1. (Simulation 1) Panel (a): true covariance function Rη(·, ·); panel (b): estimated covariance
function R̂η(·, ·) using ARMA(1, 1) model for ηi(t) (Method IV); panel (c): estimated covariance func-
tion R̂η(·, ·) using our proposed method (Method II); panel (d): adjusted covariance function estimator
R̃η(·, ·) based on (21) for one simulated data (with n= 200).

Figure 1 shows the advantage of our proposed method. From the plot, the true covari-
ance function Rη(s, t) for ηi(t) in Figure 1(a) is very complicated and cannot be estimated
by any parametricmodel such as AR(1) or ARMA(1, 1)model. Figure 1(b) shows the para-
metric ARMA(1, 1) estimator of Rη(s, t) for ηi(t) and Figure 1(c) shows the nonparametric
estimator R̂η(s, t) using our proposed method for one simulated data. Figure 1(d) shows
the adjusted estimator R̃η(s, t) in (21), which is very close to R̂η(s, t) in Figure 1(c) but is
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Table 2. (Simulation 2) Compare the performance of β̂ using different methods (with n= 100).

β̂1 β̂2

Method Bias SD RE Bias SD RE

Method I .0055 .0517 0.45 .0043 .0819 0.60
our Method II .0052 .0415 0.70 .0005 .0742 0.74
Method III −.0013 .0348 1.0 .0050 .0637 1.0
Method IV −.0008 .0341 1.04 .0057 .0625 1.04

positive definite. From the plot, our proposed method captures the structure of covariance
function very well, and the estimators R̂η(s, t) and R̃η(s, t) are obviously consistent.

5.2. Simulation 2

In simulation 2, we study the robustness of our proposed method. The data are gener-
ated with the same setup as in the previous simulation, except that ηi(t) is a Gaussian
process with the covariance function Rη(s, t) in (29). We set the sample size n be 100
and the marginal variance σ 2(t) = 1, and set ρ = 0.35 and γ = 0.75 in (29). We apply
the semiparametric regression methods assuming working independence (Method I),
nonparametric covariance (Method II), true covariance (Method III) and ARMA(1, 1)
covariance structure for ηi(t) (Method IV) to the simulated data and repeat the simula-
tion 200 times. The selection methods of h1, h2 and λn are the same as in the previous
simulation. The results for estimating β are summarised in Table 2.

FromTable 2, again all parameter estimators are asymptotically unbiased since the biases
are much smaller than the standard errors. When we compare the efficiencies of the esti-
mates, theoretically, since the true correlation structure for ηi(t) is ARMA(1, 1)model, the
efficiency of the estimator using ARMA(1, 1) correlation structure (Method IV) should be
close to the oracle estimator (Method III) using the true covariance function, and both
of them should be more efficient than our proposed approach (Method II). The estima-
tor using working independence structure (Method I) should be the least efficient. Again
the results in Table 2 agreed with this conjecture. Our proposed estimator (Method II),
on the other hand, performs reasonably well: the standard errors of our estimators are
much smaller than those of the working independence estimator (Method I), for exam-
ple, our proposed method has 25% efficiency gain over the estimator assuming working
independence (WI) for β̂1.

6. Real data example

6.1. Case 1: multi-centre AIDS cohort data

We now present an application of our proposed method to the Multi-Center AIDS Cohort
study. The dataset comprises the information of 283 subjects who were infected with
human immunodeficiency virus (HIV) during the study in year 1984–1991. A total of
N=1817 observations were made in this study, with between 1 and 14 observations
per subject. This dataset was also analysed by Fan et al. (2007) and Huang, Wu, and
Zhou (2002). Our target is to describe the trend in mean CD4 (cluster of differentiation 4)
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percentage depletion over time and to evaluate the effects of smoking, pre-HIV infection
CD4 percentage, and age at infection on the mean CD4 percentage.

We take the response Y to be CD4 cell percentage, X1 to be the standardised variable
for PreCD4, Z1 to be the smoking status (1 for a smoker and 0 for a nonsmoker) and Z2
to be the standardised variable for age. The observation time is divided by 6 so that the
rescaled observation time t is in between 0 and 1. Now consider a semiparametric varying-
coefficient partially linear model

Y(t) = α1(t)+ α2(t)X1(t)+ β1Z1(t)+ β2Z2(t)+ η(t)+ ζ(t). (30)

We apply a multifold cross-validation method to select a bandwidth h1 for α(t). After par-
titioning the data into 14 groups, we fit model (30) for the data excluding the kth-group for
each k = 1, . . . , 14. For the computational issue, we minimise the cross-validation (CV)
score on a rough grid h1 ∈ {0.5κb : b = 0, . . . , 12}, with κ = 0.8. The resulting optimal
bandwidth is hopt1 = 0.054. We can estimate α1(t) and α2(t) more precisely by choosing
different bandwidths 0.054 and 0.081 for α1(t) and α2(t) respectively to avoid the under-
smoothness of α2(t), see Fan and Zhang (1999). As for the estimation of σ 2(t), this is a
one-dimensional kernel regression of the squared residuals. In this application, we directly
use the plug-in bandwidth selector (Fan and Gijbels 1996) and choose the bandwidth
hopt2 = 0.080.

Figure 2. (Real data case 1) Panel (a): estimate of α1(t); panel (b): estimate of α2(t); panel (c): estimate
of σ(t). In panels (a)–(c), circles (◦) represent the estimates of the functions at observation times, with
lines (−) connecting them. Panel (d): estimated covariance function R̂η(·, ·) using our proposedmethod
for ηi(t); panel (e): adjusted covariance function estimator R̃η(·, ·) based on (21); panel (f ): estimated
covariance function R̂η(·, ·) using ARMA(1, 1)model for ηi(t).
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Table 3. (Real data case 1) Compare estimates of
β using different methods.

Method I Method II Method IV

β̂1 0.686 0.563 0.734
β̂2 −0.529 0.096 0.045

The resulting estimate of α(t) is depicted in Figures 2(a,b). The intercept function
decreases with time, implying an overall trend of CD4 cell percentage is decreasing over
time. The trend for α2(t) implies that the impact of PreCD4 on CD4 cell percentage
decreases gradually during the first 3 years after infection and then increases a bit. The
resulting estimate of σ(t) in Figure 2(c), indicates that σ(t) seems to be increasing as
time increases. This means predicting the CD4 percentage becomes harder and harder
over time. Figure 2(d–f) show the estimates R̂η(·, ·), R̃η(·, ·) using our proposed method
and the estimate R̂η(·, ·) based on ARMA(1, 1) structure for ηi(t), which characterises the
within-subject dependence. From the plot, our estimate of the covariance function Rη(·, ·)
is quite different from that using the ARMA(1, 1) structure for ηi(t), so the within-subject
correlation is misspecified if we just use quasi-maximum likelihood method (QL).

Table 3 shows the estimates of β1 and β2 with three different covariance structures:
working independence (Method I), our proposed method (Method II) and ARMA(1, 1)
covariance structure for ηi(t) by Fan et al. (2007) (Method IV). The estimates (β̂1, β̂2)using
Method II andMethod IV are quite different, so the ARMA(1, 1) covariance structure for
ηi(t) is misspecified. Finally, the effects of age on the mean CD4 percentage is negative
if we assume working independence (Method I) but is positive if we use more efficient
estimation method.

6.2. Case 2: progesterone data

We now apply the proposed methods to the longitudinal progesterone data. Progesterone,
which is a reproductive hormone, is responsible for normal fertility andmenstrual cycling.
A longitudinal hormone study on progesterone collected urine samples from 34 healthy
women (control group) in a menstrual cycle on alternative days, see Sowers et al. (1998).
A total of 492 observations were made in this study, with between 11 and 28 observations
per subject. The observation time is divided by 30 so that the rescaled observation time t
is in between 0 and 1.

Similar to the procedure by Zhang, Lin, Raz, and Sowers (1998), a logarithmic transfor-
mation is applied on the progesterone level to make the data homoscedastic. We take the
response to be the difference between the jth log-transformed progesterone level measured
at rescaled time ti,j and the individual’s average log-transformed progesterone level. For the
ith subject, let Xi and Zi denote age and body mass index, both of which are standardised
to have mean 0 and standard deviation 1. We consider the semiparametric model

Yi(ti,j) = α1(ti,j)+ β1Xi(ti,j)+ β2Zi(ti,j)+ ηi(ti,j)+ ζi(ti,j). (31)

We apply a multifold cross-validation method to select a bandwidth h1 for α1(t). We parti-
tion the data into 17 groups, and each group contains 2 subjects. We fit model (31) for the
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Figure 3. (Real data case 2) Panel (a): cross-validation score; panel (b): estimate of α1(t); panel (c): esti-
mate of σ(t); panel (d): estimated covariance function R̂η(·, ·) using our proposed method for ηi(t);
panel (e): adjusted covariance function estimator R̃η(·, ·) based on (21); panel (f ): estimated covariance
function R̂η(·, ·) using ARMA(1, 1)model for ηi(t).

data excluding the kth-group for each k = 1, . . . , 17. For the computational issue, we min-
imise the cross-validation (CV) score on a rough grid h1 ∈ {0.1κb : b = 0, . . . , 12}, here we
choose κ = 0.9. From Figure 3(a), the resulting optimal bandwidth is hopt1 = 0.043. As for
the estimation ofσ 2(t), this is a one-dimensional kernel regression of the squared residuals.
In this application we directly use the plug-in bandwidth selector (Fan and Gijbels 1996)
and choose the bandwidth hopt2 = 0.096.

The resulting estimate of α1(t) is depicted in Figures 3(b). The shape of intercept func-
tion implies an overall trend of progesterone level over time. The resulting estimate of
σ(t) in Figure 3(c), indicates that σ(t) seems to be increasing as time increases from
0 to 0.6. This means predicting the progesterone level becomes harder and harder over
time. Figure 3(d–f) show the estimates R̂η(·, ·), R̃η(·, ·) using our proposed method and
the estimate R̂η(·, ·) based on ARMA(1, 1) structure for ηi(t), which characterises the
within-subject dependence. From the plot, our estimate of the covariance function is
quite complicated and different from the ARMA(1, 1) or AR(1) covariance structure for
ηi(t), so the within-subject correlation is misspecified if we use quasi-maximum likelihood
method (QL).

Table 4 shows the estimates of β1 and β2 with four covariance structures: working
independence (Method I), our proposed method (Method II), ARMA(1, 1) covariance
structure for ηi(t) (Method IV), andMixedmodel by Zhang et al. (1998), which is a special
case of (6). The values of (β̂1, β̂2) between Method II and Method IV are quite different,
showing that the ARMA(1, 1) structure for ηi(t) is misspecified. Finally, the effects of age
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Table 4. (Real data case 2) Compare estimates of β using different methods.

Method I Method II Method IV
Mixed model (Zhang

et al. 1998)

β̂1 0.082 −0.009 0.068 0.925
β̂2 −0.117 −0.187 −0.099 −2.913

on the mean progesterone level is negative if we use our proposed method (Method II),
but is positive if we assume other three methods.

7. Conclusion

In this article we proposed a class of nonparametric models for the covariance function of
longitudinal data at irregular or subject-specific time points. We further developed an esti-
mation procedure for σ 2(t) = R(t, t) using local linear regression, estimation procedure
for Rη(t1, t2) using regularisation approach, and estimation procedure for regression coef-
ficients α(t) and β using profile weighted least squares. We also showed that the varying-
coefficient temporal mixed-effects model is a good approximation of the semiparametric
varying-coefficient partially linear model.

Although we just focused on analysing the longitudinal data at irregular or subject-
specific time points, our proposedmethod can also be applied to equally-spaced or regular
time points. In this balanced case, directly estimating the ‘covariance matrix’ of the errors
may be better than estimating the ‘covariance function’ of the errors, but our method
continues to work reasonably well and will not lose much efficiency.

Several issues are desirable for future research. First, in the presence of outliers, one
should consider a robust method to estimate α(t) and β instead of using profile weighted
least squares. Second, in the simulations and real data examples we just checked the plots
of the estimated covariance functions and argued that the covariance function for ηi(t)
cannot be estimated by any parametric model such as AR(1) or ARMA(1, 1) model. It is
better to develop a new procedure to test whether the covariance structure for ηi(t) has a
parametric form such as ARMA(1, 1) model. This research topic is beyond the scope of
this article and further research is needed.
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Appendix. Conditions and proofs of main results

The following technical conditions are imposed. They are not the weakest possible conditions,
but they are imposed to facilitate the proofs. For notational convenience, given a vector α =
(α1, . . . ,αp)T , define |α| = (|α1|, . . . , |αp|)T .

C1. The density function fT(·) is Lipschitz-continuous and bounded away from 0 and infinity. The
function K(·) is a symmetric density function with a compact support.

C2. nh81 → 0 and nh21/{log(n)}3 → ∞ as n → ∞.
C3. E{X(t)X(t)T} and E{X(t)Z(t)T} are Lipschitz-continuous.
C4 α(t) has a continuous second derivative.
C5. Ji has a finite moment-generating function in some neighbourhood of the origin. In addition,

E{‖X(t)‖4} + E{‖Z(t)‖2} < ∞.
C6. σ 2

ζ (·) has a continuous second derivative, and E{ε(t)4+δ0} < ∞ for some δ0 > 0.
C7. h2{log(n)}2 → 0 and nh2/ log(n) → ∞ as n → ∞.

Proof of Proposition 4.1.: First, By Fan et al. (2007, Theorem 1 and result (A.1), (A.2)), we have

β̂
ini − β◦ = OP(n−1/2) (A1)

sup
t∈T

∣∣̂αβ(t)− α◦(t)+ [
E{X(t)X(t)T}]−1[E{X(t)Z(t)T}](β − β◦)

∣∣ = OP(cn), (A2)

where cn = h21 + {− log(h1)/(nh1)}1/2, β◦ and α◦(t) are true parametric and nonparametric com-
ponents. Since T is compact, together with condition C3 and (A1),

sup
t∈T

∣∣ [
E{X(t)X(t)T}]−1[E{X(t)Z(t)T}](β̂ ini − β◦)

∣∣ = OP(n−1/2). (A3)

Utilizing triangle inequality and (A2), (A3) yields

sup
t∈T

∣∣̂α
β̂
ini(t)− α◦(t)

∣∣ = OP(cn).

Finally, by the definition of ε̂(t) in (12) and ε(t), we have

sup
t∈T

∣∣̂ε(t)− ε(t)
∣∣ = sup

t∈T

∣∣X(t)T{
α̂

β̂
ini(t)− α◦(t)

} + Z(t)T
(
β̂
ini − β◦)∣∣ = OP(cn).

This completes the proof. �

Proof of Proposition 4.2.: Without loss of generality, suppose T = [0, 1] and fT(·) is uniform den-
sity on [0, 1]. For case (i), by Condition C5, suppose E(etJi) ≤ C for some t> 0. By Markov’s
inequality, P(Ji ≥ a) = P(etJi ≥ eta) ≤ E(etJi)/eta ≤ Ce−ta, then

P
(
max
1≤i≤n

Ji ≥ d log(n)
)

= 1 − P
(
max
1≤i≤n

Ji < d log(n)
)

= 1 − P(Ji < d log(n))n

= 1 − [
1 − P(Ji ≥ d log(n))

]n
≤ 1 − (

1 − Ce−td log(n))n
= 1 − (

1 − Cn−td)n → 0,
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when d is large enough such that td> 1. So max1≤i≤n Ji = OP(log(n)). Next let {T(1)i , . . . ,T(Ji)i } be
order statistics of {ti,1, . . . , ti,Ji}. According to statement by Feller (1971, p.42), for a given Ji,

P(T(2)i − T(1)i > 2h2, . . . ,T
(Ji)
i − T(Ji−1)

i > 2h2) = [
1 − 2h2(Ji − 1)

]Ji
+ (A4)

where [g]+ is the positive part of g. Since max1≤i≤n Ji = OP(log(n)), with probability tending to 1,[
1 − 2h2(Ji − 1)

]Ji
+ ≥ [

1 − 2dh2 log(n)
]2d log(n)
+ .

By condition C7, we have [1 − 2dh2 log(n)]
2d log(n)
+ → 1, so it is unlikely for each individual to have

more than two observations in the same neighbourhood [t − h2, t + h2]. Thus in what follows, the
ε2i (ti,j)’s can be treated as independent similar to the proof of Theorem 1 in Fan and Wu (2008). By
classic uniform convergence rates for the kernel smoother (Mack and Silverman 1982), we have

sup
t∈T

∣∣σ 2(t)− σ 2(t)
∣∣ = OP(h22 + {− log(h2)/(nh2)}1/2).

For case (ii), after we take α = 2 in Theorem 4 according to Cai and Yuan (2010), we have

lim
D→∞ lim sup

n→∞
P
(‖Rη − Rη‖2L2 > D

({log(n)/(nm)}4/5 + n−1)) = 0

that means
‖Rη − Rη‖2L2 = OP

({log(n)/(nm)}4/5 + n−1), (A5)
where m = E(Ji) is the expected number of observations within each subject. Since condition C5
implies that the first moment m = E(Ji) is finite, (A5) becomes ‖Rη − Rη‖2L2 = OP({log(n)/n}4/5),
which is exactly (26). �

Proof of Proposition 4.3.: First, note that τ ≥ 0, it is easy to show that R̃η(s, t) = ∑N
k=1 λ̂(k)I(̂λ(k) >

τ)ψ̂k(s)ψ̂k(t) defined in (21) is positive definite since all the eigenvalues of R̃η(s, t) are positive.
Secondly, note that

R̃(s, t) = R̃η(s, t)I(s �= t)+ max{̃Rη(t, t), σ̂ 2(t)}I(s = t)

= R̃η(s, t)+ max{0, σ̂ 2(t)− R̃η(t, t)}I(s = t).

Obviously the second term, max{0, σ̂ 2(t)− R̃η(t, t)}I(s = t), is positive semidefinite since it is diag-
onal and all the diagonal entries are nonnegative. So R̃(s, t) is the summation of a positive definite
and a positive semidefinite covariance function, which is of course positive definite. �
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