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Abstract: We construct pointwise and simultaneous confidence intervals for the link

function in a semiparametric logistic regression model based on the logit link func-

tion. Simultaneous confidence intervals are especially important for semiparametirc

regression models since they allow inference to be made over the whole predic-

tor space. These intervals are used to construct confidence regions for the multi-

dimensional effective dose – that is, for the set of multivariate covariate values where

the probability that the binary response is one is equal to a preassigned value p.

We construct methods using inequalities, asymptotics and a semiparametric boot-

strap. Simulations and examples are provided to demonstrate the performance

and to compare the methods. The bootstrap procedure yields accurate confidence

regions for the multi-dimensional effective dose.

Key words and phrases: Bootstrap, local likelihood, multi-dimensional effective

dose, semiparametric logistic regression model, simultaneous confidence interval.

1. Introduction

Semiparametric inference techniques have become an increasingly important
tool for solving statistical estimation and inference problems. A semiparamet-
ric model is partly but not fully characterized by some interpretable Euclidean
parameters that are usually of primary interest to researchers. The model also
involves one or more infinite-dimensional components that are usually reserved
for nuisance parameters. Such models can produce more accurate inference
results than parametric models while maintaining the interpretability for the
parametrized components. Various forms of semiparametric models have been
suggested in the literature for different goals. In this paper we focus on dichoto-
mous responses. We explore using a generalized partially linear model (Green
and Yandell (1985), Hastie and Tibshirani (1990), Carroll, Fan, Gijbels and
Wand (1997)) as our semiparametric modeling device to study the construction
of simultaneous confidence intervals for the semiparametric logistic regression
function.
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We observe the sample {(X1i, . . . , Xki, Zi, Yi), i = 1, . . . , n} from n indepen-
dent subjects. Suppose the ith subject depends on covariates Xi =(X1i, . . . , Xki)T

∈ X ⊂ Rk and Zi ∈ Z ⊂ R, where both X and Z are bounded sets, and has a
dichotomous response Yi ∈ {0, 1}.

Both X and Z could effect the probability of the occurrence of Y and we use
the following semiparametric logistic regression model to study the relationship
between covariates and the response,

log{ pi

(1 − pi)
} = β1X1i + β2X2i + · · · + βkXki + γ(Zi)

= XT
i β + γ(Zi), (1.1)

where the logit transformation of the mean response pi = E(Yi|Xi, Zi) is linearly
dependent on Xi and is dependent on Zi through a smooth function γ(·). Both
the vector β = (β1, . . . , βk)T and the function γ(·) are unknown. This model
specification is particularly appealing when X consists of predictor variables of
interest and the effects of Z are considered as a nuisance. This model allows us
to make inference about the effects of X using a parametric form while making
minimal assumptions on the effects of Z by using a fully nonparametric function.

Model (1.1) offers a flexible approach and has been used in various appli-
cations. Severini and Staniswalis (1994) employed it to study the reproduction
of Torrey yucca plants under different environments. The scientifically inter-
esting factor of growing site was modeled as a parametric component and the
confounding factor of plant height was modeled as a nonparametric component.
Hunsberger (1994) studied the occurrence of an intraoperative cardiac compli-
cation in vascular surgery patients subject to two risk factors using this model.
The two risk factors included the level of American Society of Anesthesiologist,
which needs a parametric interpretation, and was modeled accordingly, and the
duration of the operation whose effects were modeled nonparametrically.

The estimation technique we consider in this paper is the local likelihood
approach (Staniswalis (1989), Fan, Heckman and Wand (1995)). Asymptotic
results for such estimators were given in Carroll et al. (1997). One possible al-
ternative for fitting this model is the penalized quasi-likelihood approach (Green
and Yandell (1985), Hastie and Tibshirani (1990)). Mammen and van de Geer
(1997) provided asymptotic results for such estimators by using empirical pro-
cess theory. These results are sufficient for most statistical inferences. However,
a certain gap remains between the current theoretical knowledge and the goal of
constructing a simultaneous confidence interval for the semiparametric regression
function η(x, z) = xT β + γ(z) across all x ∈ X and z ∈ Z. We propose a way
to achieve this goal using local likelihood estimators. The method can be imple-
mented for the penalized quasi-likelihood estimator as well, although technical
justification needs to be completed in a different fashion from this paper.
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Another unique feature of this paper is that we address an important but
under-appreciated statistical problem. In some scientific experiments, researchers
might be interested in finding what joint values of the predictor variables will
produce a given response. When multiple predictors are present in a model, the
question of obtaining such values for fixed response, the multi-dimensional effec-
tive dose, has not been fully addressed. Li, Nordheim, Zhang, and Lehner (2008a)
studied this problem under a parametric logistic regression model. We extend
this approach to the more general semiparametric logistic regression model. This
allows application to a broader range of observed data. In our approach, the de-
sired confidence region for the multi-dimensional effective dose is related to the
simultaneous confidence interval for the regression function.

This paper is organized as follows. Section 2 reviews a method for fitting
a semiparametric regression model. In Sections 3 and 4, we develop pointwise
and simultaneous confidence intervals for the regression link function η(x, z) =
xT β + γ(z). Since this function is of a semiparametric form, special attention
needs to be paid to the large sample properties of the estimators involved. In
Section 5, we adapt our methods to calculate confidence regions for the multi-
dimensional effective dose. Finding such regions can help scientific researchers
design the “dose” levels of multiple covariates to achieve a dichotomous outcome
with a specific probability. Section 6 presents Monte Carlo simulation results to
assess the performance of our proposed methods. Section 7 presents an example
that illustrates the use of our methods for a real-world problem. Section 8 points
out future research directions.

2. Local Likelihood Estimation

We sketch a brief introduction on how to fit the semiparametric model (1.1)
using the local likelihood approach (Fan and Chen (1999), Fan et al. (1995)).
First, we notice that in a small neighborhood of z0, one can approximate γ(z)
locally by a linear function

γ(z) ≈ γ(z0) + γ
′
(z0)(z − z0) = a + b(z − z0). (2.1)

Based on independent observations {(Xi, Zi, Yi)}, the parameters can be esti-
mated by maximizing the local log-likelihood

L =
n∑

i=1

[Yi log(pi) + (1 − Yi) log(1 − pi)]Kh(Zi − z), (2.2)

where

pi = [1 + exp{−(XT
i β + a + b(Zi − z))}]−1, (2.3)
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Kh(·) = K(·/h)/h is re-scaled from a known kernel function K, and h is a
bandwidth.

We now describe the profile likelihood method for fitting the semiparametric
model. For each given β, by applying the local likelihood method with a band-
width h, we obtain γ̂(z;β, h), depending on h and β. After substituting into the
original model, we obtain a pseudo parametric model:

log
{ p

1 − p

}
= XT β + γ̂(z; β, h). (2.4)

Regarding the above as a parametric model with parameter β, we obtain the
profile likelihood estimators β̂(h) and γ̂(z; β̂(h), h) by using maximum likelihood.

In this paper we do not elaborate on the computational aspect of the semi-
parametric model. More details about fitting the local likelihood model can be
found in Zhang (2003, 2008).

3. Pointwise Confidence Interval

The asymptotic properties of the estimators obtained through maximizing
the local log-likelihood (2.2) can be studied via the following theorem, extended
from Theorem 1 in Carroll et al. (1997). The proof is in the Appendix.

Theorem 3.1. Suppose for any z ∈ Z, the density f(z) is Lipschitz continuous
and bounded away from 0, the function γ(z) is twice continuously differentiable,
E(XXT |Z = z) is non-singular, and both E(XXT |Z) and E(XXT |Z)−1 are Lip-
schitz continuous. Assume that the kernel K(·) is a symmetric density function
with compact support and that the parameter space of β is a compact subset of
Rk. Then as n → ∞, h → 0, and nh → ∞,

√
nh

 xT
1 β̂ + γ̂(z1) − xT

1 β − γ(z1) − b(x1, z1)
...

xT
Lβ̂ + γ̂(zL) − xT

Lβ − γ(zL) − b(xL, zL)

 →d N(0, Σ), (3.1)

for every finite set of points (x1, z1), . . . , (xL, zL) in X × Z.

The lth diagonal entry of the matrix Σ is

σ(xl, zl)2 = nhVar (xT
l β̂ + γ̂(zl)) = (xT

l , 1)Ψ(zl)(xT
l , 1)T , (3.2)

where Ψ(zl) is the variance-covariance matrix of
√

nh(β̂T , γ̂(zl))T . The (l, l′)th
off-diagonal entry of the matrix Σ is

nh Cov (xT
l β̂ + γ̂(zl),xT

l′ β̂ + γ̂(zl′)) =
{

Υ(xl,xl′) zl 6= zl′

(xT
l , 1)Ψ(zl)(xT

l′ , 1)T zl = zl′ .
(3.3)
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Using Theorem 3.1, a pointwise confidence interval for η(x, z) = xT β + γ(z)
is

xT β̂ + γ̂(z) − b(x, z) ± zα/2σ(x, z)(
√

nh)−1, (3.4)

where zα/2 is the upper α/2 quantile of the standard normal distribution.
The explicit expressions of b(x, z), Ψ(z) and Υ(xl,xl′) are given by (A.16),

(A.17) and (A.18), respectively, in the Appendix. It is shown that the bias
b(x, z) is of order O(h2). Thus we can neglect its effect when h is close to 0 for
the purposes of implementation. We found in numerous simulation studies that
ignoring this term has little influence on the performance of the above pointwise
confidence intervals in terms of coverage rates. This strategy sometimes performs
even better than plugging in the estimator b̂(x, z) which might increase the vari-
ance more than reduce the bias (Sun and Loader (1994)). In practice we replace
σ(x, z) with the consistent estimator

σ̂(x, z) =
√

(xT , 1)Ψ̂(z)(xT , 1)T (3.5)

based on a moment estimator of Ψ(z), whose consistency follows easily from the
Law of Large Numbers.

4. Simultaneous Confidence Intervals

Pointwise confidence intervals are not adequate for making inference about
the regression function η(x, z) across the whole range of {x, z}. We study three
methods for constructing a simultaneous confidence interval for η(x, z) valid for
all x ∈ X and z ∈ Z.

Before we present our methods, we present a theory that describes the asymp-
totic behavior of the normalized process

Wn(x, z) =
√

nh[xT β̂ + γ̂(z) − xT β − γ(z)]/σ̂(x, z) −
√

nhb(x, z)/σ̂(x, z) (4.1)

≡ Zn(x, z) − δ(x, z) (x, z) ∈ X × Z. (4.2)

This defines a process indexed by (x, z) ∈ X×Z. We prove the following theorem
in the Appendix. Let w→ denote process weak convergence as defined in van der
Vaart (1998).

Theorem 4.1. Assume the same conditions as in Theorem 3.1. Then as n → ∞,
h → 0, and nh → ∞, Wn(x, z) w→ W (x, z) which is a Gaussian random field with
mean 0 and covariance function

ρ((x, z), (x′, z′)) =

{
〈s(x, z), s(x′, z′)〉 z = z′

Υ(xl,xl′ )
{σ(x,z)σ(x′,z′)} z 6= z′,

(4.3)
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where s(x, z) = p limn→∞ sn(x, z) and

sn(x, z) =
Ψ̂(z)1/2(xT , 1)T√

(xT , 1)Ψ̂(z)(xT , 1)T

=
Ψ̂(z)1/2(xT , 1)T

‖Ψ̂(z)1/2(xT , 1)T ‖
. (4.4)

4.1. Method 1

Using an argument similar to that for deriving the Scheffé type of simul-
taneous confidence interval for a linear model, we apply the Cauchy Schwartz
inequality to obtain

Wn(x, z)2=
nh(xT β̂ + γ̂(z) − xT β − γ(z) − b(x, z))2

(xT , 1)Ψ̂(z)(xT , 1)T

≤nh{(β̂T , γ̂(z))−E(β̂T, γ̂(z))}Ψ̂(z)−1{(β̂T, γ̂(z))−E(β̂T, γ̂(z))}T. (4.5)

The inequality follows since (xT , 1)E(β̂T , γ̂(z))T = xT β + γ(z) + b(x, z). The
right-hand-side of (4.5) is asymptotically distributed as a Chi-squared variable
with k + 1 degrees of freedom. Since this upper bound is distributed free of
x and z, we can construct a Scheffé type simultaneous confidence interval for
η(x, z) = xT β + γ(z) at any (x, z) ∈ X × Z as

xT β̂ + γ̂(z) − b(x, z) ±
√

χ2
k+1(α)σ̂(x, z), (4.6)

where χ2
k+1(α) is the upper α quantile of the Chi-squared distribution with k +1

degrees of freedom.
In finite sample simulations we find that the coverage rate of this interval

is usually lower than the desired confidence level even if we use a more accurate
covariance estimator Ψ̂(z)∗ described in the next subsection. This is because the
sampling distribution of the supremum of Wn(x, z)2 is different from the Chi-
squared distribution (see Figure 1); the Chi-squred distribution tends to give a
smaller upper α percentile values. The interval thus appears to be narrower than
it should be and, when nh is far from ∞, the approximation made in (4.5) may
not be accurate enough. The improvement is also quite slow as we enlarge the
sample size. We therefore do not recommend the use of this approach in the
analysis; a more practical method is introduced in the next subsection.

4.2. Method 2

We now propose a Monte Carlo (MC) approach to calculate the simultane-
ous confidence interval. First we use a bootstrap re-sampling method to compute
the empirical covariance of the semiparametric estimators. Then a large num-
ber of simulations are performed to approximate the asymptotic distribution of
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Figure 1. The Bootstrap Distribution (solid line) and Chi-square Distribu-
tion (dotted line). The upper 0.05 quantiles of these two distributions are
marked at broken lines.

supx,z Wn(x, z)2. The upper α quantile from the generated MC samples serves
as the critical values cα for the construction of simultaneous confidence bands.

We call this method a Bootstrap method in this paper since in some sense it
resembles the popular double-bootstrap procedure (Lee and Young (1999), Hall,
Lee and Young (2000)) in that two separate nested random simulation steps are
carried out. However, we are not re-sampling from the data but from a fitted
parametric distribution constructed by the first level bootstrap at the second
simulation stage. The theoretical properties of bootstrap sampling are well pre-
served for the results obtained at the first step and the distributional properties
for the results obtained at the second step are then effectively employed.

Here is an outline of our proposed algorithm for computing the bootstrap
critical value.
1. Draw B bootstrap samples Ωb = {(X(b)

1i , . . . , X
(b)
ki , Z

(b)
i , Y

(b)
i ), i = 1, . . . , n}

(b = 1, . . . , B) from the original sample.
2. For each bootstrap sample, fit the semiparametric model (1.1) and obtain β̂(b)

and γ̂(zi)(b) for all distinct values of zi in such a sample.
3. Calculate the empirical bootstrap covariance matrix

Ψ̂∗(zi) =

(
Cov ∗(β̂(b)) Cov ∗(β̂(b), γ̂(zi)(b))

Cov ∗(β̂(b), γ̂(zi)(b))T Var ∗(γ̂(zi)(b))

)



644 JIALIANG LI, CHUNMING ZHANG, KJELL A. DOKSUM AND ERIK V. NORDHEIM

for each distinct zi.
4. Draw M independent random (k + 1)-vectors {ζm(zi),m = 1, . . . ,M} from

the multivariate normal distribution with mean zero and covariance Ψ̂∗(zi)
for each zi.

5. Evaluate (xT
i , 1)ζm(zi)/σ̂∗(xi, zi), where σ̂∗(xi, zi) =

√
(xT

i , 1)Ψ̂∗(zi)(xT
i , 1)T

and find wm = maxxi,zi

[
{(xT

i , 1)ζm(zi)/σ̂∗(xi, zi)}
]2 for m = 1, . . . ,M .

6. Take the upper α quantile of {wm : m = 1, . . . ,M} to be the critical value cα.
The simulated sample {wm} displays a distribution distinct from the χ2 dis-

tribution. Figure 1 gives an example, based on Case II as described in Section 5,
with sample size 1, 000 and bandwidth 0.2. The solid line is obtained by using
a kernel density estimator for {wm}. The dotted line is the density of the χ2

distribution with 2 degrees of freedom. For the purpose of comparison, we also
mark the upper 0.05 quantiles for both distributions in the plot. The evident dif-
ference between these two distributions suggests that a non-central Chi-squared
distribution with adjusted degrees of freedom might be a more appropriate ap-
proximation for the distribution of supx,z Wn(x, z)2 in this case.

Since the empirical distribution of {wm} approximates the distribution of
sup
x,z

W (x, z)2, by Theorem 4.1 we can construct a simultaneous confidence interval

for η(x, z) = xT β + γ(z) at any (x, z) ∈ X × Z as

xT β̂ + γ̂(z) ±
√

cασ̂∗(x, z). (4.7)

5. Application to Multi-Dimensional Effective Dose

We can directly apply our results regarding the confidence intervals for the
semiparametric regression function to construct confidence regions for the multi-
dimensional effective dose.

Suppose in model (1.1) we are interested in the set of values of the predictor
variables that yield the outcome Y = 1 with a given probability p. The set of
values for (X, Z) that satisfy this condition is called a multi-dimensional effective
dose, since such a quantity is conventionally called effective dose 100p in a bioas-
say problem where only a univariate predictor is included in the model (Finney
(1978)). Both parametric (e.g., Finney (1978)) and nonparametric methods (e.g.,
Müller and Schmitt (1988)) have been extensively used to solve the univariate
effective dose problem. Few studies have considered the setting with multiple
predictors (Li et al. (2008a,b)). For a given p ∈ (0, 1), we define the multi-
dimensional effective dose under the semiparametric regression model as the set

Θp =
{

(x, z) : log
{ p

1 − p

}
= xT β + γ(z)

}
. (5.1)
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With given values of β and given form of γ(·), we can determine the set Θp of
multi-dimensional effective dose. For example, if k = 1, β = 5, and γ(u) = u2,
then the set Θp is simply a parabolic curve in the two-dimensional (x, z) plane
determined by the equation 5x + z2 = log p/(1 − p) for a given p.

It is usually more convenient to deal with the (x∗
−i, z

∗)−conditioning effective
dose where x∗

−i = (x∗
1, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
k) and z∗ are fixed. The conditional

dose level needed for xi to make Pr(Y = 1) equal to p is

xi(p)∗ =
{

xi : xi =
{

log
p

1 − p
−

∑
j 6=i

x∗
jβj − γ(z∗)

}
(βi)−1

}
, (5.2)

where x∗
−i = (x∗

1, . . . , x
∗
i−1, x

∗
i+1, . . . , x

∗
k) and z∗ are fixed. We note that

Θp =
∪{

(x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
k, z

∗) : xi = xi(p)∗, (x∗
−i, z

∗) ∈ X−i ×Z
}

,

where X−i is the set of all possible values of x−i. The union does not depend on
i.

We estimate the sets in the union by fitting model (1.1) thereby obtaining
β̂ and γ̂(·), and then plugging in the estimates β̂ and γ̂(·) in (5.2) to obtain Θ̂p

or x̂i(p)∗. The estimators can be shown to be consistent by extending Theorem
3.1 and results in Li et al. (2008a).

The confidence region for Θp can be obtained by joining the confidence in-
tervals for xi(p)∗ across all possible values of (x∗

−i, z
∗). We note that only simul-

taneous confidence intervals for xi(p)∗ can achieve satisfactory confidence level
for the entire set of Θp. Pointwise confidence intervals for xi(p)∗ may be useful
when conditional inference or inference over a subregion is of interest. That is,
for a particular case of interest we may know (x∗

−i, z
∗) and if xi is the dose level

we can vary, we are interested in xi(p)∗. Hence we introduce both pointwise and
simultaneous confidence intervals for xi(p)∗.

Without loss of generality, we consider finding a confidence interval for x1

given (x∗
−1, z

∗) for a fixed p in the following presentation. Basically the form
of the resulting confidence region for Θp does not depend on the choice of the
index i asymptotically. Even for a finite sample, only the delta method, to be
introduced in Section 5.1, exhibits a difference due to the choice of i.

To facilitate notation, we partition the covariance matrix Ψ(z) as

(nh)−1Ψ(z) =

 Var (β̂1) Cov (β̂1, β̂−1)T Cov (β̂1, γ̂(z))
Cov (β̂1, β̂−1) Cov (β̂−1) Cov (β̂−1, γ̂(z))
Cov (β̂1, γ̂(z)) Cov (β̂−1, γ̂(z))T Var (γ̂(z))


=

 ψ11 ψ1,x ψ1,z

ψT
1,x ψxx ψxz

ψ1,z ψT
xz ψzz

 . (5.3)
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5.1. Pointwise confidence interval: Delta method

The pointwise confidence interval for x1(p)∗ can be obtained by the delta
method (e.g., Bickel and Doksum (2007)). Since

x1(p)∗ ≡
{

log{ p

(1 − p)
} −

∑
j 6=1

x∗
jβj − γ(z∗)

}
(β1)−1 (5.4)

is a smooth function of (β, γ(z∗)), it is straightforward to show that
√

nhx̂1(p)∗ =
√

nh
{

log
{ p

1 − p

}
−

∑
j 6=1

x∗
j β̂j − γ̂(z∗)

}
(β̂1)−1 (5.5)

is asymptotically normal with mean equal to
√

nhx1(p)∗ +
√

nhλTb∗, where b∗

consists of the first k + 1 elements of b given in (A.16) in the Appendix, and
variance equal to λT Ψ(z)λ, where

λ =
(
−

{
log

p

1 − p
−

∑
j 6=1

x∗
jβj − γ(z∗)

}
(β2

1)−1,−
x∗T
−1

β1
,− 1

β1

)T

. (5.6)

The 100(1 − α)% confidence interval for xi(p)∗ is

x̂1(p)∗ − λ̂Tb∗ ± zα/2

√
λ̂T Ψ̂(z)λ̂

nh
, (5.7)

where λ̂ is the estimator of λ obtained by substituting β̂ and γ̂(·) for their
estimands. The bias term λ̂Tb∗ is not computed in practice since it is of a
smaller order.

This yields a symmetric confidence interval around the point estimator of
x1(p)∗, which is usually desirable in practice. However, the resulting confidence
region for Θp is not invariant under a different choice of conditioning variables
(x∗

−i, z
∗) for i 6= 1. It can be shown that the difference due to the index choice

vanishes when the sample size tends to infinity.

5.2. Pointwise confidence interval: Fieller method

A pointwise confidence interval for x1(p)∗ can be obtained from Fieller’s
theorem (Fieller (1954)). By Theorem 3.1, we have that

D ≡
nh(x1β̂1 +

∑
j 6=1 x∗

j β̂j + γ̂(z∗) − log(p/(1 − p)) − b̂(x1,x∗
−1, z

∗))2

(x1,x∗T
−1, 1)Ψ̂(z∗)(x1,x∗T

−1, 1)T
(5.8)

is asymptotically distributed as χ2 with one degree of freedom. Re-arrange terms
in the inequality D < χ2

1(α) to yield

Ax2
1 + Bx1 + C < 0, (5.9)
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with

A=(β̂1 + b̂1)2 − χ2
1(α)ψ̂11, (5.10)

B=2
[
(β̂1+b̂1){log

p

1−p
+ b̂2−

∑
j 6=1

x∗
j β̂j−γ̂(z∗)}−χ2

1(α)(xT
−1ψ̂1,x + ψ̂1,z)

]
, (5.11)

C=
{

log
p

1−p
+b̂2−

∑
j 6=1

x∗
j β̂j−γ̂(z∗)

}2
−χ2

1(α)(xT
−1ψ̂xxx−1+2xT

−1ψ̂xz+ψ̂zz), (5.12)

where each ψ̂.. is the consistent estimate of ψ.. in (5.3). b̂1 and b̂2 are smaller
order bias terms which are generally excluded in practice. This inequality leads
to a confidence interval for x1(p)∗ given (x∗

−1, z
∗) as

−B ±
√

B2 − 4AC

2A
, (5.13)

provided that A > 0 and B2 − 4AC > 0.

5.3. Simultaneous confidence interval: The Scheffé and bootstrap
methods

We invert the simultaneous confidence region for the semi-parametric regres-
sion function obtained in Section 4 to get a simultaneous confidence interval for
x1(p)∗ across all possible values of (x∗

−1, z
∗). All three methods can be inverted

as described below. In this paper, we consider only the Scheffé method (Method
1) and the Bootstrap method (Method 2).

We illustrate with the Bootstrap method (Method 2). For any (x1,x∗T
−1, z

∗) ∈
X × Z,

P
[nh{x1β̂1 +

∑
j 6=1 x∗

j β̂j + γ̂(z∗) − log[p/(1 − p)] − b̂(x1,x∗
−1, z

∗)}2

(x1,x∗T
−1, 1)Ψ̂(z∗)(x1,x∗T

−1, 1)T
≤ cα

]
= 1 − α, (5.14)

where cα is as in Section 4.2. We then arrange the inequality inside the above
probability into a quadratic inequality for x1 as (5.9), where A, B and C are as
at (5.10), (5.11) and (5.12) except that we replace χ2

1(α) with cα. The resulting
simultaneous confidence interval for xi(p)∗ is given by (5.13) with the modified
A,B and C.

We invert the simultaneous Scheffé confidence interval (Method 1) as above
after replacing cα everywhere with χ2

k+1(α).
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Table 5.1. Coverage rates for 95% confidence intervals from 1,000 simulations
for p = 0.1.

Pointwise Confidence Intervals Simultaneous Confidence Intervals
Delta Method Fieller Method Scheffé Method Bootstrap Method

Case h n Coverage Length Coverage Length Coverage Length Coverage Length
I 0.1 500 92.4 0.363 93.4 0.429 45.0 0.605 92.4 0.918

1,000 93.4 0.252 94.0 0.274 49.3 0.359 98.8 0.552
0.2 500 91.3 0.253 92.1 0.273 63.2 0.362 98.2 0.711

1,000 93.8 0.178 94.2 0.187 66.5 0.239 99.5 0.417
0.3 500 92.1 0.207 92.3 0.221 67.7 0.285 98.5 0.536

1,000 92.4 0.146 92.6 0.149 67.1 0.190 98.9 0.374
II 0.1 500 94.2 0.425 96.8 0.506 66.5 0.717 95.8 0.729

1,000 96.4 0.316 97.0 0.345 64.3 0.454 99.8 0.519
0.2 500 95.8 0.319 96.2 0.349 73.6 0.458 99.5 0.594

1,000 95.5 0.225 95.5 0.236 76.9 0.302 99.7 0.413
0.3 500 94.3 0.261 95.5 0.277 80.0 0.358 99.5 0.535

1,000 94.4 0.185 95.6 0.190 79.5 0.242 99.6 0.371
III 0.1 500 93.7 0.606 94.8 0.771 44.5 1.155 98.9 1.785

1,000 95.0 0.456 95.5 0.515 48.0 0.686 98.9 0.712
0.2 500 93.9 0.457 94.5 0.516 63.4 0.690 99.4 0.859

1,000 95.3 0.333 95.3 0.354 72.4 0.457 99.8 0.588
0.3 500 92.5 0.369 93.5 0.399 67.0 0.521 99.7 0.820

1,000 93.1 0.270 93.7 0.281 69.8 0.358 99.8 0.529

6. Simulations

This section presents finite-sample simulation studies that assess the per-
formance of the proposed methods for calculating confidence regions for multi-
dimensional effective doses.

We conducted a numerical study with 1,000 simulations. For each simulation,
we generated n = 500 or 1, 000 samples of X from a uniform distribution on [0, 1]
and we let Z be n equally spaced points on [0, 1]. The true regression functions
were set to be the following three cases:

Case I: η = 5X + 5Z3 − 4,

Case II: η = −5X + 2 sin(0.8πZ) + 1,

Case III: η = 4X − 0.6 exp{−(2Z − 2)}.

The binary response was then generated from the Bernoulli distribution with
a success probability p = 1/(1 + e−η). A semiparametric logistic regression model
was fitted to the generated data. For the local likelihood (2.2), we employed the
Epanechnikov kernel K(u) = 0.75(1−u2)+. We fixed the bandwidth h at 0.1, 0.2
and 0.3. As was previously reported in Fan and Huang (2005), we noticed that
semiparametric estimates are not sensitive to the choice of bandwidth.

We calculated the z∗-conditioning effective dose Θ̂∗
p for p = 0.1, 0.5 and 0.9

and the associated 95% confidence intervals. We applied both the delta and
Fieller methods to build the pointwise confidence intervals and applied both the
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Table 5.2. Coverage rates for 95% confidence regions from 1,000 simulations
for p = 0.5.

Pointwise Confidence Intervals Simultaneous Confidence Intervals
Delta Method Fieller Method Scheffé Method Bootstrap Method

Case h n Coverage Length Coverage Length Coverage Length Coverage Length
I 0.1 500 91.6 0.292 90.5 0.338 25.5 0.466 95.0 0.859

1,000 91.9 0.207 91.3 0.222 35.1 0.290 98.6 0.507
0.2 500 91.8 0.210 91.6 0.226 54.0 0.294 97.8 0.580

1,000 92.2 0.147 92.4 0.154 58.2 0.196 99.6 0.351
0.3 500 92.2 0.172 91.6 0.180 63.0 0.231 99.5 0.407

1,000 92.7 0.119 92.8 0.126 68.5 0.152 99.8 0.297
II 0.1 500 90.8 0.229 89.7 0.257 19.6 0.348 98.4 0.649

1,000 95.6 0.159 90.5 0.169 28.5 0.217 99.9 0.459
0.2 500 85.7 0.160 84.5 0.169 30.2 0.218 99.8 0.467

1,000 88.3 0.112 85.8 0.115 32.0 0.146 99.9 0.323
0.3 500 85.5 0.132 85.0 0.137 39.2 0.175 99.7 0.369

1,000 89.3 0.092 88.1 0.094 40.1 0.118 99.9 0.269
III 0.1 500 92.3 0.335 90.6 0.405 23.6 0.582 98.6 1.77

1,000 93.1 0.232 91.8 0.254 33.4 0.335 99.8 0.579
0.2 500 90.8 0.237 90.7 0.258 52.2 0.339 99.1 0.594

1,000 91.9 0.170 91.8 0.178 54.6 0.227 99.9 0.416
0.3 500 90.4 0.198 90.3 0.211 66.6 0.273 99.8 0.518

1,000 91.5 0.138 91.2 0.142 67.9 0.181 99.9 0.344

Table 5.3. Coverage rates for 95% confidence regions from 1,000 simulations
for p = 0.9.

Pointwise Confidence Intervals Simultaneous Confidence Intervals
Delta Method Fieller Method Scheffé Method Bootstrap Method

Case h n Coverage Length Coverage Length Coverage Length Coverage Length
I 0.1 500 93.8 0.504 94.6 0.608 41.9 0.865 95.4 1.021

1,000 94.7 0.371 94.7 0.407 42.8 0.537 99.6 0.598
0.2 500 91.3 0.360 92.5 0.394 56.2 0.518 98.4 0.792

1,000 93.4 0.264 93.4 0.275 58.9 0.354 99.2 0.492
0.3 500 90.5 0.304 90.7 0.322 64.1 0.416 99.8 0.723

1,000 92.8 0.214 93.1 0.221 65.4 0.279 99.9 0.436
II 0.1 500 95.2 0.419 97.7 0.505 78.3 0.713 98.0 0.732

1,000 97.2 0.295 98.2 0.322 88.6 0.424 99.8 0.517
0.2 500 94.1 0.295 95.4 0.320 84.5 0.421 98.9 0.594

1,000 96.7 0.208 94.5 0.249 79.8 0.321 99.7 0.413
0.3 500 93.2 0.235 94.5 0.249 79.4 0.321 99.5 0.543

1,000 94.6 0.167 94.9 0.172 85.0 0.218 99.8 0.371
III 0.1 500 94.2 0.530 95.9 0.677 62.5 1.018 98.5 1.810

1,000 94.6 0.368 96.2 0.413 65.8 0.557 98.9 0.660
0.2 500 94.3 0.377 95.2 0.425 70.9 0.569 99.0 0.818

1,000 94.6 0.257 95.5 0.272 77.5 0.352 99.1 0.530
0.3 500 93.8 0.311 92.2 0.335 72.0 0.288 96.2 0.760

1,000 94.3 0.218 95.3 0.226 81.1 0.437 99.8 0.471

Scheffé and Bootstrap methods to build the simultaneous confidence intervals for
Θ∗

p. Main results are summarized in Table 5.1, 5.2 and 5.3 for p = 0.1, 0.5 and
0.9, respectively.

The pointwise coverage rate for each xi(p)∗ at the n z∗ values was recorded
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for the pointwise confidence intervals. The average coverage rates over the n

xi(p)∗ were then averaged over the 1,000 simulations. The resulting coverage
rates were reported as “Coverage” under the “Pointwise Confidence Intervals”
columns in the tables.

For the simultaneous confidence intervals, we checked if the n true z∗-condi-
tioning effective doses were in the calculated intervals. Only if the n intervals
cover all n points in one simulation did we report a correct simultaneous cover-
age. This simultaneous coverage rate, as discussed in the previous section, is the
coverage rate for the multi-dimensional effective dose Θp. The proportion of cor-
rect simultaneous coverages in the 1,000 simulations was reported as “Coverage”
under the “Simultaneous Confidence Intervals” columns in the tables.

We also studied the precision of the intervals reflected by their lengths. The
median (over n points and over 1,000 simulations) lengths of the confidence
intervals generated by the different methods were computed and reported as
“Length”.

The coverage rates for the two types of pointwise confidence intervals were
very close to the nominal confidence level in general. As the sample size increased,
both types of confidence interval at each z∗ tended to capture the true xi(p)∗ more
frequently. Increased sample size also decreased the length of the interval. We
notice that the choice of bandwidth can affect the coverage and length of the
interval even though the semiparametric estimates do not differ too much under
different bandwidths. In all three tables, smaller bandwidth is associated with
relatively higher coverage and wider length; on the other hand, larger bandwidth
is associated with relatively lower coverage and shorter length. It seems that a
reasonable balance between accuracy and precision still needs to be achieved by
selecting an appropriate h. Nevertheless, the differences in all cases are rather
small as only small h’s are considered.

For the simultaneous confidence intervals, we notice that Scheffé method had
poor coverage rates. Although the coverage rates were observed to increase as
sample size increased, it does not seem to be a suitable method for calculating
the simultaneous confidence intervals in a reasonable-size sample. The bootstrap
method had much higher coverage rates, almost always beyond the nominal con-
fidence level. This conservative feature is very similar to what is found for most
simultaneous confidence intervals employed for linear regression problems. We
thus recommend the use of the bootstrap method to construct conservative con-
fidence intervals in practice. The differences of coverage over different choices of
bandwidth were not very large for the bootstrap method when bandwidths were
small. However, as Figure 2 suggests, if a large value (h = 0.8) bandwidth is
used in the fitting procedure, the semiparametric confidence region approaches a
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Figure 2. Confidence regions for 2-dimensional effective dose under Case
II: The solid line is the true 2-dimensional effective dose; the dashed lines
are the confidence limits when h = 0.2; the dash-and-point lines are the
confidence limits when h = 0.8.

“parametric” type of region and thus fails to capture the true curve. From our
extensive simulation results (not shown), we found that the simultaneous cover-
age rates of the bootstrap method can drop to only 50% when the bandwidth is
set at such large values. Therefore, we recommend smaller bandwidths to obtain
satisfactory confidence levels.

7. Example

In this section we re-visit the sheep example in Li et al. (2008a,b) to il-
lustrate our methods of estimating and constructing confidence regions for the
multi-dimensional effective dose. In a recent study at the University of Wiscon-
sin, Madison, sheep were used as experimental subjects to determine whether the
decompression sickness (DCS) disease might occur in humans undergoing similar
dive profiles. Sheep offer an approximate animal model for DCS with suscepti-
bility quite similar to humans since the body mass of sheep is similar to that of
humans. Data from 1,108 observations were collected. One important research
goal is to find joint values of risk factors that correspond to a fixed probability
of developing DCS.

The major risk factors investigated in this study include exposure pressure
(depth) and exposure duration. Each sheep underwent simulated dives (in a pres-
sure chamber) with a designed pressure and duration, and its outcome for central
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nervous system DCS (CNS-DCS), limb bends, respiratory DCS, and mortality
was determined thereafter. The pressure was measured in absolute atmospheres
and duration at depth was measured in minutes. In the following analysis, we
took log base 10 transformations for both predictor variables. All observed out-
comes were coded as dichotomous variables.

A nonparametric additive model (Hastie and Tibshirani (1990)) can be em-
ployed to roughly examine such dependence relationships by modeling the indi-
vidual effect of each predictor variable as a smooth function without any specific
parametric form. Zhang, Li and Meng (2008) recently found that under very gen-
eral assumptions of independence or joint normality of the predictor variables,
the estimated functional form in a nonparametric additive model can reflect the
correct underlying dependence relationship between the response variable and
each predictor. The fitted results for each component of the predictor variables
can provide visually informative insights on the suitability of a parametric (lin-
ear) formulation for such a component. A more formal approach to assess the
adequacy of a parametric model needs to be developed. A possible approach
might be the adaption of the goodness-of-fit test proposed in Fan, Zhang and
Zhang (2001).

We used nonparametric additive models to fit the four types of outcomes, re-
spectively, and we examined the effects of pressure and duration. It was observed
that the individual effects of pressure and duration were close to parametric linear
functions for predicting respiratory DCS and mortality outcomes. Therefore, us-
ing a logistic regression model is sufficient to fit either of these outcomes. For the
other two responses, CNS-DCS and limb bends, the effects of covariates differed
remarkably from linear functions. Here we report on limb bends; the outcome of
CNS-DCS can be analyzed similarly. The individual effects for fitting the limb
bends in a nonparametric additive model are shown in Figure 3. The effect of
log10(duration) is relatively close to a straight line over most of its support while
that of log10(pressure) is clearly nonlinear. We thus chose log10(duration) as X

(parametric term) and log10(pressure) as Z (nonparametric term) in fitting the
response Y limb bends in a semiparametric logistic regression model.

The primary goal of this study was to determine the range of pressures and
durations that correspond to certain risks of incurring the limb bends response.
We fit the semiparametric model (1.1) and then used the methods we described
in Section 4 to construct the pointwise and simultaneous confidence intervals for
the two-dimensional effective dose Θp. The estimated Θ̂p for p = 0.1 and its
associated confidence regions are shown in Figure 4.

The estimates of the 2-dimensional effective dose corresponding to a probabil-
ity 0.1 of developing limb bends follow a curve in the (log10(pressure), log10(dur-
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Figure 3. The Nonparametric Additive Estimates of Effects of Covariates
for Limb Bends.

ation)) space. Generally a low value of pressure was associated with a high value
of duration, and vice versa. However, for the moderate values of pressure, the
associated duration values display a concave changing pattern: log10(duration)
slightly increased for log10(pressure) when log10(pressure) was less than approx-
imately 0.53, and then decreased rapidly.

The pointwise confidence interval ensures that the probability that the true
value of log10(duration) at a given log10(pressure) is inside the interval is 95%.
The simultaneous confidence interval ensures that the probability that all the true
2-dimensional effective dose values are in the region is 95%. The simultaneous
confidence interval obtained from the bootstrap method is much wider than all
pointwise confidence intervals.

The parametric logistic regression fit in this case gives a quite different an-
swer for estimating the 2-dimensional effective dose. The misspecification of
model forms can lead to an incorrect solution of the practical problem; it is more
appropriate to use the semiparametric model in this case.

8. Discussion

The methodology proposed in this paper can be easily generalized to obtain
pointwise and simultaneous confidence regions for any functional transformation
of link functions among which the multi-dimensional effective dose is a special
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Figure 4. The Estimated 2D Effective Dose and Confidence Regions: The
solid line with circles is the estimated 2D effective dose; the solid lines with
triangles are the upper and lower bounds of the pointiwise confidence inter-
vals based on the delta method; the dashed lines are the upper and lower
bounds of the pointiwise confidence intervals based on the Fieller method;
the gray solid lines are the upper and lower bounds of the simultaneous
confidence intervals based on the Scheffé method; the black solid lines are
the upper and lower bounds of the simultaneous confidence intervals based
on the Bootstrap method; the dotted lines are parametric estimator and
confidence regions for 2D effective dose.

case. We can also generalize our methods to responses being other members of
the exponential family, such as Gaussian or Poisson.

We realize that the immediate application of multi-dimensional effective dose
may not be in drug development but in some large observational studies. In
fact, in drug development, dose-selection is done in Phase II clinical trials when
sample sizes are relatively limited. To evaluate potential efficacy of a new agent,
researchers usually choose to include small numbers of predictors. A larger study
is usually followed in a Phase III trials where more sophisticated models like what
we study in this paper may be developed.

The bandwidth involved in the semi-parametric fitting may be selected with
the usual cross-validation methods. Such a data-driven method is usually com-
putationally intensive. We might consider related methods such as the empirical
cross-validation methods in Zhang (2003, 2008) that are asymptotically as good
as the cross-validation methods. Further research which embeds such a strategy
into the estimation of multi-dimensional effective dose is under development.
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Appendix

Proof of Theorem 3.1 Define µj =
∫

tjK(t)dt and νj =
∫

tjK2(t)dt.
For l = 1, . . . , L, the estimators (β̂, γ̂(·)) in xT

l β̂ + γ̂(zl) are obtained by
maximizing the local log-likelihood (2.2) in the neighborhood of zl. With θl =
(βT , al, bl)T , the local log-likelihood of θl is

L(θl) =
n∑

i=1

[Yi log(pil) + (1 − Yi) log(1 − pil)]Kh(Zi − zl), (A.1)

where

pil =
1

1 + exp{−(XT
i β + al + bl(Zi − zl))}

. (A.2)

Let cn = (nh)−1/2, X∗
il = (XT

i , 1, (Zi − zl))T , and θ̂l = (β̂T , âl, b̂l)T . By a
Taylor series expansion of L we obtain that

L(θ̂l) − L(θl) = W̄T
l (θ̂l − θl) +

1
2
(θ̂l − θ)T Āl(θ̂l − θ){1 + oP (1)}, (A.3)

n−1W̄l = n−1
n∑

i=1

(Yi − pil)X∗
il

pil(1 − pil)
Kh(Zi − zl), (A.4)

n−1Āl = n−1
n∑

i=1

(Yi(2pil − 1) + p2
il)X

∗
ilX

∗T
il

p2
il(1 − pil)2

Kh(Zi − zl). (A.5)

It can be shown that

n−1Āl = −f(zl)E
[

e−XT β−γ(Z)

(1 + e−XT β−γ(Z))2

XXT X 0
XT 1 0
0 0 µ2h

2

∣∣∣∣Z = zl

]
+ oP (1) (A.6)

= −Al + oP (1). (A.7)

Therefore, by (A.10) and the convexity lemma (Pollard (1991)), we obtain
that θ̂l − θl = A−1

l n−1W̄l + oP (1). Now consider the concatenated vector θ =
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(θT
1 , . . . , θT

L)T and its estimator θ̂ = (θ̂T
1 , . . . , θ̂T

L)T :

√
nh(θ̂ − θ) =

√
nh

 θ̂1 − θ1
...

θ̂L − θL

 (A.8)

= n−1
√

nh


A−1

1 0 · · · 0
0 A−1

2 · · · 0
...

...
. . .

...
0 0 · · · A−1

L




W̄1

W̄2
...

W̄L

 +


oP (1)
oP (1)

...
oP (1)

 . (A.9)

It is easy to verify that Liapounov’s condition for the Central Limit Theorem
holds for the random vector W = n−1

√
nh(W̄T

1 , . . . ,W̄T
L)T , which therefore

is asymptotically normal with mean E(W) = n−1
√

nh(E(W̄1)T , E(W̄2)T , . . .,
E(W̄L)T )T , where

E(n−1
√

nhW̄l) =
1
2
h2f(zl)γ

′′
(zl)E[

e−XT β−γ(Z)

(1 + e−XT β−γ(Z))2
(µ2XT , µ2, 0)T |Z = zl]

+o(h2) (A.10)

= bl + o(h2), (A.11)

and covariance matrix cov(W). Here the lth diagonal block is

Var (n−1
√

nhW̄l) = f(zl)E
[

e−XT β−γ(Z)

(1 + e−XT β−γ(Z))2

ν0XXT ν0X 0
ν0XT ν0 0

0 0 ν2h
2

∣∣∣∣Z = zl

]
+o(1) (A.12)

= Bl + o(1), (A.13)

and the (l, l′)th off-diagonal block Cov (
√

nh(W̄l/n,
√

nh(W̄l′/n)) is

E

[
e−XT β−γ(Z)

(1 + e−XT β−γ(Z))2

XXT 0 0
0 0 0
0 0 0

 ]
(A.14)

when zl 6= zl′ and Bl when zl = zl′ .
The asymptotical normality of

√
nh(θ̂−θ) follows from (A.16) and its mean

and covariance can be obtained through matrix multiplication.
Finally note that

xT
1 (β̂−β)+(γ̂(z1)−γ(z1))

xT
2 (β̂−β)+(γ̂(z2)−γ(z2))

...
xT

L(β̂−β)+(γ̂(zL)−γ(zL))

=


xT

1 1 0 0 0 0 · · · 0 0 0
0 0 0 xT

2 1 0 · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · xT
L 1 0

θ̂.(A.15)



SIMULTANEOUS CONFIDENCE INTERVALS 657

By multiplying matrices, we can find the lth bias term

b(xl, zl) = E{xT
l (β̂ − β) + (γ̂(zl) − γ(zl))}

= (xT
l , 1, 0)A−1

l bl

=
1
2
µ2γ

′′(zl)(xT
l , 1)E

[
e−XT β−γ(Z)

(1 + e−XT β−γ(Z))2

(
XXT X
XT 1

) ∣∣∣∣Z = zl

]−1

E[
e−XT β−γ(Z)

(1 + e−XT β−γ(Z))2
(XT , 1)T |Z = zl]. (A.16)

Also note that the lth diagonal element of Σ is (xT
l , 1)Ψ(zl)(xT

l , 1)T , where

Ψ(zl) =
(

Ik 0 0
0 1 0

)
A−1

l BlA−1
l

 Ik 0
0 1
0 0


=

ν0

f(zl)
=

{
E

[ e−XT β−γ(Z)

(1 + e−XT β−γ(Z))2

(
XXT X
XT 1

) ∣∣∣Z = zl

]}−1

, (A.17)

and the (l, l′)th off-diagonal elements of Σ is

Υ(xl,xl′) = xT
l

{
E

[ e−XT β−γ(Z)

(1 + e−XT β−γ(Z))2
XXT

]}−1

xl′ (A.18)

if zl 6= zl′ and (xT
l , 1)Ψ(zl)(xT

l′ , 1)T if zl = zl′ .

Proof of Theorem 4.1. By the convergence of the finite-dimensional distri-
butions in Theorem 3.1, we need only show asymptotic tightness of the process
Wn(x, z), then the result follows from Theorem 18.14 in van der Vaart (1998).

For each positive ε and δ, we can find a partition of T = X ×Z into finitely
many sets T1, . . . , Tk, such that for any t1 = (x1, z1) and t2 = (x2, z2) ∈ Ti(i =
1, . . . , k), ‖x1 − x2‖ < δ and ‖z1 − z2‖ < δ, where ‖.‖ is the Euclidean distance.

It is then straightforward to show

lim sup
n→∞

P
(
sup

i
sup

t1,t2∈Ti

|Wn(t1) − Wn(t2)| ≥ ε
)

(A.19)

≤ lim sup
n→∞

E{
supi supt1,t2∈Ti

|Wn(t1) − Wn(t2)|
ε

}

≤ lim sup
n→∞

supi supt1,t2∈Ti
{C1n‖x1 − x2‖ + C2n‖z1 − z2‖}

ε

≤ C3δ. (A.20)

The first inequality follows from Tchebychef’s inequality; C1n and C2n are finite
constants which do not depend on t1, t2; the second inequality follows since β

is in a compact space and γ(·) is twice continuously differentiable; C3 is also a
finite constant.
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