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Abstract: This paper investigates new aspects of robust inference for general linear

models, calling for a broader array of error measures, beyond the conventional

notion of quasi-likelihood, and allowing for a diverging number of parameters. We

propose a class of robust error measures, called robust-BD, based on the notion of

Bregman divergence (BD). That includes the (negative) quasi-likelihood and many

other commonly used error measures as special cases, and we introduce the robust-

BD estimators of parameters. We re-examine the classical likelihood ratio-type

test statistic, constructed by replacing the negative log-likelihood with the robust-

BD, and find that its asymptotic null distribution is a sum of weighted χ2 with

weights relying on unknown quantities, thus is not asymptotically distribution free.

We propose a robust version of the Wald-type test statistic, based on the robust-

BD estimator, and show that it is asymptotically χ2 (central) under the null, thus

distribution free, and χ2 (noncentral) under the contiguous alternatives. Numerical

examples are presented to illustrate the computational simplicity and effectiveness

of the proposed estimator and test in the presence of outliers.

Key words and phrases: Generalized linear model, hypothesis test, influence func-

tion, quasi-likelihood, robustness.

1. Introduction

Robust inference for generalized linear models (GLM) plays an important

role in statistical applications (McCullagh and Nelder (1989)); refer to Mebane

and Sekhon (2004) for some interesting examples. The existing research on robust

inference for GLM has some limitations. Robust inference is developed mainly

for the logistic regression model, based on the deviance loss as the error measure.

See Hauck and Donner (1977), Bianco and Yohai (1996), Croux and Haesbroeck

(2003), Bianco and Mart́ınez (2009), and references therein. The use of quasi-

likelihood for GLM was studied in Cantoni and Ronchetti (2001). Adimari and

Ventura (2001) devised a distribution free test statistic based on a suitable scale

adjustment of the robust quasi-likelihood. However, the quasi-likelihood is not

applicable to the exponential loss function (to be defined at the start of Section

3), commonly used in the machine learning and data mining literature. Further,

http://dx.doi.org/10.5705/ss.2012.022
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most of the research efforts focus on the finite-dimensional setting with the num-

ber p of parameters fixed or low. There is little work, either theoretically or

empirically, when the dimension p can vary with the sample size n. Hence, ex-

isting results on robust inference are not directly applicable to situations calling

for a broader array of error measures, beyond quasi-likelihood, in the presence of

a diverging number of parameters.

As shown in Zhang, Jiang, and Shang (2009), the (negative) quasi-likelihood

in regression, the deviance loss, the exponential loss in machine learning practice,

and many other commonly used error measures belong to the class of Bregman

divergence (BD). It is thus natural to develop the robust inference based on BD.

We investigate new aspects of the robust inference for general linear models,

described by (2.1)−(2.2), integrating

Case I : the error measure belongs to the class of BD,

Case II : the dimension pn is relaxed to be either fixed or varying with n, where

pn < n.

By broadening the scope of robust estimation, the hope is to gain new insights

into robust inference with applications to large-dimensional datasets.

Four issues are addressed for the varying-dimensional general linear model.

• We propose the robust version of BD, called robust-BD, and introduce a class

of robust-BD estimators; see Section 3.

• We re-examine a classical likelihood ratio-type test statistic Λn, constructed by

replacing the negative log-likelihood with the robust-BD. Theorem 3 finds the

asymptotic null distribution of Λn is generally not χ2, but a sum of weighted

χ2, with weights relying on unknown quantities, and holds under restrictive

conditions. Even in the particular case of using classical (non-robust) BD, the

limit distribution is not invariant with re-scaling of the generating function

of the BD. Moreover, the limit null distribution of Λn (in either the non-

robust or robust version) using the exponential loss, which does not belong to

the (negative) quasi-likelihood but falls in BD, is always a weighted χ2, thus

limiting its use in applications. See Section 4.

• We propose a robust version of the Wald-type test statistic Wn, based on

the robust-BD estimator, and its validity is justified in Theorems 4−6. It

is asymptotically χ2 (central) under the null, thus distribution free, and χ2

(noncentral) under the contiguous alternatives. This result, when applied

to the exponential loss as well as other loss functions in the wider class of

BD, is practically feasible. See Section 4. Furthermore, it has computational

advantages over Λn.
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• We devise a robust-BD classifier based on the proposed robust-BD estimator

and establish its classification consistency.

Simulation studies indicate that the proposed class of robust-BD estimators

is either comparable or superior to the classical non-robust counterpart: the

former is less sensitive to outliers than the latter, and they perform comparably in

non-contaminated cases. The computational simplicity of the proposed estimator

and detection effectiveness of the proposed test are illustrated through a dataset.

The Appendix, for technical details, and Figures 7−10 in Section 6.2 are available

on the online supplement.

2. Overview of Existing Methods

We start with a brief overview of robust inference for the general linear

models. Let {(Xn1, Y1), . . . , (Xnn, Yn)} be independent observations from some

underlying population, (Xn, Y ), whereXn = (X1, . . . , Xpn )
T ∈ Rpn is the vector

of explanatory variables and Y is the scalar response variable. We assume the

general linear model

m(xn) = E(Y |Xn = xn) = F−1(β0;0 + x
T
nβ0), (2.1)

var(Y |Xn = xn) = V (m(xn)), (2.2)

where F is a known link function, β0;0 ∈ R1 and β0 = (β1;0, . . . , βpn ;0)
T ∈ Rpn

are the unknown true regression parameters, and the functional form of V (·) is

known. It is worth noting that (2.1)–(2.2) include the GLM as a special case.

Moreover, they allow the conditional distribution of Y | Xn to be incompletely

(or partially) specified. For simplicity, we use x̃n = (1, x1, . . . , xpn )
T and β̃ =

(β0, β1, . . . , βpn )
T .

2.1. Classical quasi-likelihood estimation

The classical quasi-likelihood estimator of the true parameter β̃0 is

̂̃
β

QL
= argmin

β̃

1

n

n∑
i=1

{−QQL(Yi, F
−1(X̃T

niβ̃))}, (2.3)

where the classical quasi-likelihood function QQL(y, µ) satisfies

∂QQL(y, µ)

∂µ
=
y − µ
V (µ)

= r(y, µ)× 1√
V (µ)

, (2.4)

with r(y, µ)=(y−µ)/
√
V (µ) denoting the Pearson residual. In general, QQL(y, µ)

can be recovered as QQL(y, µ) =
∫ µ
y r(y, s)/

√
V (s)ds.
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Computationally, the quasi-likelihood estimator corresponding to (2.3) can
be obtained by solving the estimating equation,

1

n

n∑
i=1

ψQL(Xni, Yi; β̃) = 0, (2.5)

where the score vector satisfies

ψQL(x, y; β̃) =
∂{−QQL(y, µ)}

∂β̃
= r(y, µ)

−1√
V (µ)F ′(µ)

x̃, (2.6)

with µ = F−1(x̃T β̃).

2.2. Robust quasi-likelihood estimation and inference

It is well-known that the classical maximum likelihood and quasi-likelihood
estimators can be severely affected by outlying observations. Cantoni and Ronchetti
(2001) (abbreviated as CR hereafter) formulated the robust quasi-likelihood es-
timator of β̃0 aŝ̃

βRQL = argmin
β̃

1

n

n∑
i=1

{−QRQL(Xni, Yi, F
−1(X̃T

niβ̃))}, (2.7)

where the robust quasi-likelihood function QRQL(x, y, µ) is{∫ µ

µ0

ψ(r(y, s))
1√
V (s)

ds
}
w(x)

− 1

n

n∑
j=1

∫ µj

µ0

[
E{ψ(r(Yj , s)) |Xnj}

1√
V (s)

ds
]
w(Xnj). (2.8)

Here µj = µj(β̃) = F−1(X̃T
njβ̃), j = 1, . . . , n, where ψ(r) is chosen to be a

bounded, odd function, such as the Huber ψ-function (Huber (1964)), and w(·) ≥
0 is a known bounded weight function that downweights high leverage points in
the covariate space. It is easy to observe that

∂QRQL(x, y, µ)

∂µ
= ψ(r(y, µ))

1√
V (µ)

w(x).

The estimating equation corresponding to (2.7) is given by

1

n

n∑
i=1

ψRQL(Xni, Yi; β̃) = 0, (2.9)

with the score vector defined as

ψRQL(x, y; β̃) =
∂{−QRQL(x, y, µ)}

∂β̃
= ψ(r(y, µ))

−1√
V (µ)F ′(µ)

w(x)x̃− α(β̃),

(2.10)
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where

α(β̃) =
1

n

n∑
j=1

E{ψ(r(Yj , µj)) |Xnj}
−1√

V (µj)F ′(µj)
w(Xnj)X̃nj .

Thus ψRQL(x, y; β̃) depends on the data observations {(Xni, Yi)}ni=1 through

α(β̃).

Remark 1. The estimating equation (2.9) can be rewritten as

1

n

n∑
i=1

[ψ(r(Yi, µi))− E{ψ(r(Yi, µi)) |Xni}]
−1√

V (µi)F ′(µi)
w(Xni)X̃ni = 0.

Remark 2. If ψ(r) = r and w(x) ≡ 1, then α(β̃) = 0 and ψRQL in (2.10)

reduces to ψQL in (2.6).

3. Robust Estimation Based on BD

We consider a class of error measures motivated by Bregman divergence. For

a given concave q-function, Brègman (1967) introduced a device for constructing

a bivariate function,

Qq(ν, µ) = −q(ν) + q(µ) + (ν − µ)q′(µ). (3.1)

We call q the generating q-function of the BD. For example, q(µ) = aµ −
µ2 for some constant a yields the quadratic loss Qq(Y, µ) = (Y − µ)2; for a

binary response variable Y , q(µ) = min{µ, (1 − µ)} gives the misclassification

loss Qq(Y, µ) = I{Y ̸= I(µ > 1/2)}; q(µ) = −2{µ log(µ) + (1 − µ) log(1 − µ)}
gives the Bernoulli deviance loss Qq(Y, µ) = −2{Y log(µ) + (1− Y ) log(1− µ)};
q(µ) = 2min{µ, (1 − µ)} results in the hinge loss Qq(Y, µ) = max{1 − (2Y −
1)sign(µ − 0.5), 0} of the support vector machine; q(µ) = 2{µ(1 − µ)}1/2 yields

the exponential loss Qq(Y, µ) = exp[−(Y −0.5) log{µ/(1−µ)}] used in AdaBoost

(Hastie, Tibshirani, and Friedman (2001)). Moreover, Zhang, Jiang, and Shang

(2009) showed that if

q(µ) =

∫ µ

a

s− µ
V (s)

ds, (3.2)

where a is a finite constant such that the integral is well-defined, then Qq(y, µ)

gives the (negative) quasi-likelihood function −QQL(y, µ) in (2.4).

Now we can see clearly that the exponential loss Qq(y, µ) yields
∂{−Qq (y,µ)}

∂µ

= (y − µ)/{2
√
V (µ)V (µ)}, not in a form proportional to the right side of (2.4),

thus is not a (negative) quasi-likelihood, but belongs to the class of BD.
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3.1. Proposed robust-BD ρq(y, µ)

In contrast to the BD, denoted by Qq in (3.1), we propose the robust-BD

ρq(y, µ) =

∫ µ

y
ψ(r(y, s)){q′′(s)

√
V (s)}ds−G(µ), (3.3)

where the bias-correction term, G(µ), entails the Fisher consistency of the pa-

rameter estimator (to be defined in (3.5)) and satisfies

G′(µ) = G′
1(µ){q′′(µ)

√
V (µ)},

with

G′
1(m(x)) = E{ψ(r(Y,m(x))) |X = x}. (3.4)

The following diagram illustrates the relation among the robust-BD, BD,

and (negative) quasi-likelihood.

robust-BD BD (negative) quasi-likelihood

ρq(y, µ)
ψ(r)=r−−−−→ Qq(y, µ)

q in (3.2)−−−−−→ −QQL(y, µ)

3.2. Proposed robust-BD estimator

The robust-BD estimator
̂̃
β of β̃0 is defined as

̂̃
β = argmin

β̃

{ 1

n

n∑
i=1

ρq(Yi, F
−1(X̃T

niβ̃))w(Xni)
}
. (3.5)

It is easy to see that if q(µ) = µ(1 − µ), V (µ) ≡ σ2, and {Y −m(Xn)} | Xn is

symmetrically distributed, then ρq(y, µ) reduces to the Huber loss function. As

another example, for the q-function given in (3.2), ρq(y, µ)w(x) is equivalent to

the robust quasi-likelihood in (2.8), up to an additive constant. Computation-

ally,
̂̃
β in (3.5) can be obtained by modifying the “coordinate-ascent updating

algorithm” (see for e.g., Bickel and Doksum (2007)).

If the quantities

pj (y; θ) =
∂j

∂θj
ρq(y, F

−1(θ)), j = 0, 1, . . . , (3.6)

exist finitely up to any order required, then we have

p1(y; θ) = {ψ(r(y, µ))−G′
1(µ)}

{q′′(µ)
√
V (µ)}

F ′(µ)
,

p2(y; θ) = A0(y, µ) + {ψ(r(y, µ))−G′
1(µ)}A1(µ), (3.7)

p3(y; θ) = A2(y, µ) + {ψ(r(y, µ))−G′
1(µ)}

A′
1(µ)

F ′(µ)
,
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where µ = F−1(θ),

A0(y, µ) = −
[
ψ′(r(y, µ))

{
1 +

y − µ√
V (µ)

× V ′(µ)

2
√
V (µ)

}
+G′′

1(µ)
√
V (µ)

] q′′(µ)

{F ′(µ)}2
,

A1(µ) =
{q(3)(µ)

√
V (µ)+2−1q′′(µ)V ′(µ)/

√
V (µ)}F ′(µ)−q′′(µ)

√
V (µ)F ′′(µ)

{F ′(µ)}3
,

and

A2(y, µ) =
∂A0(y, µ)/∂µ+ ∂{ψ(r(y, µ))−G′

1(µ)}/∂µA1(µ)

F ′(µ)
.

The estimating equation corresponding to (3.5) is

1

n

n∑
i=1

ψRBD(Xni, Yi; β̃) = 0, (3.8)

and the score vector is

ψRBD(x, y; β̃) =
∂{ρq(y, µ)w(x)}

∂β̃
= p1(y; θ)w(x)x̃, (3.9)

with θ = x̃T β̃.

The estimator
̂̃
β is characterized by the score function and influence function,

ψρq (Y,Xn) = p1(Y ; X̃T
n β̃0)w(Xn)X̃n, (3.10)

IF(Y,Xn;ψρq ) = {M(ψρq )}
−1ψρq (Y,Xn), (3.11)

where M(ψρq ) = −E[∂ψρq (Y,Xn)/∂β̃0] = −E{p2(Y ; X̃T
n β̃0)w(Xn)X̃nX̃

T
n };

see Hampel (1974) and Hampel et al. (1986).

Remark 3. The format of the robust error measure, ρq(y, µ)w(x), in (3.5), when

applied to the generating q-function given in (3.2) for the quasi-likelihood, is

−
[ ∫ µ

y
ψ(r(y, s))

1√
V (s)

ds−
∫ µ

y
E{ψ(r(Y, s)) |X} 1√

V (s)
ds

]
w(x),

but is not identical to that of −QRQL(x, y, µ), in (2.8); likewise, the score vectors

(3.9) and (2.10) are different. Nonetheless, the estimating equations (3.8) and

(2.9) coincide. This agreement can be verified from Remark 1, via a straightfor-

ward derivation.

The relationship among the criterion functions used in the three types of

parameter estimation is summarized in Table 1.
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Table 1. Relationship among the criterion functions associated with robust-
BD, robust quasi-likelihood, and classical quasi-likelihood estimations.

criterion function estimating equation score vector

ρq (y, µ)w(x) in (3.5) (3.8) ψRBD(x, y; β̃) in (3.9)
⇓ q in (3.2)

−QRQL(x, y, µ) in (2.7) (2.9) ψRQL(x, y; β̃) in (2.10)
⇓ ψ(r) = r, w(x) ≡ 1

−QQL(y, µ) in (2.3) (2.5) ψQL(x, y; β̃) in (2.6)

3.3. Asymptotic properties of the robust-BD estimator

The asymptotic distribution of
̂̃
β involves two square matrices of size (pn+1),

Ωn = E{p2
1
(Y ; X̃T

n β̃0)w
2(Xn)X̃nX̃

T
n },

Hn = E{p2(Y ; X̃T
n β̃0)w(Xn)X̃nX̃

T
n }.

Theorem 1 guarantees the existence of a
√
n/pn-consistent minimizer of

(3.5), with the dimension pn allowed to be fixed or varying with n.

Theorem 1. Assume A0, A1, A2, A4, A5, A6, and A7 in the Appendix.

If p4
n
/n → 0 as n → ∞, then there exists a local minimizer

̂̃
β of ℓn(β̃) =

n−1
∑n

i=1 ρq(Yi, F
−1(X̃T

niβ̃))w(Xni) such that ∥̂̃β − β̃0∥ = OP (
√
pn/n).

The proof of Theorem 1 relies on the positive definiteness ofHn = E[E{p2(Y ;

X̃T
n β̃0) |Xn}w(Xn)X̃nX̃

T
n ]. We discuss conditions under whichE{p2(Y ; X̃T

n β̃0)

|Xn} ≥ 0 (and > 0).

• The sign of E{p2(Y ; X̃T
n β̃0) |Xn} depends on the choice of BD only through

q′′(µ) (which is ≤ 0), thus is invariant with the choice of generating q-functions

of BD.

• A sufficient condition for E{p2(Y ; X̃T
n β̃0) | Xn} ≥ 0 is that the conditional

distribution of Y |Xn is symmetric about m(Xn).

• A sufficient condition for E{p2(Y ; X̃T
n β̃0) |Xn} ≥ 0 is that

E[ψ(r(Y,m(Xn)))
∂

∂m(Xn)
log{f(Y | Xn,m(Xn))} | Xn] ≥ 0, which holds

when ψ(r)r ≥ 0, and the conditional distribution of Y | Xn belongs to the

exponential family, where f denotes the conditional density of Y |Xn.

• If ψ(r) = r, a direct computation gives that E{p2(Y ; X̃T
n β̃0) | Xn} =

−q′′(m(Xn))/{F ′(m(Xn))}2 ≥ 0, for any conditional distribution of Y |Xn.

Theorem 2. Assume A0, A1, A2, A4, A5, B5, A6, and A7 in the Appendix. If

p5
n
/n→ 0 as n→∞, then any

√
n/pn-consistent minimizer

̂̃
β satisfies: for any
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fixed integer k and any k × (pn + 1) matrix An such that AnA
T
n → G with G a

k× k nonnegative-definite matrix,
√
nAnΩ

−1/2
n Hn(

̂̃
β − β̃n;0)

L−→ N(0,G).

It is then clear that for the robust-BD estimators, the choice of a bounded

score function ensures robustness by putting a bound on the influence function.

As observed from (3.10)−(3.11), a bounded function p1(y; θ) is introduced from

a bounded function ψ(r) to control large deviations in the Y -space, and high

leverage points are down-weighted by the weight function w(Xn).

4. Robust Inference Based on BD

In many applications, we wish to test whether a subset of explanatory vari-

ables used is statistically significant. Specific examples include

H0 : βj;0 = 0, for j = j0, (4.1)

H0 : βj;0 = 0, for j = j1, . . . , j2. (4.2)

These hypotheses can be more generally formulated as

H0 : Anβ̃0 = g0 ←→ H1 : Anβ̃0 ̸= g0, (4.3)

where An is a given k × (pn + 1) matrix such that AnA
T
n = G with G a k × k

positive-definite matrix, and g0 a known k× 1 vector. The hypothesis studied

in the CR paper corresponds to the choice An = [0k,pn+1−k, Ik] with AnA
T
n = Ik,

where pn = p, and g0 = 0.

4.1. A re-examination of the likelihood ratio-type test

It is well-known that the likelihood ratio-type test statistic, based on the

maximum likelihood estimation, is asymptotically χ2 under the null. When pn is

fixed, Heritier and Ronchetti (1994) developed robust versions of the likelihood

ratio, Wald, and score tests, and their asymptotic distributions under the null

and the alternative hypotheses.

This section explores the extent to which the likelihood ratio-type test can

feasibly be extended to the robust-BD in the presence of a diverging number pn
of parameters. In such setting, the robust-BD test statistic takes the form

Λn = 2n
{

min
β̃∈Rpn+1:Anβ̃=g0

ℓn(β̃)− min
β̃∈Rpn+1

ℓn(β̃)
}
,

where ℓn(β̃) = n−1
∑n

i=1 ρq(Yi, F
−1(X̃T

niβ̃))w(Xni) is the criterion function in

(3.5) to be minimized. Clearly, when ℓn is replaced by the negative log-likelihood,

Λn is the classical likelihood ratio statistic. Likewise, when ℓn is replaced by the
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negative robust quasi-likelihood, Λn reduces to a test statistic which, while not

identical, is asymptotically equivalent to that of the CR paper.

We require a convexity condition on the robust-BD:

p2(y; θ) > 0 for all θ ∈ R and all y in the range of Y . (4.4)

Under this assumption, ℓn(β̃) is strictly convex in β̃, and thus the minimizer of

(3.5) is globally unique.

Theorem 3. Assume (4.4) and A0, A1, A2, C4, A5, B5, A6, A7, and D5 in

the Appendix.

(i) If p5
n
/n→ 0 as n→∞, then under H0 in (4.3),

Λn = nLTnH
−1/2
n P

H
−1/2
n AT

n
H−1/2
n Ln + oP (1),

where
√
nLn ∼ N(0,Ωn), and PX = X(XTX)−1XT is defined for a matrix

X such that (XTX)−1 exists.

(ii) If ψ(r) = r and the generating q-function of BD satisfies

q′′(m(x))w(x) = − C

V (m(x))
, for a constant C > 0, (4.5)

then under H0 in (4.3), we have Λn/C
L−→ χ2

k for any
√
n/pn-consistent

estimator
̂̃
β of β̃0.

Here, from part (i), Λn is not asymptotically distribution free. From part

(ii), the restriction (4.5) on the q-function limits the application domain of Λn.

For the quasi-likelihood function associated with the q-function in (3.2), (4.5)

holds with C = 1 and Λn
L−→ χ2

k; in other cases, C is operationally a nuisance

parameter. Further, the asymptotic distribution of Λn is not invariant with re-

scaling the q-function. In the particular case of binary responses, the Bernoulli

deviance loss satisfies (4.5), but the quadratic and exponential losses violate (4.5).

These limitations reflect that, under the general framework of BD, the likelihood

ratio-type test statistic Λn may not be valid.

4.2. Proposed Wald-type test based on the robust-BD

We propose a robust version of the Wald-type test statistic based on the

robust-BD estimator as,

Wn = n(An
̂̃
β − g0)T (AnĤ−1

n Ω̂nĤ
−1
n ATn )

−1(An
̂̃
β − g0),
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where
̂̃
β is the proposed robust-BD estimator of β̃0, and

Ω̂n =
1

n

n∑
i=1

p2
1
(Yi; X̃

T
ni
̂̃
β)w2(Xni)X̃niX̃

T
ni,

Ĥn =
1

n

n∑
i=1

p2(Yi; X̃
T
ni
̂̃
β)w(Xni)X̃niX̃

T
ni.

Other types of estimates Ω̂n and Ĥn can also work provided thatAn(Ĥ
−1
n Ω̂nĤ

−1
n −

H−1
n ΩnH

−1
n )ATn

P−→ 0. We find under the null, that Wn is asymptotically

distribution-free.

Theorem 4. Assume A0, A1, A2, C4, A5, B5, A6, and A7 in the Appendix.

If p5
n
/n → 0 as n → ∞, then under H0 in (4.3), Wn

L−→ χ2
k for any

√
n/pn-

consistent estimator
̂̃
β of β̃0.

We assess the discriminating power of the test based on Wn.

Theorem 5. Assume A0, A1, A2, A5, B5, A6, and A7 in the Appendix, and

AnH
−1
n ΩnH

−1
n ATn

P−→M where M is a k× k positive definite matrix. If p5
n
/n→

0 as n → ∞, then under the fixed alternative H1 in (4.3) with ∥Anβ̃0 − g0∥
independent of n,

n−1Wn ≥ λ−1
max(M)∥Anβ̃0 − g0∥2 + oP (1)

for any
√
n/pn-consistent estimator

̂̃
β of β̃0.

Consider a sequence of contiguous alternatives of the form,

H1n : Anβ̃0 − g0 = δnc{1 + o(1)}, (4.6)

where δn = n−1/2 and c = (c1, . . . , ck)
T ̸= 0 is fixed. We explore the local power

of Wn for detecting contiguous alternatives.

Theorem 6. Assume A0, A1, A2, A5, B5, A6, and A7 in the Appendix, and

AnH
−1
n ΩnH

−1
n ATn

P−→M where M is a k×k positive definite matrix. If p5
n
/n→ 0

as n → ∞, then under H1n in (4.6), Wn
L−→ χ2

k(τ
2) for any

√
n/pn-consistent

estimator
̂̃
β of β̃0, with the noncentrality parameter τ2 = cTM−1c.

4.3. Advantages of Wn over Λn

The test based on Wn offers some obvious advantages over the test based

on Λn: Wn is asymptotically distribution-free, while Λn is not; Wn removes the
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convexity condition (4.4) required for Λn, and Wn is invariant under re-scaling

of the generating q-function of the BD. The computational cost of Wn is much

reduced from that of Λn: integration operations are involved in Λn but not in

Wn; Λn requires both unrestricted and restricted parameter estimates, while Wn

is useful when restricted parameter estimates are difficult to compute. Numerical

studies in Section 6 will focus on Wn.

5. Classification Consistency

For a binary response variable Y , the mean regression functionm(xn) in (2.1)

is the class probability P (Y = 1 | Xn = xn). From the robust-BD estimator

(β̂0, β̂
T )T of Section 3.2, we construct the robust-BD classifier,

ϕ̂n(xn) = I{m̂(xn) > 1/2},

for a future input xn, where I(·) is an indicator function and m̂(xn) = F−1(β̂0 +

xTn β̂). Details on binary classification can be found in Devroye, Györfi, and

Lugosi (1996).

To emphasize the dependence of the dimension pn on n in our current setting,

the optimal Bayes rule is written as ϕn,B(xn) = I{m(xn) > 1/2}. For a test

sample (Xo
n, Y

o), which is an i.i.d. copy of samples in the training set Tn =

{(Xni, Yni), i = 1, . . . , n}, the optimal Bayes risk is R(ϕn,B) = P{ϕn,B(Xo
n) ̸=

Y o} and the conditional risk of the robust-BD classification rule ϕ̂n is R(ϕ̂n) =

P{ϕ̂n(Xo
n) ̸= Y o | Tn}. For ϕ̂n induced by the robust-BD regression estimation

using a range of loss functions, we have classification consistency preserved by

ϕ̂n.

Theorem 7. Assume A1 and A4 in the Appendix. If ∥̂̃β − β̃0∥ = OP (rn)

and rn
√
pn = o(1), then the classification rule ϕ̂n constructed from

̂̃
β satisfies

E{R(ϕ̂n)} −R(ϕn,B)→ 0 as n→∞.

6. Simulation Study

We conducted simulation studies to evaluate the performance of the robust-

BD estimator and the robust Wald-type test statistic Wn in the absence and

presence of outliers. The robust-BD estimation utilized the Huber ψ-function

ψ(·) with c = 1.345. For count responses, the weight function was of the form

w(x) = 1/{1 +
∑pn

j=1(
xj−mj

sj
)2}1/2, where x = (x1, . . . , xpn )

T , mj denotes the

median of {Xi,j : i = 1, . . . , n} and sj denotes the median absolute deviation from

the median respectively, j = 1, . . . , pn . See Maronna, Martin, and Yohai (2006)

for robust estimates of location and scale. This form of w(x) is a generalization

of a weight function used in Boente, He, and Zhou (2006) for a one-dimensional
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covariate. For binary responses, the weight function was w(x) = 1/{1 + (x −
m̂)T Σ̂−1(x−m̂)}1/2, where m̂ and Σ̂ denote the robust estimates of the location

vector and scatter matrix of Xn, implemented using the fast S-estimator with

default set-ups from the function “CovSest.R” in the R package “rrcov”. Other

options can be found in Heritier et al. (2009). Comparisons are made with the

classical non-robust counterparts with ψ(r) = r and w(x) ≡ 1.

6.1. Overdispersed Poisson responses

We generated overdispersed Poisson counts Yi with var(Yi | Xni = xi) =

2m(xi), via a negative Binomial(m(Xni), 1/2) distribution. In the predictor

Xni = (Xi,1, Xi,2, . . . , Xi,pn )
T , Xi,1 ∼ Uniform(−0.5, 0.5); for j = 2, . . . , pn ,

Xi,j = Φ(Zi,j) − 0.5, where Φ is the standard normal distribution function,

and (Zi,2, . . . , Zi,pn )
T ∼ N(0,Σpn−1), with Σpn−1(j, k) = 0.2|j−k|, for j, k =

1, . . . , pn − 1 and pn = [6.5(n1/5.5 − 1)], where [x] is the largest integer that is

less than or equal to x. The link function was log{m(x)} = β0;0 + x
Tβ0 with

β0;0 = 2.5 and β0 = (2, 2, 0, . . . , 0)T . The (negative) quasi-likelihood was utilized

as the BD, generated by the q-function in (3.2) with V (µ) = µ, and (3.4) for the

robust estimator was calculated assuming the Poisson(m(X)) distribution. The

sample size n was 400, and 500 replications were conducted.

For each data set generated from the model, we created a contaminated data

set, where 20 data points (Xi,1, . . . , Xi,pn , Yi) were subject to contamination. (i)

In the first 10 points, Yi was replaced by Y ∗
i = Yi I(Yi > 100) + 100 I(Yi ≤ 100),

and X1,1, X2,2, X3,3, X4,5, X5,7, X6,8, X7,9 by

X∗
1,1 = .5 sign(U1 − 0.5), X∗

2,2 = 3 sign(U2 − 0.5), X∗
3,3 = 3 sign(U3 − 0.5),

X∗
4,5 = 3 sign(U4 − 0.5), X∗

5,7 = 3 sign(U5 − 0.5), X∗
6,8 = 3 sign(U6 − 0.5),

X∗
7,9 = 3 sign(U7 − 0.5),

respectively, with {Ui}
i.i.d.∼ Uniform(0, 1); (ii) Xi,5 was replaced in the next 10

points by X∗
i,5 = Xi,5 + ei, where {ei} were independent N(0, 0.022) variables.

Part 1: Parameter estimation. Figure 1 compares the boxplots of β̂j − βj;0,
j = 0, 1, . . . , pn , using the non-robust and robust quasi-likelihood estimates. The

non-robust estimates are more sensitive to outliers than the robust counterparts.

Simulation results (omitted for lack of space) also indicate that the robust esti-

mator performs as well as the non-robust estimator for non-contaminated cases.

Part 2: Null distribution of the robust test statisticWn. Figure 2 displays

the QQ plots of the (1st to 99th) percentiles of the robust test statisticWn versus

those of the χ2
k distribution for the null hypothesis (4.1) with j0 = 6, and the

null hypothesis (4.2) with j1 = 9 and j2 = 12. It is clear that the asymptotic χ2
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contaminated data, classical quasi-likelihood, contaminated data, robust quasi-likelihood,

w=1 with w

Figure 1. (Simulated overdispersed Poisson response data with contamin-

ation) Boxplots of β̂j − βj;0, j = 0, 1, . . . , pn (from left to right). Left panel:
the non-robust estimates; right panel: the robust estimates.

contaminated data, robust quasi-likelihood, contaminated data, robust quasi-likelihood,

with w, simple H0 with w, composite H0

Figure 2. (Simulated overdispersed Poisson response data with contamin-
ation) Empirical quantiles (on the y-axis) of the robust test statistics Wn

versus quantiles (on the x-axis) of the χ2 distribution. Solid line: the 45
degree reference line. Left panel: for testing (4.1); right panel: for testing
(4.2).

distribution well-approximates the finite sampling null distribution of Wn, and

that the test for the composite null models can be made as precise as the test

for the simple null.

Part 3: Level of tests. To investigate the stability of the level of the robust

test, we replaced the previous 20 data points by (X∗∗
i,j , Y

∗∗
i ), with X∗∗

i,j = (1 −
θ)Xi,j + θX∗

i,j and Y
∗∗
i = [(1− θ)Yi + θY ∗

i ]. As θ varies from 0 to 1, each sample

ranges from the non-contaminated case to the contaminated case. Figure 3 shows

the observed rates of rejecting H0. We observe that the asymptotic nominal level

0.05 is approximately retained by the robust Wald-type test. On the other hand,
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simple H0 composite H0

Figure 3. Level of tests for the overdispersed Poisson response data. The
dashed line corresponds to the non-robust Wald-type test; the solid line
corresponds to the robust Wald-type test; the dotted line indicates the 5%
nominal level. Left panel: for testing (4.1); right panel: for testing (4.2).

under contamination, the non-robust Wald-type test breaks in level, showing

high sensitivity to the presence of outliers.

Part 4: Power of tests. To assess the stability of the power of the tests, we

generated the original data from the true model, but with the true parameter

β̃0 replaced by β̃ = β̃0 + ∆c, with c = (1, . . . , 1)T a vector of ones. Figure 4

plots the empirical rejection rates of the null model in the non-contaminated and

contaminated cases. The price to pay for the robust Wald-type tests is a little

loss of power in the non-contaminated cases. Under contamination, the observed

power function of the robust test is close to that achieved in the non-contaminated

case, while the non-robust test is less informative, since the power function is not

higher than that of the robust test under the alternative hypotheses with ∆ ̸= 0,

but higher than the nominal level under the null hypotheses with ∆ = 0.

6.2. Bernoulli responses

We generated data with two classes from the model, Y |Xn = x ∼ Bernoulli

{m(x)}, where logit{m(x)} = β0;0+x
Tβ0 with β0;0 = 0 and β0 = (2, 2, 0, . . . , 0)T .

The predictor Xn was N(0,Σpn ). For illustrative purposes, we set Σpn = Ipn ,

and pn = 2. For each data set generated from the model, we created a contam-

inated data set with 45 contaminated points. (i) For the original first 5 data

points (Xi,1, Xi,2, Yi), we replaced Xi,1 by X∗
i,1 = 2 + i/2, and Yi by Y ∗

i = 0,

misclassified observations on a hyperplane parallel to the true discriminating hy-

perplane, the orthogonal distance between the two hyperplanes being d =
√
2;

(ii) we replaced Xi,1 in the next 19 points with X∗
i,1 = Xi,1 + ei, where {ei} were

independent N(0, 0.022) variables; (iii) we replaced Xi,2 in the next 19 points
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Figure 4. Observed power functions of tests for the overdispersed Poisson
response data. The dashed line corresponds to the non-robust Wald-type
test; the solid line corresponds to the robust Wald-type test; the dotted
line indicates the 5% nominal level. Top panels: for testing (4.1); bottom
panels: for testing (4.2). Left panels: without contamination; right panels:
with contamination.

with X∗
i,2 = Xi,2 + ei, where {ei} were independent N(0, 0.022) variables; (iv)

we replaced Yi in the next 2 points with Y ∗
i = 1 − Yi. Figure 5 shows the two

hyperplanes and locations (X∗
i,1, X

∗
i,2) of contaminated points. Both the deviance

loss and the exponential loss were employed as the BD. The sample size n was

800, and 500 replications were conducted.

Part 1: Parameter estimation. Figure 7 compares the boxplots of β̂j −
βj;0, j = 0, 1, . . . , pn , using the non-robust and robust BD estimates, where

the deviance loss and the exponential loss are used as the BD in the top and

bottom panels respectively. In the presence of contamination, robust procedures

are effective in reducing the estimation bias without excessively inflating the

variance.

Part 2: Null distribution of the robust test statistic Wn. Two types of
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Figure 5. Lower dashed line: true discriminating hyperplane; upper dashed
line: the hyperplane for the contaminated points marked by the plus “+”
signs; solid line with length d: orthogonal to the parallel dashed lines.

null hypotheses were considered:

H
(I)
0 : β0;0 = 0, β1;0 = 2, β2;0 = 2, and H

(II)
0 : β1;0 = β2;0.

We checked the agreement between the asymptotic χ2
k distribution and the finite

sampling distribution of the robust test statistic Wn under the null hypotheses.

The QQ plots of the (1st to 99th) percentiles of Wn against those of the χ2
k

distribution are displayed in Figure 8. The left panels test for H
(I)
0 , and the

right panels test for H
(II)
0 . We observe that the finite sampling null distribution

of Wn, using the deviance loss as the BD, agrees reasonably well with the χ2

distribution. As a comparison, results using the exponential loss as the BD can

be improved with a reduced number (for example 5) of contamination points or

more refined estimation of the covariance matrices.

Part 3: Level of tests. To investigate the stability of the level of the robust

test, we followed the previous contamination scheme, but with d varying from

2 to 10. The larger the d, the more severe the contamination. Figure 9 shows

the empirical rejection rates of H0. We observe that, under contamination, the

level of the robust Wald-type test is more stable. In contrast, the non-robust

Wald-type test shows high sensitivity to the presence of outliers.

Part 4: Power of tests. To assess the stability of the power of the tests, we

generated the original data from the true model, but with the true parameter

β̃0 replaced by β̃ = β̃0 +∆c, where c = (1, 3, 4)T . Figure 10 plots the empirical

rejection rates of the null hypothesis H
(I)
0 in the non-contaminated and contami-

nated cases. The non-robust and robust Wald-type tests perform comparably in

the non-contaminated cases. Under contamination, the observed power function

of the robust test is close to that achieved in the non-contaminated case, while
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Figure 6. Sensitivity curves of the p-values for the Wald-type test Wn

(left panel) and likelihood ratio-type test Λn (right panel). The dashed line
corresponds to the non-robust test; the solid line corresponds to the robust
test; the dotted line indicates the 5% significance level.

the non-robust test is less informative, since the power function is higher than
the nominal level under the null hypotheses with ∆ = 0. Results for the null
hypothesis H

(II)
0 were similar and are omitted.

7. Data Analysis

For the sake of comparison with the published results on robust methods
in the CR paper, we analyze the data from a study of the diversity of possum
(arboreal marsupials) in the Montane ash forest (Australia), described in Lin-
denmayer et al. (1990, 1991). Refer to the CR paper for a detailed description
of the dataset and analysis using robust methods.

A Poisson generalized linear regression model with log-link was fitted to the
response variable diversity with explanatory variables (Shrubs, Stumps, Stags,
Bark, Habitat, BAcacia, E.regnans, E.delegatensis, E.nitens, NW-NE, NW-SE,
SE-SW, and SW-NW), involving the estimation of 12 parameters (including one for
the intercept term). The (negative) quasi-likelihood was utilized as the BD,
generated by the q-function in (3.2) with V (µ) = µ. For the sake of comparison,
we took the tuning constant c = 1.6 and weights w(xi) =

√
1− hi, with hi as the

ith diagonal element of X(XTX)−1XT and X the design matrix with the ith row
X̃T
ni. Table 2 tabulates the robust-BD estimates of parameters in (3.5) and their

standard errors (indicated in parentheses), together with the p-values calculated
from the proposed Wald-type tests. It is seen that the robust-BD estimates are
nearly identical to the robust quasi-likelihood estimates given in Table 3 of the
CR paper, but have slightly smaller standard errors.

Table 3 presents parameter estimation and p-values calculated from Wn for
the final reduced model, where variables retained were taken from the CR paper.
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Table 2. Coefficient estimation and p-values for Poisson model with log-link
of the Possum dataset.

Non-robust BD estimation Robust-BD estimation
Variable estimate (s.e.) p-value of Wn estimate (s.e.) p-value of Wn

Intercept -0.9469 (0.2655) 0.0004 -0.8974 (0.2680) 0.0008
Shrubs 0.0119 (0.0219) 0.5867 0.0099 (0.0222) 0.6542
Stumps -0.2724 (0.2859) 0.3408 -0.2515 (0.2872) 0.3811
Stags 0.0402 (0.0112) 0.0003 0.0401 (0.0113) 0.0004
Bark 0.0399 (0.0144) 0.0056 0.0400 (0.0145) 0.0058
Habitat 0.0717 (0.0381) 0.0600 0.0714 (0.0385) 0.0633
BAcacia 0.0176 (0.0106) 0.0961 0.0178 (0.0107) 0.0964
E.regnans 0 ( —) — 0 ( —) —
E.delegatensis -0.0154 (0.1916) 0.9361 -0.0203 (0.1935) 0.9164
E.nitens 0.1150 (0.2724) 0.6730 0.1268 (0.2734) 0.6429
NW-NE 0 ( —) — 0 ( —) —
NW-SE 0.0668 (0.1902) 0.7254 0.0601 (0.1910) 0.7529
SE-SW 0.1170 (0.1903) 0.5388 0.0950 (0.1918) 0.6202
SW-NW -0.4889 (0.2475) 0.0482 -0.5077 (0.2502) 0.0424

Again, the standard errors of the robust-BD estimates are slightly smaller than

those of the robust quasi-likelihood estimates given in Table 5 of the CR paper.

To compare the sensitivity of the Wald-type test Wn and the likelihood ratio-

type test Λn, we let Y110 span the range of integer values from 0 to 6. In each

situation, the null hypothesis for the insignificance of the variable Habitat was

tested. Figure 6 plots the p-values of both tests. The p-value of the robust

Wald-type test is very stable, but the p-value of its non-robust version varies

much more, yielding a different model choice if the level is set at 5%. The

p-value of the robust Wald-type test is bounded, whereas the p-value of the non-

robust Wald-type test increases as the value of Y110 grows. The proposed robust

Wald-type test is as stable to perturbation as the robust likelihood ratio-type

test, but the gain in computational simplicity is substantial, especially when the

number of simultaneous hypotheses increases. The sensitivity curve of the robust

likelihood ratio-type test Λn appears to be different from that of the robust quasi-

likelihood test displayed in Figure 1 of the CR paper. This is due to the fact that

Λn and the test in the CR paper are asymptotically equivalent, but not identical;

moreover, numerical procedures involved in estimating covariance matrices as

well as numerical integrations performed in computing ρq(·, ·) differ.
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Table 3. Coefficient estimation and p-values for Poisson model with log-link
of the Possum dataset.

Non-robust BD estimation Robust-BD estimation
Variable estimate (s.e.) p-value of Wn estimate (s.e.) p-value of Wn

Intercept -0.8212 (0.2001) 0.0000 -0.7976 (0.2028) 0.0001
Stags 0.0410 (0.0103) 0.0001 0.0406 (0.0104) 0.0001
Bark 0.0406 (0.0125) 0.0011 0.0410 (0.0126) 0.0011
Habitat 0.0782 (0.0367) 0.0332 0.0776 (0.0370) 0.0361
BAcacia 0.0136 (0.0097) 0.1609 0.0143 (0.0098) 0.1449
SW-NW -0.5967 (0.2086) 0.0042 -0.6043 (0.2118) 0.0043
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S1 Notation and Assumptions

For a matrixM , its eigenvalues, minimum eigenvalue, maximum eigenvalue and trace are
labeled by λj(M), λmin(M), λmax(M) and tr(M) respectively. Let ‖M‖ = sup‖xn‖=1 ‖Mxn‖ =

{λmax(M
TM)}1/2 be the matrix L2 norm; let ‖M‖F = {tr(MTM)}1/2 be the Frobenius

norm. See Golub and Van Loan (1996) for details. Throughout the proof, C is used as
a generic finite constant.

We first impose some regularity conditions, which are not the weakest possible but
facilitate the technical derivations.

Condition A:

A0. supn≥1 ‖β̃0‖1 <∞.

A1. ‖Xn‖∞ = max1≤j≤pn
|Xj | is bounded almost surely.

A2. E(X̃nX̃
T

n ) exists and is nonsingular.

A4. There is a large enough open subset of Rpn+1 which contains the true parameter

point β̃0, such that F−1(X̃
T

n β̃) is bounded almost surely for all β̃ in the subset.

A5. w(·) ≥ 0 is a bounded function. Assume that ψ(r) is a bounded, odd function,
and twice differentiable, such that ψ′(r), ψ′(r)r, ψ′′(r), ψ′′(r)r and ψ′′(r)r2 are bounded;
V (·) > 0, V (2)(·) is continuous. The matrix Hn is positive definite, with eigenvalues
uniformly bounded away from 0.

A6. q(4)(·) is continuous, and q(2)(·) < 0. G
(3)
1 (·) is continuous.

A7. F (·) is monotone and a bijection, F (3)(·) is continuous, and F (1)(·) 6= 0.

Condition B:
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B5. The matrices Ωn and Hn are positive definite, with eigenvalues uniformly
bounded away from 0. Also, ‖H−1

n Ωn‖ is bounded away from ∞.

Condition C:

C4. There is a large enough open subset of Rpn+1 which contains the true parameter

point β̃0, such that Anβ̃0 = g0, and F
−1(X̃

T

n β̃) is bounded almost surely for all β̃ in
the subset.

Condition D:

D5. The eigenvalues of Hn are uniformly bounded away from 0. Also, ‖H−1/2
n Ω

1/2
n ‖

is bounded away from ∞.

S2 Proofs of Main Results

Proof of Theorem 1

We follow the idea of the proof in Fan and Peng (2004). Let rn =
√
pn/n and ũn =

(u0, u1, . . . , upn
)T ∈ Rpn+1. It suffices to show that for any given ǫ > 0, there exists a

sufficiently large constant Cǫ such that, for large n we have

P
{

inf
‖ũn‖=Cǫ

ℓn(β̃0 + rnũn) > ℓn(β̃0)
}
≥ 1− ǫ. (S2.1)

This implies that with probability at least 1−ǫ, there exists a local minimizer
̂̃
β of ℓn(β̃)

in the ball {β̃0 + rnũn : ‖ũn‖ ≤ Cǫ} such that ‖̂̃β − β̃0‖ = OP (rn). To show (S2.1),
consider

ℓn(β̃0 + rnũn)− ℓn(β̃0) =
1

n

n∑

i=1

{ρ
q
(Yi, F

−1(X̃
T

ni(β̃0 + rnũn)))w(Xni)

−ρq(Yi, F
−1(X̃

T

niβ̃0))w(Xni)}
≡ I1, (S2.2)

where ‖ũn‖ = Cǫ.

By Taylor’s expansion,

I1 = I1,1 + I1,2 + I1,3, (S2.3)

where

I1,1 = rn/n

n∑

i=1

p
1
(Yi; X̃

T

niβ̃0)w(Xni)X̃
T

niũn,

I1,2 = r2n/(2n)
n∑

i=1

p
2
(Yi; X̃

T

niβ̃n;0)w(Xni)(X̃
T

niũn)
2,
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I1,3 = r3n/(6n)

n∑

i=1

p
3
(Yi; X̃

T

niβ̃
∗

n)w(Xni)(X̃
T

niũn)
3

for β̃
∗

n located between β̃n;0 and β̃n;0 + rnũn. Hence

|I1,1| ≤ rn

∥∥∥∥
1

n

n∑

i=1

p
1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni

∥∥∥∥‖ũn‖ = OP (rn
√
pn/n)‖ũn‖. (S2.4)

For I1,2 in (S2.3),

I1,2 =
r2n
2n

n∑

i=1

E{p
2
(Yi; X̃

T

niβ̃n;0)w(Xni)(X̃
T

niũn)
2}

+
r2n
2n

n∑

i=1

[p
2
(Yi; X̃

T

niβ̃n;0)w(Xni)(X̃
T

niũn)
2 − E{p

2
(Yi; X̃

T

niβ̃n;0)w(Xni)(X̃
T

niũn)
2}]

≡ I1,2,1 + I1,2,2,

where I1,2,1 = 2−1r2nũ
T
nHnũn. Meanwhile, we have

|I1,2,2| ≤ r2n

∥∥∥∥
1

n

n∑

i=1

[
p

2
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃niX̃
T

ni − E{p
2
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃niX̃
T

ni}
]∥∥∥∥

F

‖ũn‖2

= r2nOP (pn/
√
n)‖ũn‖2.

Thus,

I1,2 =
r2n
2
ũT
nHnũn +OP (r

2
npn

/
√
n)‖ũn‖2. (S2.5)

For I1,3 in (S2.3), we observe that

|I1,3| ≤ r3n
1

n

n∑

i=1

|p
3
(Yi; X̃

T

niβ̃
∗

n)|w(Xni)|X̃
T

niũn|3 = OP (r
3
np

3/2
n

)‖ũn‖3,

which follows from Conditions A0, A1, A4 and A5.

By (S2.4) and p4
n
/n → 0, we can choose some large Cǫ such that I1,1 and I1,3 are

all dominated by the first term of I1,2 in (S2.5), which is positive by the eigenvalue
assumption on Hn. This implies (S2.1). �

Proof of Theorem 2

Notice the estimating equations ∂ℓn(β̃)

∂β̃
|
β̃=

̂̃
β
= 0, since

̂̃
β is a local minimizer of ℓn(β̃).

Taylor’s expansion applied to the left side of the estimation equations yields

0 =

{
1

n

n∑

i=1

p
1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni

}
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+

{
1

n

n∑

i=1

p
2
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃niX̃
T

ni

}
(
̂̃
β − β̃n;0)

+
1

2n

n∑

i=1

p
3
(Yi; X̃

T

niβ̃
∗

n)w(Xni){X̃
T

ni(
̂̃
β − β̃n;0)}2X̃ni

≡
{
1

n

n∑

i=1

p
1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni

}
+K2(

̂̃
β − β̃n;0) +K3, (S2.6)

where β̃
∗

n lies between β̃n;0 and
̂̃
β. Below, we will show

‖K2 −Hn‖ = OP (pn/
√
n), (S2.7)

‖K3‖ = OP (p
5/2
n
/n). (S2.8)

First, to show (S2.7), note that K2 −Hn = K2 − E(K2) ≡ L1. Similar arguments
for the proof of I1,2,2 in Theorem 1 give ‖L1‖ = OP (pn

/
√
n).

Second, a similar proof used for I1,3 in (S2.3) completes (S2.8).

Third, by (S2.6)–(S2.8) and ‖̂̃β − β̃n;0‖ = OP (
√
p

n
/n), we see that

Hn(
̂̃
β − β̃n;0) = − 1

n

n∑

i=1

p
1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni + un, (S2.9)

where ‖un‖ = OP (p
5/2
n
/n). Note that by Condition B5,

‖
√
nAnΩ

−1/2
n un‖ ≤

√
n‖An‖Fλmax(Ω

−1/2
n )‖un‖

=
√
n{tr(AnA

T
n )}1/2/λ

1/2
min(Ωn)‖un‖ = OP (p

5/2
n
/
√
n) = o

P
(1).

Thus

√
nAnΩ

−1/2
n {Hn(

̂̃
β − β̃n;0)}

= − 1√
n
AnΩ

−1/2
n

n∑

i=1

p
1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni + o
P
(1).

To complete proving Theorem 2, we apply the Lindeberg-Feller central limit theorem (van

der Vaart, 1998) to
∑n

i=1 Zni, whereZni = −n−1/2AnΩ
−1/2
n p

1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni.

It suffices to check (I)
∑n

i=1 cov(Zni) → G; (II)
∑n

i=1E(‖Zni‖2+δ) = o(1) for some δ > 0.

Condition (I) follows from the fact that var{p
1
(Y ; X̃

T

n β̃n;0)w(Xn)X̃n} = Ωn. To verify
condition (II), notice that using Conditions B5 and A5,

E(‖Zni‖2+δ) ≤ n−(2+δ)/2E
{
‖An‖2+δ

F

[
‖Ω−1/2

n X̃n‖
∣∣∣{ψ(r(Y,m(Xn)))−G′

1(m(Xn))}
{q′′(m(Xn))

√
V (m(Xn))}

F ′(m(Xn))
w(Xn)

∣∣∣
]2+δ}

≤ Cn−(2+δ)/2E[{λ−1/2
min (Ωn)‖X̃n‖}2+δ|{ψ(r(Y,m(Xn)))−G′

1(m(Xn))}×
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{q′′(m(Xn))
√
V (m(Xn))}/F ′(m(Xn))|2+δ]

≤ Cp(2+δ)/2
n

n−(2+δ)/2E[|{ψ(r(Y,m(Xn)))−G′
1(m(Xn))}×

{q′′(m(Xn))
√
V (m(Xn))}/F ′(m(Xn))|2+δ]

≤ O((p
n
/n)(2+δ)/2).

Thus, we get
∑n

i=1E(‖Zni‖2+δ) ≤ O(n(p
n
/n)(2+δ)/2) = O(p(2+δ)/2

n
/nδ/2), which is o(1).

This verifies Condition (II). �

Proposition 1 (covariance matrix estimation) Assume A0, A1, A2, A4, A5, B5,

A6, and A7 in the Appendix. Let Vn = H−1
n ΩnH

−1
n and V̂n = Ĥ−1

n Ω̂nĤ
−1
n . If p4

n
/n→ 0

as n → ∞, then for any
√
n/pn-consistent estimator

̂̃
β of β̃n;0, we have An(V̂n −

Vn)A
T
n

P−→ 0 for any k× (pn + 1) matrix An satisfying AnA
T
n → G, where G is a k× k

matrix and k is any fixed integer.

Proof : Note ‖An(V̂n−Vn)AT
n‖ ≤ ‖V̂n−Vn‖‖An‖2F . Since ‖An‖2F → tr(G), it suffices

to prove that ‖V̂n − Vn‖ = oP (1).

First, we prove ‖Ĥn −Hn‖ = oP (1). Note that

Ĥn −Hn =
1

n

n∑

i=1

{p
2
(Yi; X̃

T

ni
̂̃
β)− p

2
(Yi; X̃

T

niβ̃n;0)}w(Xni)X̃niX̃
T

ni

+

{
1

n

n∑

i=1

p
2
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃niX̃
T

ni −Hn

}

≡ I1 + I2.

From the proof of (S2.7) in Theorem 2, we know that ‖I2‖ = OP (pn
/
√
n) = oP (1). We

only need to consider the term I1. Let m̂i = m̂(Xni), mi = m(Xni), r̂i = r(Yi, m̂i) and
ri = r(Yi,mi). Then

I1 =
1

n

n∑

i=1

[A0(Yi, m̂i) + {ψ(r̂i)−G′
1(m̂i)}A1(m̂i)

−A0(Yi,mi)− {ψ(ri)−G′
1(mi)}A1(mi)]w(Xni)X̃niX̃

T

ni

= − 1

n

n∑

i=1

{G′
1(m̂i)A1(m̂i)−G′

1(mi)A1(mi)}w(Xni)X̃niX̃
T

ni

+
1

n

n∑

i=1

{A0(Yi, m̂i) + ψ(r̂i)A1(m̂i)−A0(Yi,mi)− ψ(ri)A1(mi)}w(Xni)X̃niX̃
T

ni

≡ I1,1 + I1,2.

Let g(·) = G′
1(·)A1(·). By the assumptions, g(·) is differentiable. Thus

1

n

n∑

i=1

|g(m̂i)− g(mi)| =
1

n

n∑

i=1

|(g ◦ F−1)′(X̃
T

niβ̃
∗

n)X
T
ni(

̂̃
β − β̃n;0)|

= OP (1)OP (
√
p

n
)OP (

√
p

n
/n) = OP (pn

/
√
n),
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where β̃
∗

n is between
̂̃
β and β̃n;0. Thus

∥∥∥∥
1

n

n∑

i=1

|g(m̂(Xni))−g(m(Xni))|w(Xni)X̃niX̃
T

ni

∥∥∥∥
F

= OP (pn
/
√
n)OP (pn

) = OP (p
2
n
/
√
n).

Similar arguments give ‖I1,1‖ = OP (p
2
n
/
√
n) and ‖I1,2‖ = OP (p

2
n
/
√
n). Thus ‖I1‖ =

OP (p
2
n
/
√
n) = oP (1).

Second, we show ‖Ω̂n − Ωn‖ = oP (1). It is easy to see that

Ω̂n − Ωn =
1

n

n∑

i=1

{p2
1
(Yi; X̃

T

ni
̂̃
β)− p2

1
(Yi; X̃

T

niβ̃n;0)}w2(Xni)X̃niX̃
T

ni

+

{
1

n

n∑

i=1

p2
1
(Yi; X̃

T

niβ̃n;0)w
2(Xni)X̃niX̃

T

ni − Ωn

}

= ∆1,1 +∆1,2,

where ‖∆1,1‖ = OP (p
2
n
/
√
n) and ‖∆1,2‖ = OP (pn

/
√
n). We observe that ‖Ω̂n − Ωn‖ =

OP (p
2
n
/
√
n) = oP (1).

Third, we show ‖V̂n − Vn‖ = oP (1). Note V̂n − Vn = L1 + L2 + L3, where

L1 = Ĥ−1
n (Ω̂n−Ωn)Ĥ

−1
n , L2 = Ĥ−1

n (Hn− Ĥn)H
−1
n ΩnĤ

−1
n and L3 = H−1

n ΩnĤ
−1
n (Hn−

Ĥn)H
−1
n . By Assumption B5, it is straightforward to verify that ‖H−1

n ‖ ≤ O(1),

‖Ĥ−1
n ‖ ≤ OP (1) and ‖H−1

n Ωn‖ ≤ O(1). Since ‖L1‖ ≤ ‖Ĥ−1
n ‖‖Ω̂n − Ωn‖‖Ĥ−1

n ‖,
we conclude ‖L1‖ = oP (1), and similarly ‖L2‖ = oP (1) and ‖L3‖ = oP (1). Hence

V̂n − Vn = oP (1). �

Proof of Theorem 3

For the matrix An in (4.3), there exists a (pn + 1 − k) × (pn + 1) matrix Bn satisfying

BnB
T
n = Ipn+1−k and AnB

T
n = 0. Therefore, Anβ̃n = g0 is equivalent to β̃n = BT

n γn +
c0, where γn is a (p

n
+ 1 − k) × 1 vector and c0 = AT

nG
−1g0. Thus under H0 in

(4.3), we have β̃n;0 = BT
n γn;0 + c0. Then minimizing ℓn(β̃n) subject to Anβ̃n = g0

is equivalent to minimizing ℓn(B
T
n γn + c0) with respect to γn, and we denote by γ̂n

the minimizer. Note that under (4.4),
̂̃
β is the unique minimizer of ℓn(β̃n). Hence

Λn = 2n{ℓn(BT
n γ̂n + c0)− ℓn(

̂̃
β)}. Before showing Theorem 3, we need Lemma 1.

Lemma 1 Assume conditions of Theorem 3. Then under H0 in (4.3), we have that

BT
n (γ̂n−γn;0) = −n−1BT

n (BnHnB
T
n )

−1Bn

∑n
i=1 p1

(Yi; X̃
T

niβ̃n;0)w(Xni)X̃ni+oP (n
−1/2),

and 2n{ℓn(BT
n γ̂n + c0)− ℓn(

̂̃
β)} = n(BT

n γ̂n + c0 − ̂̃
β)THn(B

T
n γ̂n + c0 − ̂̃

β) + oP (1).
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Proof : To obtain the first part, following the proof of (S2.9) in Theorem 2, we have
a similar expression for γ̂n,

BnHnB
T
n (γ̂n − γn;0) = − 1

n
Bn

n∑

i=1

p
1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni +wn,

with ‖wn‖ = oP (n
−1/2). As a result,

BT
n (γ̂n−γn;0) = − 1

n
BT

n (BnHnB
T
n )

−1Bn

n∑

i=1

p
1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni+B
T
n (BnHnB

T
n )

−1wn.

We notice that

‖BT
n (BnHnB

T
n )

−1wn‖ ≤ ‖(BnHnB
T
n )

−1‖‖wn‖ ≤ ‖wn‖/λmin(Hn) = oP (n
−1/2),

in which the fact λmin(BnHnB
T
n ) ≥ λmin(Hn) is used.

The proof of the second part proceeds in three steps. In Step 1, we use the following

Taylor expansion for ℓn(B
T
n γ̂n + c0)− ℓn(

̂̃
β),

ℓn(B
T
n γ̂n + c0)− ℓn(

̂̃
β) =

1

2n

n∑

i=1

p
2
(Yi; X̃

T

ni
̂̃
β)w(Xni){X̃

T

ni(B
T
n γ̂n + c0 − ̂̃

β)}2

+
1

6n

n∑

i=1

p
3
(Yi; X̃

T

niβ̃
∗

n)w(Xni){X̃
T

ni(B
T
n γ̂n + c0 − ̂̃

β)}3

≡ I1 + I2,

where β̃
∗

n lies between
̂̃
β and BT

n γ̂n + c0.

In Step 2, we analyze the stochastic order of BT
n γ̂n + c0 − ̂̃

β. For a matrix X
whose column vectors are linearly independent, set PX = X(XTX)−1XT . Define Hn =

Ipn+1 − P
H

1/2
n BT

n
= P

H
−1/2
n AT

n
. Then H−1

n −BT
n (BnHnB

T
n )

−1Bn = H
−1/2
n HnH

−1/2
n . By

(S2.9) and the first part of Lemma 1, we see immediately that

BT
n γ̂n + c0 − ̂̃

β = BT
n (γ̂n − γn;0)− (

̂̃
β − β̃n;0)

= H−1/2
n HnH

−1/2
n

{
1

n

n∑

i=1

p1,iw(Xni)X̃ni

}
+ oP (n

−1/2),(S2.10)

where p1,i = p
1
(Yi; X̃

T

niβ̃n;0). Note that ‖H
−1/2
n HnH

−1/2
n {n−1

∑n
i=1 p1,iw(Xni)X̃ni}‖ =

OP (1/
√
n). This gives

‖BT
n γ̂n + c0 − ̂̃

β‖ = OP (1/
√
n). (S2.11)

In Step 3, we conclude from (S2.11) that I2 = OP {(pn
/n)3/2} = oP (1/n). Then

2n{ℓn(BT
n γ̂n + c0)− ℓn(

̂̃
β)} = 2nI1 + oP (1). Similar to the proof of Proposition 1, it is

straightforward to see that

2nI1 = n(BT
n γ̂n + c0 − ̂̃

β)T
{
1

n

n∑

i=1

p
2
(Yi; X̃

T

ni
̂̃
β)w(Xni)X̃niX̃

T

ni

}
(BT

n γ̂n + c0 − ̂̃
β)
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= n(BT
n γ̂n + c0 − ̂̃

β)T
{
1

n

n∑

i=1

p
2
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃niX̃
T

ni

}
(BT

n γ̂n + c0 − ̂̃
β) + oP (1)

= n(BT
n γ̂n + c0 − ̂̃

β)TE{p
2
(Yn; X̃

T

n β̃n;0)w(Xni)X̃nX̃
T

n}(BT
n γ̂n + c0 − ̂̃

β) + oP (1)

= n(BT
n γ̂n + c0 − ̂̃

β)THn(B
T
n γ̂n + c0 − ̂̃

β) + oP (1).

Then the second part of Lemma 1 is proved. �

We now show Theorem 3. For part (i), a direct use of Lemma 1 and (S2.10) leads
to

2n{ℓn(BT
n γ̂n + c0)− ℓn(

̂̃
β)}

=

{
1√
n

n∑

i=1

p1,iw(Xni)X̃ni

}T

H−1/2
n HnH

−1/2
n

{
1√
n

n∑

i=1

p1,iw(Xni)X̃ni

}
+ oP (1).

Since Hn is idempotent of rank k, it can be written as Hn = CT
n Cn, where Cn is a

k× (pn + 1) matrix satisfying CnC
T
n = Ik. Then

2n{ℓn(BT
n γ̂n + c0)− ℓn(

̂̃
β)}

=

{
1√
n
CnH

−1/2
n

n∑

i=1

p1,iw(Xni)X̃ni

}T{
1√
n
CnH

−1/2
n

n∑

i=1

p1,iw(Xni)X̃ni

}
+ oP (1).

Now consider part (ii). If ψ(r) = r and the q-function satisfies (4.5), then p
1
(y; θ) =

q
1
(y; θ), p

2
(y; θ) = q

2
(y; θ) and Hn = Ωn/C, where qj

(y; θ) = ∂j

∂θjQq
(y, F−1(θ)). In this

case, similar arguments for Theorem 2 yield

1√
n
CnH

−1/2
n

n∑

i=1

q
1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni
L−→ N(0, CIk),

which completes the proof. �

Proof of Theorem 4

Before showing Theorem 4, Lemma 2 is needed.

Lemma 2 Assume conditions of Theorem 4. Then

̂̃
β − β̃n;0 = − 1

n
H−1

n

n∑

i=1

p
1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni + o
P
(n−1/2),

√
n(AnĤ

−1
n Ω̂nĤ

−1
n AT

n )
−1/2An(

̂̃
β − β̃n;0)

L−→ N(0, Ik).

Proof : Following (S2.9) in the proof of Theorem 2, we observe that ‖un‖ = OP (p
5/2
n
/n) =

o
P
(n−1/2). Condition B5 completes the proof for the first part.
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To show the second part, denote Un = AnH
−1
n ΩnH

−1
n AT

n and Ûn = AnĤ
−1
n Ω̂nĤ

−1
n AT

n .
Notice that the eigenvalues of H−1

n ΩnH
−1
n are uniformly bounded away from 0. So are

the eigenvalues of Un. From the first part, we see that

An(
̂̃
β − β̃n;0) = − 1

n
AnH

−1
n

n∑

i=1

p
1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni + o
P
(n−1/2).

It follows that
√
nU−1/2

n An(
̂̃
β − β̃n;0) =

n∑

i=1

Zni + o
P
(1),

where Zni = −n−1/2U
−1/2
n AnH

−1
n p

1
(Yi; X̃

T

niβ̃n;0)w(Xni)X̃ni. To show
∑n

i=1 Zni
L−→

N(0, Ik), similar to the proof for Theorem 2, we check (III)
∑n

i=1 cov(Zni) → Ik; (IV)∑n
i=1 E(‖Zni‖2+δ) = o(1) for some δ > 0. Condition (III) is straightforward since∑n
i=1 cov(Zni) = U

−1/2
n UnU

−1/2
n = Ik. To check condition (IV), similar arguments used

in the proof of Theorem 2 give that E(‖Zni‖2+δ) = O((pn/n)
(2+δ)/2). This and the

boundedness of ψ yield
∑n

i=1E(‖Zni‖2+δ) ≤ O(p(2+δ)/2
n

/nδ/2) = o(1). Hence

√
nU−1/2

n An(
̂̃
β − β̃n;0)

L−→ N(0, Ik). (S2.12)

From the proof of Proposition 1, it can be concluded that ‖Ûn − Un‖ = oP (1) and

that the eigenvalues of Ûn are uniformly bounded away from 0 and ∞ with probability
tending to one. Consequently,

‖Û−1/2
n U1/2

n − Ik‖ = o
P
(1). (S2.13)

Combining (S2.12), (S2.13) and Slutsky’s theorem completes the proof that
√
nÛ

−1/2
n An(

̂̃
β−

β̃n;0)
L−→ N(0, Ik). �

We now show Theorem 4, which follows directly from H0 in (4.3) and the second
part of Lemma 2. This completes the proof. �

Proof of Theorem 5

Note that Wn can be decomposed into three additive terms,

I1 = n{An(
̂̃
β − β̃n;0)}T (AnV̂nA

T
n )

−1{An(
̂̃
β − β̃n;0)},

I2 = 2n(Anβ̃n;0 − g0)
T (AnV̂nA

T
n )

−1{An(
̂̃
β − β̃n;0)},

I3 = n(Anβ̃n;0 − g0)
T (AnV̂nA

T
n )

−1(Anβ̃n;0 − g0),

where V̂n = Ĥ−1
n Ω̂nĤ

−1
n . We observe that I1

L−→ χ2
k
following the second part of Lemma

2; I3 = n(Anβ̃n;0 − g0)
TM−1(Anβ̃n;0 − g0){1 + oP (1)} by Proposition 1; I2 = OP (

√
n)

by Cauchy-Schwartz inequality. Thus

n−1I3 ≥ λmin(M
−1)‖Anβ̃n;0 − g0‖2{1 + oP (1)} = λ−1

max(M)‖Anβ̃n;0 − g0‖2 + oP (1).

These complete the proof for Wn. �
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Proof of Theorem 6

Following the second part of Lemma 2, we observe that
√
n(AnV̂nA

T
n )

−1/2(An
̂̃
β−g0)

L−→
N(M−1/2c, Ik), which completes the proof. �

Proof of Theorem 7

We first need to show Lemma 3.

Lemma 3 Suppose that (Xo
n, Y

o) follows the distribution of (Xn, Y ) and is independent
of the training set Tn. If Q is a BD, then

E{Q(Y o, m̂(Xo
n))} = E{Q(Y o,m(Xo

n))} + E{Q(m(Xo
n), m̂(Xo

n))}.

Proof : Let q be the generating function of Q. Then

Q(Y o, m̂(Xo
n)) = [q(m(Xo

n))− E{q(Y o) | Tn,Xo
n}] + [E{q(Y o) | Tn,Xo

n}
−q(Y o)]− q(m(Xo

n)) + q(m̂(Xo
n)) + {Y o − m̂(Xo

n)}q′(m̂(Xo
n)). (S2.14)

Since (Xo
n, Y

o) is independent of Tn, we deduce from Chow and Teicher (1989, Corollary
3, p. 223) that

E{q(Y o) | Tn,Xo
n} = E{q(Y o) | Xo

n}. (S2.15)

Similarly,

E{Y oq′(m̂(Xo
n)) | Tn,Xo

n} = E(Y o | Xo
n)q

′(m̂(Xo
n)) = m(Xo

n)q
′(m̂(Xo

n)). (S2.16)

Applying (S2.15) and (S2.16) to (S2.14) results in

E{Q(Y o, m̂(Xo
n)) | Tn,Xo

n} = E{Q(Y o,m(Xo
n)) | Xo

n}+ Q(m(Xo
n), m̂(Xo

n))

and thus the conclusion. �

Now show Theorem 7. Setting Q in Lemma 3 to be the misclassification loss gives

1/2[E{R(φ̂n)} −R(φn,B)] ≤ E[|m(Xo
n)− .5|I{m(Xo

n) ≤ .5, m̂(Xo
n) > .5}]

+E[|m(Xo
n)− .5|I{m(Xo

n) > .5, m̂(Xo
n) ≤ .5}]

= I1 + I2.

For any ǫ > 0, it follows that

I1 = E[|m(Xo
n)− .5|I{m(Xo

n) < .5− ǫ, m̂(Xo
n) > .5}]

+E[|m(Xo
n)− .5|I{.5− ǫ ≤ m(Xo

n) ≤ .5, m̂(Xo
n) > .5}]

≤ P{|m̂(Xo
n)−m(Xo

n)| > ǫ}+ ǫ

and similarly, I2 ≤ ǫ+ P{|m̂(Xo
n)−m(Xo

n)| ≥ ǫ}. Recall that

|m̂(Xo
n)−m(Xo

n)| = |F−1(X̃o
n

T ̂̃
β)−F−1(X̃o

n

T
β̃n;0)| ≤ |(F−1)′(X̃o

n

T
β̃
∗

n)|‖Xo
n‖‖

̂̃
β−β̃n;0‖,
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for some β̃
∗

n between β̃n;0 and
̂̃
β, where X̃o

n = (1,Xo
n
T )T . By Condition A4, we conclude

that (F−1)′(X̃o
n

T
β̃
∗

n) = OP (1). This along with ‖̂̃β − β̃n;0‖ = OP (1) and ‖X̃
o

n‖ =
OP (

√
p

n
) implies that |m̂(Xo

n)−m(Xo
n)| = OP (rn

√
p

n
) = oP (1). Therefore I1 → 0 and

I2 → 0, which completes the proof. �

S3 Figures 7–10 in Section 6.2
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Figure 7: (Simulated Bernoulli response data with contamination) Boxplots of β̂j −βj;0,
j = 0, 1, . . . , pn (from left to right in each panel). Left panels: the non-robust estimates;
right panels: the robust estimates.
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Figure 8: (Simulated Bernoulli response data with contamination) Empirical quantiles
(on the y-axis) of test statisticsWn versus quantiles (on the x-axis) of the χ2

k
distribution.

Solid line: the 45 degree reference line. Left panels: for testing H
(I)
0 ; right panels: for

testing H
(II)
0 .
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Figure 9: Level of tests for the Bernoulli response data. The dashed line corresponds
to the non-robust Wald-type test; the solid line corresponds to the robust Wald-type

test; the dotted line indicates the 5% nominal level. Left panels: for testing H
(I)
0 ; right

panels: for testing H
(II)
0 .
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Figure 10: Observed power functions of tests for the Bernoulli response data. The
dashed line corresponds to the non-robust Wald-type test; the solid line corresponds to
the robust Wald-type test; the dotted line indicates the 5% nominal level. Left panels:
non-contaminated case; right panels: contaminated case.
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