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Abstract Variable selection has played an important role in statistical learning and scientific discoveries

during the past ten years, and multiple testing is a fundamental problem in statistical inference and also has

wide applications in many scientific fields. Significant advances have been achieved in both areas. This study

attempts to find a connection between the adaptive LASSO (least absolute shrinkage and selection operator) and

multiple testing procedures in linear regression models. We also propose procedures based on multiple testing

methods to select variables and control the selection error rate, i.e., the false discovery rate. Simulation studies

demonstrate that the proposed methods show good performance relative to controlling the selection error rate

under a wide range of settings.
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1 Introduction

The classical linear regression model is written as follows:

Y = β0 +X1β1 + · · ·+Xpβp + ε, (1.1)

where Y is the response variable, (X1, . . . , Xp) are the potential explanatory variables, and ε is noise with

mean zero and variance σ2. To increase prediction accuracy and facilitate model interpretation, many

methods have been developed to exclude insignificant predictors. Prior to 1990, traditional methods were

used for model selection, such as the Akaike information criterion, the Bayesian information criterion, and

stepwise selection techniques. In 1996, Tibshirani [16] proposed the LASSO, a simultaneous estimation

and variable selection method that solves the l1-penalized regression problem of finding {βj} to minimize

n∑
i=1

(
yi − β0 −

∑
j

xijβj

)2

+ λ

p∑
j=1

|βj |,
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where (y1, . . . , yn) and (x1j , . . . , xnj), j = 1, . . . , p are the observations of Y and Xj , respectively. Note

that extensions to the LASSO are described in the literature [19,20,23,24]. To address the inconsistency of

the LASSO, the adaptive LASSO, which achieves an oracle property, has been developed [23]. Many other

popular methods, such as smoothly clipped absolute deviation [10], least angle regression [8], boosting

[3], the Dantzig selector [5], and nearly isotonic regression [17] have been proposed.

Benjamini and Hochberg [2] proposed a framework to control the expected proportion of false rejec-

tions in a multiple hypothesis testing problem, and it has been claimed that this framework gains more

applicable power for calling for false discovery rate (FDR) control rather than the family-wise error rate

(FWER). Compared to the FWER, the FDR is a less conservative quantity to control, particularly with

a large number of tests. Recently, multiple hypothesis testing for FDR control has received significant

attention. Storey [14] first proposed a point estimate for the FDR in realistic applications and improved

Benjamini and Hochberg’s procedure by estimating the number of true null hypotheses, which appears to

be more effective, flexible, and powerful. Zhang [21] considered mean and median filters in their FDRL

procedure to alleviate the “lack of identification” phenomenon of the FDR procedure that occurs with

large-scale imaging data. Other FDR studies can be found in the literature [7, 9, 11, 15, 22]. Variable

selection methods that use a multiple testing procedure can also be found in the literature [4,12]. These

studies achieved consistent variable selection via a pre-specified level α that tends to zero as sample sizes

tend to infinity in high-dimensional linear regression.

Although many methods for variable selection in linear models can select predictors due to an oracle

property, to the best of our knowledge, most methods cannot control the selection error rate under finite

sample sizes using a selection tuning parameter. However, there are some exceptions. For example,

Wasserman and Roeder [18] controlled the FWER for regression coefficients using a t-statistic based

on multi-stage screening, and Meinshausen et al. [13] split data into two parts and applied adjusted

p-values to control the FWER and FDR when the sample size n tends to infinity. Barber and Candes [1]

constructed a knockoff-filter method to control the FDR under finite sample settings. However, the

knockoff-filter appears to be inefficient for the non-sparse case (i.e., when the proportion of non-null

effect βj is large). Moreover, when the sample size satisfies p < n < 2p, the knockoff-filter method

forms a (2p− n)-dimensional vector y′ with independent and identically distributed (i.i.d.) components

from N(0, σ̂2), where σ̂2 estimates noise level σ. Then, the knockoff-filter method augments the response

vector y = (y1, . . . , yn) with y′ and the design matrix X with 2p−n rows of zeros, which leads to a linear

model with 2p observations. Therefore, the estimate σ̂ has a significant effect on knockoff performance.

Differing from previous studies, this study attempts to find a connection between the adaptive LASSO and

multiple testing procedures in linear regression models. In addition, we also attempt to select variables

and control the selection error rate via multiple testing methods.

The remainder of this paper is organized as follows. Section 2 describes our motivation, establishes the

connection between the adaptive LASSO and multiple hypothesis testing procedures in linear models,

and proposes testing procedures to control the FDR for variable selection. Section 3 extends the testing

procedures to control the FDR for variable selection in generalized linear models. Simulation results are

given in Section 4, and Section 5 provides a practical data analysis. Conclusions and suggestions for

future work are given in Section 6.

2 Multiple testing procedures for variable selection in linear models

2.1 Motivation

Assume that data {(yi, xi1, . . . , xip), i = 1, . . . , n} for n individuals are from the following linear model:

yi = β0 + xi1β1 + · · ·+ xipβp + εi, (2.1)

without loss of generality, and the intercept term is set to zero. For simplicity, we have

Y = Xβ + ε, (2.2)
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where Y = (y1, . . . , yn)
T, y1, . . . , yn are independent response samples, and X+j = (x1j , . . . , xnj)

T (j =

1, . . . , p), X = (X+1, . . . ,X+p), β = (β1, . . . , βp)
T, ε = (ε1, . . . , εn)

T, and ε1, . . . , εn are i.i.d. random

samples with mean 0 and variance σ2. In this paper, we consider the case of n > p with fixed p.

Then, β̃ = (β̃1, . . . , β̃p)
T = (XTX)−1XTY is the least square estimator of the parameter vector β and

σ̂2 = (Y −Xβ̃)T(Y −Xβ̃)/(n− p) is an unbiased estimator of σ2. Let A be the set of indices satisfying

A = {j |βj ̸= 0, j = 1, . . . , p}, which indicates the true active set.

Then, we show a connection between the adaptive LASSO and multiple testing procedures. By trans-

formation (2.2), we have √
nβ̃ =

√
nβ +

√
nε̃, (2.3)

where ε̃ = (XTX)−1XTε. Note that ε̃ is distributed with mean 0
¯
and covariance matrix σ2n−1C−1

n

conditioned on X, where Cn = n−1XTX. Furthermore, assume that Cn = (Cn
ij)

p
i,j=1 = n−1XTX

p→ C,

C is a positive definite matrix, and the inverse C−1
n = (Cij

n )pi,j=1

p−→ C−1. Then, the proposed estimate

is given as follows:

β̂t = argmin
β

{
β : f(β) = n∥β̃ − β∥2 + λn

p∑
j=1

wj |βj |
}
, (2.4)

where ∥·∥ denotes the L2 norm, {wj , j = 1, . . . , p} are weights, and λn is a non-negative tuning parameter.

By Kuhn-Tucker conditions, we have

∂f(β)

∂βj
= 2n(βj − β̃j) + λn · wj · sgn(βj) = 0

for j = 1, . . . , p, where sgn(·) is the sign function. Then, we have βj > 0 ⇔ nβ̃j/wj > λn/2 and

βj < 0 ⇔ nβ̃j/wj < −λn/2. It follows that

n|β̃j |/wj > λn/2 ⇔ βj ̸= 0.

For simplicity, weights wj are taken as wj = Cjj
n σ̂2/|β̃j |. Then, the adaptive LASSO selects the variables

from (2.4) as follows: Â = {j |n|β̃j |2/(Cjj
n σ̂2) > λn/2}.

In fact, for the multiple testing problem

H0j : βj = 0 vs. H1j : βj ̸= 0, j = 1, . . . , p,

the selected predictors also satisfy {j | t2(j) > cj}, where t2j = n|β̃j |2/(Cjj
n σ̂2), and t21, . . . , t

2
j are ordered

as t2(1), . . . , t
2
(j), and cj is determined by a previously reported procedure [2] to control FDR because

√
nβ̃j/

√
Cjj

n σ̂2 d−→ N(0, 1)

under H0j . Then, it can be seen that the adaptive LASSO and the multiple testing procedure are very

similar. The difference is related to the tuning parameter λn and threshold cj , where the tuning param-

eter λn is determined by a cross-validation method and cj is determined by a multiple testing procedure

where FDR is controlled at a pre-specified level α. It is well known that the threshold cj = Φ2(1− jα
2p ) for

the Benjamini-Hochberg (BH) procedure when the statistic
√
nβ̃j/

√
Cjj

n σ̂2 is approximated to Gaussian

distribution; therefore, if we determine that λn is equal to cj after ordering statistic n|β̃j |2/(Cjj
n σ̂2), there

is equivalence between (2.4) and the BH procedure.

Therefore, we propose methods to select predictors based on multiple testing procedures.

2.2 Multiple testing procedures for variable selection in linear models

First, we review multiple testing procedures to control the FDR, i.e., the BH [2], Storey [14], and Z-

mean [21] methods. Here, let p1, . . . , pp be p-values from the following multiple testing problem:

H0j : βj = 0 vs. H1j : βj ̸= 0. (2.5)
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Without loss of generality, we assume that ij satisfies pij = p(j), where (i1, i2, . . . , ip) is a permutation

of (1, . . . , p) and p(k) is the k-th largest p-value. Then, the BH procedure at level α finds the greatest k

such that p(k) 6 k
pα and rejects all H0ij for j = 1, . . . , k.

The BH procedure represents a new perspective for the multiple-hypothesis testing error measure

problem, which is a sequential p-value method to control the FDR at (m0/p)α (m0 denotes the number

of true null hypotheses). However, a weakness of the BH procedure is that the error rate is controlled for

all values of m0 simultaneously without using any information about m0 in the data. Storey [14] proposed

a point estimate of the FDR and provided finite and large sample results for consideration relative to

realistic applications. In addition, Storey presented an estimate of m0. The procedure at level α can be

described as follows:

• Give a pre-specified 0 < ω < 1, e.g., ω = 0.1;

• Define the threshold as follows:

tα(F̂DRω) = sup{0 6 t 6 1 : F̂DRω(t) 6 α},

where

F̂DRω(t) =
m̂0t

{R(t) ∨ 1}
, W (ω) = p−R(ω), R(t) = #{pi : pi 6 t}, and m̂0 = W (ω)/{(1− ω)};

• Reject H0j if pj 6 tα(F̂DRω).

As can be seen, the above Storey procedure is essentially a threshold-based approach for multiple

testing problems, where the data-driven threshold tα(F̂DRω) plays an important role. In addition, a

null hypothesis is rejected if the corresponding p-value is less than or equal to the threshold tα(F̂DRω).

It can also be seen that tα(F̂DRω) depends on both the estimates F̂DRω(t) and the control level α,

and tα(F̂DRω) is a nondecreasing function of α. This indicates that, when α is reduced to less than

inf0<t61F̂DRω, the threshold tα(F̂DRω) will drop to zero in the Storey procedure. Accordingly, the

Storey FDR procedure can only reject hypotheses with p-values that are exactly equal to zero. This

phenomenon is referred to as “lack of identification”. Zhang [21] proposed using a mean filter in the

FDRL procedure to alleviate the “lack of identification” phenomenon that occurs in the FDR procedure.

The Z-mean procedure at level α is described as follows:

• Give size k, where k is a positive integer;

• Let Ni be a set of indices of the neighborhood points of pi with size k;

• By the mean filter, obtain p∗i = mean({pj : j ∈ Ni});
• Define the threshold as follows:

tα(F̂DRL) = sup{0 6 t 6 1 : F̂DRL(t) 6 α},

where F̂DRL(t) = W∗(ω)Ĝ∗(t)

{R∗(t)∨1}{1−Ĝ∗(ω)}
, W ∗(ω) = p − R∗(ω), R∗(t) = #{p∗i : p∗i 6 t}, and Ĝ∗(t) is the

empirical distribution function of p∗1, . . . , p
∗
p, which is constructed as follows:

Ĝ∗(t) =


∑p

i=1 I{p∗i > (1− t)}
2
∑p

i=1(p
∗
i > 0.5) +

∑p
i=1 I(p

∗
i = 0.5)

, if 0 6 t 6 0.5,

1−
∑p

i=1 I{p∗i > t}
2
∑p

i=1(p
∗
i > 0.5) +

∑p
i=1 I(p

∗
i = 0.5)

, if 0.5 < t 6 1;

• Reject H0j satisfying p∗j 6 tα(F̂DRL).

Compared with the Storey procedure, the original p-values in the Storey method are replaced by “local

aggregated” p∗-values.

In the following, we proposed three new selection procedures.

As
√
nβ̃j/

√
Cjj

n σ̂2 d−→ N(0, 1) under H0j , p-values can be defined as follows:

pj = P(T > |tj |), j = 1, . . . , p,
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where T
d−→ N(0, 1) and ti is the observation of

√
nβ̃j/

√
Cjj

n σ̂2. Then, the permutation of p-values is

p(1) 6 · · · 6 p(p).

Without loss of generality, assume that ij satisfies pij = p(j), where (i1, i2, . . . , ip) is a permutation of

(1, . . . , p). Then, the BH selection procedure at level α can be described as follows:

• By the BH procedure to control the FDR, find the k-th largest p-value such that p(k) 6 k
pα;

• Let estimate Â of A be {ij , j = 1, . . . , k}.
The Storey selection procedure at level α can be described as follows:

• By the Storey procedure to control the FDR, obtain the threshold tα(F̂DRω);

• Let estimate Â of A be {j : pj 6 tα(F̂DRω)}.
The Z-mean selection procedure at level α can be described as follows:

• By the Z-mean procedure to control the FDR, obtain the threshold tα(F̂DRL);

• Let estimate Â of A be {i : p∗i 6 tα(F̂DRL)}.
Theorem 2.1. If n−1XTX

p−→ C, where C is a diagonal matrix, then the BH selection procedure at

level α satisfies that the error rate selecting insignificant predictors as significant predictors at level α

asymptotically approaches (m0/p)α 6 α, where m0 is the number of zero βj (j = 1, . . . , p).

Proof. Note that
√
n(β̃ − β) ∼ N(0, σ2C−1

n ). Then, let T̃j =
√
nβ̃j/

√
Cjj

n σ̂ and Tj =
√
nβ̃j/

√
Cjj

n σ.

Here, T̃j − Tj =
√
nβ̃j/

√
Cjj

n ( 1σ̂ − 1
σ ). As σ̂ is a consistent estimator of σ, then T̃j − Tj

p−→ 0 as

n → ∞. Moreover, we have Cov(Ti, Tj) = Cij
n /

√
Cii

nC
jj
n . When C is a diagonal matrix, for any i ̸= j,

Cov(Ti, Tj) = 0 as n → ∞, we know that T1, . . . , Tp are asymptotically mutually independent due to

normality. Then, (T̃1, . . . , T̃p) has the same asymptotic distribution as (T1, . . . , Tp) and the vector’s

components are asymptotically independent. Define pj = P(T̃j > |t̃j |). Thus, the p-values p1, . . . , pp are

asymptotically mutually independent. By the proof of [2], we find that the error rate selecting insignificant

predictors as significant predictors among the total rejections asymptotically approaches (m0/p)α 6 α,

where m0 is the number of zero βj (j = 1, . . . , p).

Remark 2.1. Theorem 2.1 shows that we can control the FDR with a pre-specified α under a diagonal

covariance structure from the BH multiple testing procedure, which is a limitation in real applications.

Therefore, Theorem 2.2 indicates that, under an arbitrary dependence structure, the BH procedure

demonstrates a consistent variable selection property; however, the asymptotic variance of the non-zero βj

is greater than that reported in a previous study [23].

2.3 Theoretical properties of new selection of the smoothing parameter based on FDR

Theorem 2.2. As λn/
√
n → 0, λn → +∞. Assume that 1

nX
′X

p→ C with a positive matrix C. Then,

under model (2.1), we have
√
n(β̂t

A − βA)
d−→ N(0, σ2C−1

11·2),

where A is the index set satisfying A = {j |βj ̸= 0, j = 1, . . . , p}, C11·2 = C11 −C12C
−1
22 C21, and

C =

(
C11 C12

C21 C22

)
.

Proof. To prove asymptotic normality, let β + u√
n
substitute β in function f(β), which is defined in

(2.4); thus, we have

fn(u) = n

∥∥∥∥β̃ −
(
β +

u√
n

)∥∥∥∥2 + λn

p∑
j=1

wj

∣∣∣∣βj +
uj√
n

∣∣∣∣,
ûn = argminfn(u). Then, β̂

t = β+ ûn√
n
and ûn =

√
n(β̂t −β). Note that fn(u)− fn(0

¯
) = Vn(u), where

Vn(u) = uTu− 2
√
nϵ̃Tu+ λn

p∑
j=1

wj

(∣∣∣∣βj +
uj√
n

∣∣∣∣− |βj |
)
.
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If βj ̸= 0, then
√
n(|βj +

uj√
n
| − |βj |) → ujsgn(βj) and wj

p−→ Cjjσ
2

βj
. By Slutsky’s theorem, we have

λn√
n
wj

√
n(|βj +

uj√
n
| − |βj |) → 0. If βj = 0, then

√
n(|βj +

uj√
n
| − |βj |) → |uj | and λn

Cjjσ
2

√
n|β̃j |

→ ∞ as
√
n|β̃j | = Op(1). Thus, by Slutsky’s theorem, Vn(u)

d−→ V (u) for every u where

V (u) =

{
uT
AuA − 2uT

A
√
nϵ̃TA, if uj = 0, ∀ j /∈ A,

∞, otherwise.

The unique minimum of V is (
√
nϵ̃A,0), and we know that

√
nϵ̃

d−→ N(0, σ2C−1) where

C−1 =

(
C−1

11 +C−1
11 C12C

−1
22·1C21C

−1
11 −C−1

11 C12C
−1
22·1

−C−1
22·1C21C

−1
11 C−1

22·1

)
,

C22·1 = C22 −C21C
−1
11 C12, and C−1

11·2 = (C11 −C12C
−1
22 C21)

−1 = C−1
11 +C−1

11 C12C
−1
22·1C21C

−1
11 . Thus,

we obtain ûnA
d−→ N(0, σ2C−1

11·2) and

√
n(β̂t

A − βA)
d−→ N(0, σ2C−1

11·2).

We can also demonstrate that P(j ∈ Â) → 0 (∀ j ∈ Ac) by the following algebraic calculations. If j ∈ Â,

we have 2n(β̃j − βj) = λnwj and λnwj/
√
n → ∞ because

√
n(β̃j − βj) converges to normal distribution.

Thus, we have P(j ∈ Â) 6 P(2
√
n(β̃j − βj) = λnwj/

√
n) = 0 and P(Â = A) = 1.

Lemma 2.1 (See [23, β̂A in Equation (4)]). As λn/
√
n → 0, λnn

−(γ−1)/2 → +∞, where wj =

1/|β̂j(ols)|γ with the ordinary least square estimate β̂j(ols). Here, assume that 1
nX

′X
p→ C with a

positive matrix C. Then, we have

√
n(β̂A − βA)

d−→ N(0, σ2C−1
11 ).

Remark 2.2. Our estimator
√
n(β̂t

A−βA) has greater asymptotic variance than the adaptive estimator√
n(β̂A − βA) because C−1

11·2 > C−1
11 . Furthermore, when C is diagonal, the proposed procedure is

equivalent to the adaptive LASSO [23].

3 Multiple testing procedures for variable selection in generalized linear
models

A generalized linear model assumes that the data of n individuals have the following density function:

f(yi |xi,β) = exp

(
yi · θi − b(θi)

ϕ/τi
+ c(yi, ϕ)

)
, (3.1)

where b′(θi) = µi = E(Yi) and ηi = xT
i β = g(µi) for i = 1, . . . , n. Let the maximum likelihood estimate

of β be β̃(glm) = (β̃1(glm), . . . , β̃p(glm))T, i.e.,

β̃(glm) = (XTQX)−1XTQz,

where X = (x1, . . . ,xn)
T, Q is the diagonal matrix with entries qi = τi/[b

′′(θi)(dηi/dµi)
2] and z =

(z1, . . . , zn)
T with zi = η̂i + (yi − µ̂i)

dηi

dµi
, η̂i = xT

i β̃(glm), and µ̂i = g−1(η̂i). Then, we have

√
nD−1/2(β̃(glm)− β)

d−→ Np(0p, Ip),

where D = (Dij)
p
i,j=1 = (n−1X ′QX)−1ϕ. Let the multiple testing problems be

H0j : βj = 0 vs. H1j : βj ̸= 0, j = 1, . . . , p.
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Then, we have √
nβ̃j(glm)√

Djj

H0j→ N(0, 1).

Let tj =
√
nβ̃j(glm)/

√
Djj from the observations (yj ,xj), j = 1, . . . , n. Then, the p-values are defined as

pj = P(T > |tj |), j = 1, . . . , p,

where T
d−→ N(0, 1). Without loss of generality, assume that ij satisfies pij = p(j) where (i1, i2, . . . , ip) is

a permutation of (1, . . . , p). Then, the BH selection procedure at level α can be described as follows:

• By the BH procedure to control the FDR, find the greatest k such that p(k) 6 k
pα;

• Let estimate Â of A be {ij , j = 1, . . . , k}.
The Storey selection procedure at level α is described as follows:

• By the Storey procedure to control the FDR, obtain the threshold tα(F̂DRω);

• Let estimate Â of A be {j : pj 6 tα(F̂DRω)}.
The Z-mean selection procedure at level α is described as follows:

• By the Z-mean procedure to control the FDR, obtain the threshold tα(F̂DRL);

• Let estimate Â of A be {i : p∗i 6 tα(F̂DRL)}.
Note that β̃(k)(glm) is the estimator that corresponds to p(k). Then,

|β̃(k)(glm)|√
var(β̃(k)(glm))· n−1

n−p−1

can be

considered as a threshold for the BH procedure. When

|β̃j(glm)|√
var(β̃j(glm))

>
|β̃(k)(glm)|√
var(β̃(k)(glm))

or
|β̃j(glm)|2

var(β̃j(glm))
>

|β̃(k)(glm)|2

var(β̃(k)(glm))
, (3.2)

then βj is not zero significantly. The selected tuning parameter based on the FDR is given as

λn =
2|β̃(k)|2

var(β̃(k))
. (3.3)

Theorem 3.1. If D tends to a diagonal matrix, then the BH selection procedure at level α satisfies

that the error rate used to select insignificant predictors as significant predictors at level α asymptotically

approaches (m0/p)α 6 α, where m0 is the number of zero βj.

Theorem 3.2. As λn/
√
n → 0, λn → +∞, assume that (n−1X ′QX)−1ϕ

p−→ I−1 with a positive

definite I where Q is the diagonal matrix with entries qi = τi/[b
′′(θi)(dηi/dµi)

2], and β̃ in (2.4) is

replaced by β̃(glm). Then, we have

√
n(β̂(glm)tA − βA)

d−→ N(0, I−1
11·2),

where A is the index set satisfying A = {j |βj ̸= 0, j = 1, . . . , p}, I−1
11·2 = (I11 − I12I

−1
22 I21)

−1, I−1 =

(X ′QX)−1ϕ = ( I11 I12
I21 I22

)−1, β̃(glm) = (X ′QX)−1X ′Qz and z is the response vector with entries zi =

η̂i + (yi − µ̂i)
dηi

dµi
with η̂i = x′

iβ̃(glm) and µ̂i = g−1(η̂i).

Proof. We have

I−1 =

(
I−1
11 + I−1

11 I12I
−1
22·1I21I

−1
11 −I−1

11 I12I
−1
22·1

−I−1
22·1I21I

−1
11 I−1

22·1

)
,

where I22·1 = I22 − I21I11I12 and I−1
11 + I−1

11 I12I
−1
22·1I21I

−1
11 = I−1

11·2. Using a procedure similar to that of

Theorem 2.2, we obtain
√
n(β̂(glm)tA − βA)

d−→ N(0, I−1
11·2).

This completes the proof.
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Table 1 Empirical FDR and powers of BH, Storey, Z-mean, and knockoff SDP for the test H0j : βj = 0, j = 1, . . . , p

when m1 is 50 or 100

Method (m1, α) ρ eFDR Power Method (m1, α) eFDR Power

BH (50, 0.05) 0 0.047 0.315 BH (50, 0.1) 0.092 0.441

0.3 0.037 0.196 0.086 0.301

0.5 0.037 0.070 0.090 0.129

0.7 0.041 0.014 0.073 0.025

(100, 0.05) 0 0.046 0.421 (100, 0.1) 0.085 0.545

0.3 0.040 0.285 0.086 0.402

0.5 0.038 0.117 0.094 0.212

0.7 0.030 0.017 0.087 0.039

Storey (50, 0.05) 0 0.047 0.316 Storey (50, 0.1) 0.096 0.447

0.3 0.036 0.195 0.091 0.313

0.5 0.033 0.069 0.087 0.135

0.7 0.029 0.009 0.074 0.027

(100, 0.05) 0 0.049 0.435 (100, 0.1) 0.093 0.562

0.3 0.044 0.296 0.094 0.419

0.5 0.039 0.120 0.100 0.221

0.7 0.021 0.015 0.087 0.042

Z-mean (50, 0.05) 0 0.068 0.814 Z-mean (50, 0.1) 0.118 0.871

0.3 0.105 0.721 0.171 0.796

0.5 0.155 0.472 0.321 0.588

0.7 0.292 0.164 0.327 0.190

(100, 0.05) 0 0.057 0.865 (100, 0.1) 0.103 0.916

0.3 0.082 0.787 0.145 0.842

0.5 0.110 0.560 0.164 0.656

0.7 0.195 0.182 0.248 0.227

SDP (50, 0.05) 0 0.045 0.432 SDP (50, 0.1) 0.089 0.597

0.3 0.036 0.323 0.083 0.369

0.5 0.025 0.150 0.054 0.261

0.7 0.008 0.132 0.032 0.166

(100, 0.05) 0 0.037 0.436 (100, 0.1) 0.068 0.584

0.3 0.023 0.301 0.057 0.445

0.5 0.008 0.172 0.047 0.269

0.7 0.001 0.086 0.012 0.175

Lemma 3.1 (See [23, β̂A(glm) in Equation (11)]). Here,

λn/
√
n → 0, λnn

−(γ−1)/2 → +∞,

where wj = 1/|β̂j(MLE)|γ with the maximum likelihood estimate β̂j(MLE). Thus, under some mild

regularity conditions, we have
√
n(β̂A(glm)− βA)

d−→ N(0, I−1
11 ).

This lemma is the same as [23, Theorem 4]; thus, the mild regularity conditions and the details of the

proof can be found in the literature [23, Theorem 4].

Remark 3.1. If the link function g is canonical, the Fisher information matrix I is the same as that

in the literature [23]. Thus, our estimator
√
n(β̂A(glm)t −βA) has greater asymptotic variance than the

adaptive estimator
√
n(β̂A(glm)− βA) because

(I11 − I12I
−1
22 I21)

−1 > I−1
11 .
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4 Simulation studies

Here, we discuss simulation studies for variable selection using some FDR control methods. First, we

consider the following linear regression model:

Y = β1X1 + · · ·+ βm1Xm1 + βm1+1Xm1+1 + · · ·+ βpXp + ϵ,

where

(X1, . . . , Xp) ∼ N(0,Σρ), ϵ ∼ N(0, 1) and Σρ = (ρ|i−j|)pi,j=1.

For simplicity, we take the following values:

β1 = · · · = βm1 = β

and βm1+1 = · · · = βp = 0. The samples are

{(yi, xi1, . . . , xip), i = 1, . . . , n},

Table 2 Empirical FDR and powers of BH, Storey, Z-mean, and knockoff SDP for the test H0j : βj = 0, j = 1, . . . , p

when m1 is 300 or 500

Method (m1, α) ρ eFDR Power Method (m1, α) eFDR Power

BH (300, 0.05) 0 0.034 0.604 BH (300, 0.1) 0.068 0.712

0.3 0.035 0.477 0.069 0.611

0.5 0.038 0.253 0.071 0.384

0.7 0.034 0.043 0.063 0.107

(500, 0.05) 0 0.025 0.685 (500, 0.1) 0.050 0.793

0.3 0.025 0.569 0.050 0.699

0.5 0.024 0.343 0.050 0.497

0.7 0.025 0.076 0.051 0.179

Storey (300, 0.05) 0 0.047 0.657 Storey (300, 0.1) 0.094 0.772

0.3 0.046 0.533 0.090 0.666

0.5 0.045 0.294 0.087 0.437

0.7 0.039 0.054 0.077 0.128

(500, 0.05) 0 0.045 0.779 (500, 0.1) 0.088 0.869

0.3 0.042 0.669 0.085 0.794

0.5 0.037 0.434 0.077 0.598

0.7 0.031 0.108 0.067 0.233

Z-mean (300, 0.05) 0 0.053 0.940 Z-mean (300, 0.1) 0.097 0.965

0.3 0.064 0.886 0.104 0.926

0.5 0.067 0.703 0.111 0.791

0.7 0.089 0.287 0.126 0.400

(500, 0.05) 0 0.047 0.968 (500, 0.1) 0.088 0.984

0.3 0.050 0.928 0.089 0.960

0.5 0.051 0.788 0.084 0.893

0.7 0.057 0.394 0.083 0.508

SDP (300, 0.05) 0 0.024 0.308 SDP (300, 0.1) 0.063 0.572

0.3 0.009 0.241 0.045 0.394

0.5 0.006 0.114 0.016 0.311

0.7 4.5E−4 0.061 0.008 0.126

(500, 0.05) 0 0.019 0.265 (500, 0.1) 0.056 0.583

0.3 0.009 0.195 0.035 0.398

0.5 0.008 0.089 0.014 0.216

0.7 3.2E−4 0.029 0.006 0.061
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where n is the sample size. The parameter configuration is as follows: β = 3.5, n = 3,000, p = 1,000, m1

equals 50, 100, 300, 500, respectively, and ρ equals 0, 0.3, 0.5, 0.7, respectively. Then, the set of indices

of significant covariates for the response is A = {1, 2, . . . ,m1}. Thus, the multiple testing problem can

be constructed as follows:

H0j : βj = 0, j = 1, . . . , p.

Tables 1 and 2 show the simulation results for the power and empirical FDR (eFDR), where the power

is the proportion of false hypotheses correctly rejected among the total number of false hypotheses. Four

methods are compared: structured semidefinite program (SDP), BH, Storey, and Z-mean, where SDP is

the knockoff method proposed by Barber and Candes [1] with SDP construction, and BH, Storey, and

Z-mean are defined as above. Here, the parameters ω and k in the Storey and Z-mean methods are set

to 0.1 and 3, respectively. The number of simulations is 200, and the nominal level is taken as α = 5%

and α = 10%.

From Tables 1 and 2, we can observe the following:

• The Z-mean method has greater powers than the SDP, BH, and Storey methods;

• When the number of nonzero coefficients m1 is large, the Z-mean method behaves very well;

• The Z-mean method behaves better in the case of small |ρ| than that of large |ρ|, i.e., when the

correlation between covariates is small, the Z-mean method controls the FDR and demonstrates good

power performance;

• All methods control the FDR well under weak dependence of covariates. When the correlation |ρ|
becomes large, the SDP, BH, and Storey methods do control the FDR; however, they are very conservative;

• In the sparse case, the SDP method demonstrates greater powers than the BH and Storey methods.

In contrast, the BH and Storey methods show greater powers than the SDP method.

5 Practical applications

As a practical application, we apply five methods: SDP, equi-correlated knockoffs (EQU), BH, Storey, and

Z-mean to select motifs, where EQU is the knockoff method [1] with equivalent construction. The mo-

tif data are taken from http://stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/motif-

spellman.RData. The data consist of the expression ratios (treated vs. control) of n = 4,443 genes and the

motif-matching scores of p = 2,155 candidate motifs from Saccharomyces cerevisiae. The motif-matching

scores are organized into a matrix of dimension n × p, with each element xgm in the matrix being the

matching score of motif m to the promoter of gene g. The log2(expression ratio) of different genes are

put into a vector Y , where Yg is the log2(expression ratio) of gene g.
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Figure 1 (a) Histogram of p-values of 918 motifs; (b) number of the selected motifs by SDP, EQU, BH, Storey, and

Z-mean; (c) overlap of motifs between Z-mean and the other four methods
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Conlon et al. [6] first used linear regression modeling for each candidate motif by regressing the gene

expression ratios against their promoter region’s matching scores for each candidate motif. Differing

from [6], we consider all promoter region matching scores as covariates in the full linear regression model.

Before selecting these motifs, we first subtract some motifs that are highly correlated with each other

but poorly correlated with the response expression Y . Here, we eliminate variables whose correlation is

greater than 0.7, leaving 918 motifs. The SDP, EQU, BH, Storey, and Z-mean methods are applied to the

motif data with a test size of α = 5%. The results are given in Figure 1. As can be seen, the frequency of

p-values close to zero appears very large, which indicates that a non-sparse model may be considered. It

can be shown that the BH, Storey, and Z-mean methods select more motifs than the knockoff methods.

For example, the Z-mean method selects 50 motifs, and the SDP and EQU methods select 17 and nine

motifs, respectively. The BH and Storey methods select 31 and 27 motifs, respectively. EQU’s motifs

are included in SDP’s motifs, and the SDP and Z-mean methods have the same 16 motifs. More than

one-half of the motifs selected by the BH and Storey methods are included in the motifs selected by the

Z-mean method.

6 Conclusion

This paper has established a connection between multiple testing procedures and the adaptive LASSO,

and has proposed BH, Storey, and Z-mean methods based on multiple testing via controlled FDR for

variable selection. Simulation results demonstrate that all of these methods can control the FDR, and the

Z-mean method shows greater powers than the BH, Storey, and SDP methods under weak dependence.

However, the drawback of the Z-mean method is that empirical FDR results are greater than the nominal

level α compared to the other three methods when the covariates are dependent. In addition, the SDP

results are much more conservative when the proportion of non-null effect βj is large. Moreover, we

require that dimension p is less than the sample size n, and p is assumed to be fixed. Therefore, one

focus of future work will be to extend our idea to the case of p > n. It is known that controlling the FDR

under dependence of the test statistic is challenging; thus, we would also like to control the FDR under

an arbitrary dependence structure from a multiple testing procedure.
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