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MONOTONE PIECEWISE CURVE FITTING ALGORITHMS*1*

Zhang Zheng-jun Yang Zi-qiang Zhang Chun-ming
{Computing Center , Academia Sinica , Beijing, China)

Abstract

A piecewise cubic curve fitting algorithm preserving monotonicity of the data

without modification of the assigned slopes i§ proposed. The algorithm has the
same order of convergence as Yam's algorithm'8' and Gasparo-Morandi's algorithm'5'

for accurate or 0(hq) accurate given data, but it has a more visually pleatsing curve

than those two algorithms. We also discuss the convergence order óf cubic rational

interpolation for 0(hq ) accurate data.

- 1. Introduction

The problem of monotonicity preserved interpolation has been considered by a num-

ber of authors. Fritsch and Carlson'4' have obtained necessary and sufficient conditions

for a cubic Hermite interpolant to be monotone on an interval. Eisentat, Jackson and

Lewis'3' derived a fourth-order accurate algorithm which is a modification of Fritsch

and Carlson's algorithm. Beatson and Wolkowicz'1' considered monotone interpolation

schemes of the fitting and modifying type, and gave the optimal order error properties

of their algorithms. Gregory and Delbourgo'6' gave an explicit representation of a piece-

wise rational quadratic function; they also gave an explicit representation of a piecewise

rational cubic function'2'; both explicit representations produce monotone interpolation

for given monotone data. Yan'8' gave a piecewise cubic curve fitting algorithm without

modification of the assigned slopes through inserting two knots to construct a horizontal

line on a non-monotone interval. Gasparo-Morandi's algorithm'5' is a modification of

Yan's algorithm'8! , which inserts two knots to construct a slope fine on a non-monotone
interval.

Our algorithm which inserts two knots to construct two quadratic curves on a non-

monotone interval is also a modification of Yan's algorithm'8' and Gasparo-Morandi's

algorithm'5'. An 0(/i4) convergence result is obtained when the exact function and

derivative values are available; otherwise, an 0(hp) (p = min(4,ç)) convergence is
obtained for an 0{hq ) accurate function and derivative values. The proof process of

the main result is similiar to that in Yan'8' and Gasparo-Morandi'5'. We also discuss

* Received June 3, 1993.

^ The Project Supported by National Natural Science Foundation of China.
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164 ZHANG ZHENG-JUN, YANG ZI-QIANG AND ZHANG CHUN-MING

the convergence order of cubic rational interpolation with the 0(hq) accurate function

and derivative values, and an 0(hp) convergence is obtained.

The paper begins with a definition of cubic interpolant, necessary and sufficient

conditions, and construction of our algorithm. The convergence analysis of the algo-

rithm is discussed in 3. The convergence analysis of cubic rational interpolation for

0(hq) accurate data is discussed in 4. Finally, in 5, examples applied with various
interpolation methods and comparison are given.

2. The Algorithm

Let f(x) G Cl[a,b] be a monotone increasing function. Let 7r : a = x' < X2 <
••• < xn = b be a partition of the interval I = [a, 6]. Suppose that y¿ and di are
approximate values of f(x) and f'(x) at the partition points respectively. Let hi =
Xi+i - Ayi = y¿+ 1 - y¿, A* = Ay¿//ij, i = 1, 2, • • • , n. In particular we suppose that
there exists an integer q > 0 such that

Vi = f(xi) + 0(hq), di = f'(xi) + 0(hq), i = 1,2, • • • ,n (2.1)

where h = max{/i¿}. Now, we construct a piecewise cubic function s(x) G Cl[I] such
that

s(xi) = yi , s'(xi) = di, i = 1,2, • • • ,n. (2.2)
In each subinterval = [x¿,Xj+i], s(x) is defined by

Si(x) = 0* + di+¿2 - - (x-x¿)3 + - - - + 3A» (x _ x.ý + _ x.j + y. (2.3)
It is clear that a necessary condition for monotonicity is that

sgn (di) = sgn(di+i) = sgn(A¿). (2.4)
Furthermore, if A ¿ = 0, then s(x) is monotone (i.e. constant) on Ii if and only if
di = di+i = 0. The remainder of this section assumes that A¿ ^ 0 and (2.4) is satisfied.

Let = di/A{,ßi = d¿+x/A¿. Then we have the following lemmasM.
Lemma 1. If -f ßi - 2 < 0, then s(x) is monotone on Ii if and only if (2.4) is

satisfied.

Lemma 2. If + ßi - 2 > 0, and (2.4) is satisfied, then s(x) is monotone on Ii
if and only if one of the following conditions is satisfied :

(i) 2 cti + ßi + 3 < 0,

(ii) on + 2/?t - 3 < 0, or

(iii) t 0,
where <p(a, ß) = a - (2a + ß - 3)2/3(a + ß - 2).

In generad, s((x) has the following form: sļ(x) = a(x - x)2 + u, where x is the
extreme point of s¿(x). We denote ļiy t}, a; as p - x - Xj, r¡ = x¿+i - £, u> = sj(x). It is

clear that s(x) is not monotone on Ii if amd only if

0 < n, T) < hi and A ¿o; < 0. (2.5)
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Monotone Piecewise Curve Fitting Algorithms 165
Let ci < X < C2 be three inserting points on subinterval /¿. Let gi(x) =1 (x- x)/(x- ci),

gz(x) = (x - x)/(x - C2). A new interpolant ¿(x) oņ will be taken to have a derivative

S'(x) of the following form:

oi(x-Ci)2 + c, x 6 [xj,ci] ,

*<I) -// x = c9l(x), X€[ci,s], 70 {) #s'
*<I) -// x = ]«(.), .en, 70 {) #s'

o2(x - C2)2 + c, x € [c2, xi+i]

where x is the extreme point of sf(x) on u, and the constants a',a 2 and c and the
additional points c' and c2 must be determined in such a way that i(x) satisfies all
interpolation and monotonicity requirments. Two special cases of 5'(x) are given by

Yan with <71 (x) = 0, 52 (x) = 0 and by Gasparo and Morandi with <7i(x) = 1, gs(x) - 1.

From (2.6), we must choose c such that cA¿ > 0. Let

fi = ci - Xi and 77 = x<+i - c2. (2.7)
The derivative interpolation conditions can be expressed as

ūļfi2 + c = di and a2łjj2 + c = di+i. (2.8)
Based on the derivative interpolation conditions, we have actually infinitely many

choices to determine ai,02,ci,C2,c. By integrating šļ(x) and a((x) on [x¿,x¿+i], and
letting they have the same integrating value, we obtain the folowing equation:

fidi + ģdi+i + 2 (3ht + ß + v) = 3Ay¿. (2-9)
By letting ^ = - (2.10)V V
we obtain two equations that have three unknown variables. Let c be a free variable.

We can determine p and rj (i.e. ai,a2,ci,C2) from (2.9) and (2.10). In fact, the
linear system (2.9)-(2.10) has a unique solution if and only if its determinant Di =
-{dig, + di+iT) + chi/ 2) ^ 0. In this case we obtain the following solution:

fi = p(c)n and Ą = p(c)r¡ (2.11)
where p{c) - 3(A¿ - | )/(9 + |), and 0 = (d¿/i + di+'T])/hi. In order to ensure that
Xi < c' < x < C2 < xi+i, we must determine c such that 0 < p(c) < 1 and cA¿ > 0. For
this purpose, by integrating s((x) on and using interpolation properties we obtain
the relation

dtp. + di+iTļ + 2 uhi = 3A yļ. (212)
For increasing data, we have tv < 0 < A¿ < 2 A< < 3A¿ < 0 and p(c) is a monotone
decreasing function such that 0 < p(c) < 1 for c € [0, 2A¿]. For decreasing data, we

also obtain 0 < p(c) < 1 for c € [2Aj,0].

In conclusion, s'(x) can be determined in the following way. We choose a value of

c in the interval [0, 2A¿] or [2A«,0] for increasing or decreasing data respectively. Then
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166 ZHANG ZHENG-JUN, YANG ZI-QIANG AND ZHANG CHUN-MING

we can determine ai,a?,ci,C2 from (2.6) and (2.7) and 5¿(x) is obtained. Finally, by
integrating 5((x) on Ii, i,(x ) can be obtained.

3. The Convergence Order of Cubic Interpolant

We shall show that the algorithm described in Section 2 gives an 0(hp) convergence

order. We discuss only the case when f(x) is nondecreasing. Let || • || denote the
uniform norm on I. Let m(x) be defined by

f Si(x), Si(x) is monotone on L,m(x) - < (3.1)
I Si(x), otherwise

for X € [x¿, x»+i], » = 0, 1, • • • , n. We have the following convergence theorem.

Theorem 3.1. Let f(x)€ C4[a,b] andp - min(4, q). If (2.1) holds and the variable
c in S»(x) satisfies

0 < c < min(| a; |, 2A¿), (3.2)
then for each interval Ii, we have || f(x) - m(x) ļļ= 0(hp).

Proof. Let t(x) be a cubic interpolant for exact /(x j), /'(xj) on /¿. It is well-known'8'
that

II / - ( 11= O(h'), II f - ť ||= 0(h3). (3.3)
Note that both t(x) and a¿(x) are cubic polynomials. By using the triangular inequality
we have

II / - * 11= O(W), II /' - s' 11= 0(V-'). (3.4)
If m(x) = 8i(x) on /», we complete our proof. Now let m(x) = S»(x) on we have

» f-m ||=|| / - 5, ||<|| / - * H + H * - it » . (3.5)

From (3.4), we need to estimate || s¿ - ||. For this purpose, we haverx fxi+ 1
||«i-*||</ ''s'i-~s'i''dy< J ||-5-ÍM^<Âi#-í-iíl|. (3-6)Jxi J Xi

Let us find the super value of | sļ(x) - 5j(x) | on [x¿,x]. (For the same reason, we can

find the super value of | «¿(x) - 5j(x) | on [x, x¿+i]). Let D(x) be defined by D(x) =
s'i(x) - s'i(x), x € [xj,x], because sj(x) can be expressed as s¿(x) = a(x - x)2 + u>,
where o € 5ř such that

o/ł2 + lo = di. (3-7)
D{x) has the following form

£)(x) _ i °(x - f)2 + w - ai(x - ci)2 - c> x € N, ci] ,
' o(x - x)2 + u> - cg' (x), x € [ci,x] .

Firstly, we consider the values of D(x) on [cx,x]. From (3.8), we know that D(x) €
C[xi,$'. Then D(x) has its extreme values on [x/,x]. Because u < 0, (3.7) means
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Monotone Piece wise Curve Fitting Algorithms 167
a > 0. Let Ď(x) = o(x - x)2+ | u; ļ +C0i(x). ļ D(x) |< Ď(x). Ď(x) has an inf value
on 5ř. Let &{x) = 0. We obtain the extreme point of D(x) as x = X + c/(2a(x - ci)).
Because x > x, x is located on the right side of subinterval [ci,x]. D(x) is monotone
decreasing on [ci,x]. Its extreme points are the end-points of subinterval [ci,x]. For

right end-point x, we have D(x) =| u, I . (3.9)
The estimation of | D(ci) | will be discussed after the estimation of the supervalue of

I D(x) I on subinterval [x¿, ci] is discussed.

Because D(x¿) = 0, we assume that the maximum value of | D(x) | on [xj, ci] is at

xo, where xo € (x<,ci). We have the following relation:

o(xo - x) - ai(xo - ci) = 0. (3.10)
FVom (3.7) and (3.10), we have

I D(x o) |<| u I +c + (di+ ļ u; I) I x - ci I //*. (3.11)
It is obvious that 0 < < 1. We have

x-ci _ -2 uhj + 2 chj < (2c - 2 u)hj ļ2
H dm + di+iTļ + chi/2 dm + di+irļ'

If 0 < di < di+i» we h&ve

T-A
dui + di+iV di{n + ti) T T' di

If di > di+ 1 > 0 , we have 0 < t¡ < ķ < fi and

dui + di+iTi dm di
Fïom (3.13) and (3.14) we have

I * - ci I < 2 1 2c - 2u; I < 4c + 4 | a; ļH ~ di ~ di
From (3.12) and (3.15) we have

I D(x o) |< 5 I u; I +5c + 4 I u; I (I a; I +c)/d¿. (3.16)

If di >ļ u I +c, we have

I L>(xo) |< 9 I u; I +5c < 9(1 o; I +c). (3.17)
If di <| w ļ +c, we have

I D{x) |<| S-(x) I + I s-(x) |< max(c,dj) + <k < 2(| u ' +c). (3.18)

From (3.16) and (3.18) we have

II s'i - i'i II < 9(| w I -He), x e [xi,ci]. (3.19)
Now, we discuss the estimation of | D(c') |. From (3.15) we have -

I D(c i) |<| a; I +c -H 16((| a; | +c)2M+ | a; | ((| a; | +c)M)2). (3.20)
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168 ZHANG ZHENG-JUN, YANG ZI-QIANG AND ZHANG CHUN-MING

If di >| u) I +c, we have

I D(cx) |<| u I +c + 16(2 I u I +c) < 33(1 u | +c). (3.21)

If di <| u) I +c, we have

I Did) |<| 3(d) I + I 3(ci) l< 2(1 « I +c). (3.22)
From (3.9), (3.19) and (3.22) we have

I D(x) |< 33(| u I +c) X € [xi, x]. (3.23)
We have | u> |=| a¿(x) |<| sj(x) - /'(*) l<ll 3 - S' 11= 0{hp~l) and c <| u; |< 0(hp_1).
FVom (3.23), (3.6), (3.5), (3.4) and the definition of D(x) we obtain || - 5J ||= 0{hF~x),

II si ~ 5i ||= 0[hp) and complete the proof of Theorem 3.1.

4. The Convergence Analysis of Cubic Rational Interpolation
for an 0(hq) Cccurate Function and Derivative Values

We take the code of Section 3 and assumptions (2.1) and (2.4). Furthermore, let

parameter > -1. A piecewise cubic rational interpolation z(x) for the exact function
and derivative values on Ii is defined by= Í4-1)
where 9 = (x - x¿)/hi, p(0) = fi+i(P + (rť/i+ 1 - hif-+1)92(l - 0) + ( nfi + hif-)9(l -
0)2 -I- /¿(1 - 9)3, q(0) = 1 + (ri - 3)0(1 - 6). A piecewise cubic rational interpolation
¿(x) for the 0(hfl) accurate function and derivative values on U is defined by

ž(x) = x ^ [*¿»*<+i] (4*2)
where p(0) = yi+ 1Ö3 + (rťyi+i - Mí+i)02(1 - 9) + (nyi + hidi)9( 1 - 9)2 + y<( 1 - 9)3.
Furthermore z(x) and z(x) have the following interpolation properties:

z(xj) = fi, z(xj^-i) = /¡+1, z (xj) = fi, z (xj+i) = fi+i (4*3)
ž(xi) = Vi, ž(xi+ 1) = Vi+i, ž'(xí) = di, i'(x¿+i) = di+ 1. (4.4)

d% ^
When > - , z(x) is monotone increasing[2]. We observe that the cubic
rational interpolation z(x) and i(x) will degenerate into cubic interpolants s(x) and
5(x) when = 3. In the remainder of this section we discuss the limit behavior of
f(x) - z(x) when h - ► 0. Firstly, we give a lemma from [6]. Then we introduce our
two lemmas.

Lemma 4.1 Let /(x) € C4[a, 6]. If (4.3) holds, then

I /<*) - *<*) l<{*? II /(4) II (1+ I r, - 3 I /4) + 4 I r< - 3 | (A? || /<»> ||

+ 3^ II fm 11)1/384«, 16 [xi.Xi+ll (4.5)
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Monotone Piecewise Curve Fitting Algorithms 169
where

$ * =f (1 + r*)/4' if -Krt <3,* I 1, ifn > 3.
Lemma 4.2. Under the assumption of Lemma 4.1, if r<- 3 = 0(h'), then || f-z ||=

0(Kil), where m - min(4,/ 2).
Lemma 4.3 If (2.1) holds and r ¿ - 3 = O(h'), then || z - z ||= 0(hq).
Proof we can express (2.1) as

yi = fi + ei, ei = 0(hq), di = f¡ + e¡, e¡ = 0(hq). (4.6)
Then,

I *(*) - *(*) l<{| e.+i I +2 I r¡ Il ei+i I/9 + 2M e',+1 | /9+ | n || e¡ | /8

+ »< I eil /8+ I « |}/«(»). (4.7)
Finally,

I *(«) l>( I 1~(3_ 1, r<)/4' if " > 3. ť 3' (4.8)I 1, if > 3.
Combining (4.6), (4.7) and (4.8) complete the proof of the lemma.

From Lemma 4-2 and Lemma 4.3 we have

Theorem 4.1. Let r¿ - 3 = 0(h'). If (2.1) holds, then

II f -z ||= 0{bF), (4.9)
where p = min(4, q, I + 2).

A direct consequence of Theorem 4.1 which is similiar to Theorem 3.1 is the following
corollary.

Corollary 4.1. Let r ¿ - 3 = 0(/i?). If (2.1) holds, then

H f-z ||= 0(h"), (4.10)
where p = min(4, q).

To ensure that r ¿ - 3 = 0(h¿), a suggested selection is r< = 1 + ~^*+1 in [6].
¿If

5. Numerical Examples and Conclusion

In this section, we compare the results of the method described in Section 2 with

those of Yan's algorithm, Gasparo-Morandi's algorithm and cubic rational interpolation

for two of the typical data sets considered in the literature. The derivative values

are approximated by a four point formula in [8]. In order to satisfy (3.2) we choose

c = 0.95min(| u> |, 2Aj) on non-monotone subintervals. Figures are drawn by GS
system[9] on IBM4341 computer.
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170 ZHANG ZHENG-JUN, YANG ZI-QIANG AND ZHANG CHUN-MING

The first data set, used in Figs. 1-4, is from Akima in [4] , namely

X I 0 I 2 I 3 I 5 I 6 I 8 I 9 11 | 12 14 | 15
y 10 10 10 10 10 10 10.5 15 50 60 85

Fig.l. Yan's algorithm Fig.2. Gasparo-Morandi's algorithm

Fig. 3. The algorithm Fig. 4. Cubic rationed interpolation
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Monotone Piecewise Curve Fitting Algorithms 171
The second data set, used in Figs. 5-8, is from RPN14 in [4], namely

X 7.99 8.09 8.19 8.7 9.2
y 0 2.76429E-5 4.37498E-2 0.169183 0.469428

Fig.5. Van's algorithm Fig.6. Gasparo-Morandi's algorithm

Fig.7. The algorithm Fig.8. Cubic rational interpolation

~X 10 I 12 I 15 I 20
y 0.943740 0.998636 0.999919 0.999994

For those two typical data sets, we see that both the algorithm and cubic rational

interpolation produce visually pleàsing curves. When the slopes of the data change

abruptly, the graphs of the algorithm are similiar to cubic rational interpolation, but

the graphs produced by other methods are not. From this character and the good error

bounds, we can say the algorithm is better. A successful application of the algorithm
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for variate generation has been given in [10].
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