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Abstract: This paper first studies the theoretical properties of the tail quotient

correlation coefficient (TQCC) which was proposed to measure tail dependence

between two random variables. By introducing random thresholds in TQCC, an

approximation theory between conditional tail probabilities is established. The

new random threshold-driven TQCC can be used to test the null hypothesis of tail

independence under which TQCC test statistics are shown to follow a Chi-squared

distribution under two general scenarios. The TQCC is shown to be consistent

under the alternative hypothesis of tail dependence with a general approximation

of max-stable distribution. Second, we apply TQCC to investigate tail dependencies

of a large scale problem of daily precipitation in the continental US. Our results,

from the perspective of tail dependence, reveal nonstationarity, spatial clusters, and

tail dependence from the precipitations across the continental US.
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1. Introduction

Extreme climatic conditions are more often observed in recent years. A nat-

ural question is: What is the likelihood of severe weather conditions in your

area given that severe weather conditions have been observed/forcasted in some

regions, or in the continent on a large scale? Answers to this question can be

sought from historical extreme climatic records. Efforts have been made to under-

stand and model extreme weather conditions. In a recent CCSP SAP 3.3 report,

Easterling et al. (2008) listed twelve measures to improve our understanding of

weather and climate extremes. In our view, two fundamental issues are: how to

identify tail dependence between climatic variables, and how to develop statisti-

cal models dealing with tail dependence. The focus of this paper is on the first

issue.

To address the basic question, we explore the notion of tail dependence, also

known as extremal dependence or asymptotic dependence, between the compo-
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nents of a two-dimensional random vector, which refers to the concurrence of

extreme values in the component variables.

Definition 1. Two identically distributed random variables X and Y with dis-

tribution function F are called tail independent, if

λ = lim
u→x

F

P (Y > u | X > u) (1.1)

is 0, where x
F
= sup{x ∈ R : F (x) < 1}. The quantity λ, if it exists, is called

the bivariate tail dependence index; it quantifies the amount of dependence of the

bivariate upper tails. If λ > 0, X and Y are called tail dependent and we say

that there are extreme co-movements between X and Y . We further denote by

U the class of bivariate unit Fréchet random variables with marginal distribution

function, F (x) = exp(−1/x), for x > 0, such that λ exists.

Sibuya (1960) introduced the idea of asymptotic independence between two

random variables with identical marginal distributions, and de Haan and Resnick

(1977) extended it to the multivariate case, see also Coles, Heffernan and Tawn

(1999). Examples of tail dependence indices of bivariate random variables were

presented in Embrechts, McNeil and Straumann (2002). For instance, the tail

dependence index of a bivariate normal (Gaussian) random vector is zero as long

as the corresponding correlation coefficient is less than one; the tail dependence

index of a bivariate t random vector with a positive correlation is greater than

zero. Many financial analysts, for example Salmon (2012), blamed a mathemat-

ical formula, the Gaussian copula, as the major cause of the 2007–2008 financial

crisis mainly because Gaussian random variables are tail independent. This ex-

ample indicates that tail (in)dependence modeling is of practical importance,

see also Embrechts, McNeil and Straumann (2002) for properties and pitfalls of

correlations and dependence measures.

In practice, dependent random variables are not necessarily tail dependent.

It is thus of importance to check or test whether any two sequences of data are

tail dependent or tail independent before choosing a certain class of models for

the data. In statistical modeling of tail dependent variables, a significant step is

due to Ledford and Tawn (1996, 1997). They introduced a class of models for tail

dependence and near tail independence, and constructed test statistics for the null

hypothesis of tail dependence. Contrary to their null hypothesis, Zhang (2008b)

introduced an empirically efficient test statistic for the null hypothesis of tail

independence based on the tail quotient correlation coefficient (TQCC), where

the underlying threshold is a constant. We note that the null and alternative
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hypotheses in Ledford and Tawn (1996, 1997) are reversed in Zhang (2008b). To

our knowledge, there do not exist thorough results showing that the existing test

statistics are consistent. We construct an alternative expression of Definition

1, and prove the consistency of the test statistic under certain conditions (see

Section 2.5.)

In practice, data-driven thresholds are commonly used. This motivates us

to consider random thresholds. In Section 2, Fréchet random variables {Tn,t}
are introduced as random thresholds in TQCC. We demonstrate why TQCC

is intuitively appealing and easily interpreted. Based on the random variables

{Tn,t}, we define a class T of bivariate random variables, that contains the class

U in Definition 1. It is shown that the tail dependence index of a bivariate

random vector in U is identical to that of a different pair of random variables

in T . Test statistics are constructed based on T , using TQCC with random

thresholds. These test statistics, facilitated by the approximation theory of tail

dependent random variables, are shown to be consistent under the alternative

hypothesis of tail dependence.

Computations of TQCC need not jointly model paired random variables,

only marginally fitted distributions to exceedances are needed. This is particu-

larly appealing and is comparable to computations of Pearson’s correlation coef-

ficients. In practice, Pearson’s correlation coefficients are widely used to measure

linear relationships among random variables as long as paired random variables

are tested to be correlated. TQCC, as a sample-based alternative to Pearson’s

correlation coefficients, can also be used as a measure of tail dependence as long

as paired random variables are tested to be tail dependent.

There is a fast-growing body of literature on modeling climate extremes

in recent years. Data modeling and inference can be found in Smith (2003),

Naveau et al. (2005), Falk and Michel (2006), Kunkel et al. (2007), Beniston

et al. (2007), Cooley, Nychka and Naveau (2007), Bel, Bacro and Lantuejoul

(2007), Elek and Márkus (2007), Yiou et al. (2008), Zhang (2008a), Smith and

Stephenson (2009), Naveau, Zhang and Zhu (2011), and Gilleland, Brown and

Ammann (2013), among others. Several papers, such as Peng (1999), Draisma

et al. (2004) and Ferreria and de Haan (2004) focused on rare events modeling,

particularly of Dutch coastal wind and water level extremes.

The rest of the paper is structured as follows. Section 2 introduces a gener-

alized sample-based tail dependence measure, TQCC, which allows the threshold

values to be random. Proposition 1 shows that the tail dependence index of the

original pair of random variables is identical to that of a new pair of random vari-
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ables which incorporates random thresholds. The limiting distributions of TQCC

with random threshold values are derived based on a very mild condition (as-

suming the existence of λ), or on a random diverging random sequence. Section

3 discusses marginal transformations of non-Fréchet variables and reviews fitting

of generalized extreme value distributions for our data analysis. Theorem 4 en-

sures asymptotic results for marginally transformed observations via estimated

parameters and distributions. Section 4 tests tail independence and explores

tail dependence of daily precipitation during 1950–1999 recorded at 5, 873 sta-

tions from NCDC rain gauge data. Section 5 concludes with a brief discussion.

Section S1 evaluates the performance of TQCC for testing tail independence in

simulation studies. Technical details are postponed to Section S2 Appendix (in

a supplementary file together with Section S1, available online).

2. Theory of TQCC with Random Thresholds

2.1. Hypothesis for tail independence

For the sake of discussion, the existence of λ in (1.1) is assumed. Intuitively,

tail dependence indices can be estimated using empirical probabilities above cer-

tain large threshold u in (1.1), but this may give misleading results since, in

general, the estimated values of λ may well exceed zero even if λ = 0. A natural

question then arises as to whether or not two random variables are tail dependent.

This issue can be formulated as testing the hypotheses:

H0 : X and Y are tail independent ↔ H1 : X and Y are tail dependent, (2.1)

which can also be written as

H0 : λ = 0 ←→ H1 : λ > 0. (2.2)

One major goal of this paper is to test (2.2). In Section 2.2, we use TQCC, a

generalized measure of tail dependence, to characterize λ and to construct test

statistics.

2.2. TQCC and its properties

From (1.1), the estimation of the tail dependence index λ mainly relies on

choice of thresholds u and the dependence mechanism between upper tails of

two random variables X and Y . This suggests that one can ignore values of X

and Y below u and construct sample-based measures of tail dependence or test

statistics for testing the null hypothesis by using exceedances above u only. We

use two examples to explore this idea. Let

TAIL DEPENDENCE MEASURES 5

ξ1, . . . , ξn, η1, . . . , ηn (2.3)

be a sequence of independent unit Fréchet random variables. Example 1 presents

tail independent random variables (Xi, Yi) with upper tails equivalent to the

upper tail of a unit Fréchet distribution.

Example 1 (Tail independent case). Let {(Lni, Qni)}ni=1 be a sample of inde-

pendent random pairs, where Lni is dependent of Qni and both are supported on

(0, un] for a positive large value un. Let Xi = ξi I(ξi > un) + Lni I(ξi ≤ un)

and Yi = ηi I(ηi > un) + Qni I(ηi ≤ un), i = 1, . . . , n, where I(·) denotes the

indicator function. It follows that max(Xi, un) (= max(ξi, un)) and max(Yi, un)

(= max(ηi, un)) are independent. Furthermore, {(Xi, Yi)}ni=1 is a random sam-

ple of tail independent random variables. In fact, for an arbitrary dependence

structure between Lni and Qni, the constructed Xi and Yi are tail independent.

The sequence of thresholds un in Example 1 is deterministic. In Sections 2.4

and 2.5, we allow un to be in a class of random variables that diverge to infinity

in probability. It can be seen that with such un, max(Xi, un) and max(Yi, un)

are no longer independent, but continue to be tail independent. More generally,

we propose a sample-based measure of tail dependence.

Definition 2. If {(Xi, Yi)}ni=1 is a random sample of unit Fréchet random vari-

ables (X, Y ),

qun
=

max
1≤i≤n

{max(Xi, un)/max(Yi, un)}+ max
1≤i≤n

{max(Yi, un)/max(Xi, un)} − 2

max
1≤i≤n

{max(Xi, un)/max(Yi, un)} × max
1≤i≤n

{max(Yi, un)/max(Xi, un)} − 1

(2.4)

is the tail quotient correlation coefficient (TQCC).

If un ≡ u (a constant), the TQCC reduces to the one in Zhang (2008b). In

the current paper, un is allowed to be random.

Remark 1. It is not necessary to require the marginal distribution to be unit

Fréchet. Any positive scales (as long as Xi and Yi have a tail equivalent scale)

can be used at (2.4). With this relaxation, qun
can be regarded as a nonlinear

dependence measure. One could use the second largest values, the third largest

values, and the pth percentiles of the ratios etc. in the definition.

To study the property of qun
, take ζIn = max1≤i≤n{max(Xi, un) /max(Yi, un)}

and ζIIn = max1≤i≤n{max(Yi, un)/max(Xi, un)}. Then qun
= (ζIn+ ζIIn − 2)/(ζIn×

ζIIn − 1). We see that P (ζIn > 1) > 0 and P (ζIIn > 1) > 0 for any n ≥ 1, and that

both ζIn and ζIIn are greater than or equal to 1 almost surely as n → ∞. When
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Figure 1. Illustration of the function f(x, y) in (2.5).

both ζIn and ζIIn are close to 1 for a sufficiently large sample size n, one can say

that there exist co-movements between Xi and Yi, especially for their very large

observations. A similar conclusion holds when the denominator of (2.4) is close

to zero. Now qun
= f(ζIn, ζ

II
n ), where

f(x, y) =
x+ y − 2

xy − 1
, for x ≥ 1, y ≥ 1, x+ y > 2. (2.5)

Figure 1 plots the function f . The case of x + y = 2 is trivial, since it im-

plies that x and y are equal when they both are greater than or equal to 1. It

is easy to see that 0 ≤ f(x, y) ≤ 1, f(1, y) = 1, f(x, 1) = 1, and ∂f/∂x =

−(y − 1)2/(xy − 1)2 < 0, ∂f/∂y = −(x− 1)2/(xy − 1)2 < 0, ∂2f/(∂x∂y) =

−2(x− 1)(y − 1)/(xy −1)3 < 0, which imply f(x1, y1) ≤ f(x2, y2), when

x1 ≥ x2 and y1 ≥ y2. The properties of qun
= f(ζIn, ζ

II
n ) with f defined in

(2.5) can be summarized as follows. First, qun
takes values between 0 and 1

for a sufficiently large n. Second, the monotonicity of f(ζIn, ζ
II
n ) in ζIn and/or ζIIn

suggests that for a fixed sample size n, the larger the ζIn or the ζIIn , the smaller

the qun
, hence the less the agreement of changing magnitudes at tails. Third,

f(ζIn, 1) = 1 and f(1, ζIIn ) = 1. Fourth, as long as one of ζIn and ζIIn is very

large, qun
is largely determined by the smaller one. This property is very useful,

especially when outliers exist in one of the two sequences.

The quantity qun
assesses the magnitude of tail dependence between X and

Y . If λ = 0, Theorem 5.1 of Zhang (2008b) shows that when un → u∗ (a

finite constant) as n → ∞, qun
tends to zero almost surely. This is illustrated in

Example 1. If qun
is close to 1, either ζIn or ζIIn is close to 1, thus by the boundary

property of f , there are tail co-movements between {Xi} and {Yi}, hence X and

Y are nearly completely tail dependent.

Example 2 (Tail dependent case). Using (2.3), take X∗
i = max{aξi, (1 −a)ηi}
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Figure 2. Scatterplot of {(Φ−1(exp(−1/Xi)),Φ
−1(exp(−1/Yi)))}500i=1 in Example 2. Val-

ues at lower left regions in three panels are drawn from a bivariate standard normal
random variable with correlation coefficient ρ. Here un is set to be the minimum of the
95th percentile of {Xi} and the 95th percentile of {Yi}.

and Y ∗
i = max{(1 − b)ξi, bηi}, where 0 < a < 1 and 0 < b < 1. Suppose that

{(ϵ1i, ϵ2i)}ni=1 is a sample of independent random pairs from a bivariate standard

normal random variable with correlation coefficient ρ, and independent of {ξi}
and {ηi}. For i = 1, . . . , n, let

Lni = − 1

log{Φ(ϵ1i) exp(−1/un)}
, Qni = − 1

log{Φ(ϵ2i) exp(−1/un)}
, (2.6)

where Φ(·) denotes the standard normal distribution function. If Xi = X∗
i I(X

∗
i >

un) + Lni I(X
∗
i ≤ un), and Yi = Y ∗

i I(Y ∗
i > un) + Qni I(Y

∗
i ≤ un), then for any

a ∈ (0, 1) and b ∈ (0, 1),

qun

P→ lim
u→∞

P (X1 > u | Y1 > u) = lim
u→∞

P (X∗
1 > u | Y ∗

1 > u) = λ∗ > 0,

provided that un → u∗ (a finite constant) as n → ∞. Here ξi, ηi, X
∗
i , Y

∗
i , Xi

and Yi all have the unit Fréchet distribution. Figure 2 displays the scatterplot of

simulated tail dependent data {(Φ−1(exp(−1/Xi)), Φ−1(exp(−1/Yi)))}500i=1 with

different values of the correlation coefficient ρ when a = .25 and b = .25, where

Φ−1(p) = inf{x : Φ(x) ≥ p}. It shows that when studying tail dependence,

observations below thresholds un can be discarded, whereas values of qun
evaluated

from different models (different ρ values) are identical for large values of un.

2.3. Limit of qun
for random variables in the broader M4 model

The sequence (X∗
i , Y ∗

i ) in Example 2 is a special case of a multivariate

maxima of moving maxima process (called M4 processes) that have been stud-

ied in Smith and Weissman (1996) and Zhang and Smith (2004). Theorem 2 of

Deheuvels (1983) establishes that, for any finite m, the joint distribution of m
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n ) with f defined in

(2.5) can be summarized as follows. First, qun
takes values between 0 and 1

for a sufficiently large n. Second, the monotonicity of f(ζIn, ζ
II
n ) in ζIn and/or ζIIn

suggests that for a fixed sample size n, the larger the ζIn or the ζIIn , the smaller

the qun
, hence the less the agreement of changing magnitudes at tails. Third,

f(ζIn, 1) = 1 and f(1, ζIIn ) = 1. Fourth, as long as one of ζIn and ζIIn is very

large, qun
is largely determined by the smaller one. This property is very useful,

especially when outliers exist in one of the two sequences.

The quantity qun
assesses the magnitude of tail dependence between X and

Y . If λ = 0, Theorem 5.1 of Zhang (2008b) shows that when un → u∗ (a

finite constant) as n → ∞, qun
tends to zero almost surely. This is illustrated in

Example 1. If qun
is close to 1, either ζIn or ζIIn is close to 1, thus by the boundary

property of f , there are tail co-movements between {Xi} and {Yi}, hence X and

Y are nearly completely tail dependent.

Example 2 (Tail dependent case). Using (2.3), take X∗
i = max{aξi, (1 −a)ηi}
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Figure 2. Scatterplot of {(Φ−1(exp(−1/Xi)),Φ
−1(exp(−1/Yi)))}500i=1 in Example 2. Val-

ues at lower left regions in three panels are drawn from a bivariate standard normal
random variable with correlation coefficient ρ. Here un is set to be the minimum of the
95th percentile of {Xi} and the 95th percentile of {Yi}.

and Y ∗
i = max{(1 − b)ξi, bηi}, where 0 < a < 1 and 0 < b < 1. Suppose that

{(ϵ1i, ϵ2i)}ni=1 is a sample of independent random pairs from a bivariate standard

normal random variable with correlation coefficient ρ, and independent of {ξi}
and {ηi}. For i = 1, . . . , n, let

Lni = − 1

log{Φ(ϵ1i) exp(−1/un)}
, Qni = − 1

log{Φ(ϵ2i) exp(−1/un)}
, (2.6)

where Φ(·) denotes the standard normal distribution function. If Xi = X∗
i I(X

∗
i >

un) + Lni I(X
∗
i ≤ un), and Yi = Y ∗

i I(Y ∗
i > un) + Qni I(Y

∗
i ≤ un), then for any

a ∈ (0, 1) and b ∈ (0, 1),

qun

P→ lim
u→∞

P (X1 > u | Y1 > u) = lim
u→∞

P (X∗
1 > u | Y ∗

1 > u) = λ∗ > 0,

provided that un → u∗ (a finite constant) as n → ∞. Here ξi, ηi, X
∗
i , Y

∗
i , Xi

and Yi all have the unit Fréchet distribution. Figure 2 displays the scatterplot of

simulated tail dependent data {(Φ−1(exp(−1/Xi)), Φ−1(exp(−1/Yi)))}500i=1 with

different values of the correlation coefficient ρ when a = .25 and b = .25, where

Φ−1(p) = inf{x : Φ(x) ≥ p}. It shows that when studying tail dependence,

observations below thresholds un can be discarded, whereas values of qun
evaluated

from different models (different ρ values) are identical for large values of un.

2.3. Limit of qun
for random variables in the broader M4 model

The sequence (X∗
i , Y ∗

i ) in Example 2 is a special case of a multivariate

maxima of moving maxima process (called M4 processes) that have been stud-

ied in Smith and Weissman (1996) and Zhang and Smith (2004). Theorem 2 of

Deheuvels (1983) establishes that, for any finite m, the joint distribution of m
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consecutive values from a max-stable process (including M4) with Fréchet mar-

gins can be approximated by a weighted maximum, Yid = max−∞<k<∞ αidkZk,

d = 1, . . . , D, for suitable coefficients {αidk}, where {Zk} are i.i.d. unit Fréchet.

Here “can be approximated” refers to convergence in distribution. See Smith and

Weissman (1996) for detailed arguments. Heffernan, Tawn and Zhang (2007) and

Zhang (2009) suggest that the M4 process model constitutes a rich family which

can be used in modeling a wide range of multivariate dependence. For Xi = Yid
and Yi = Yid′ belonging to the M4 model, it can be shown that the correspond-

ing qun
tends to a positive quantity in (0, 1] in probability, under Condition A1

(to be defined in Section 2.5), for the sequence {(Xi, Yi)} and un
P→ u (a finite

constant or infinity).

These results suggest that as long as two random variables X and Y (not

necessarily unit Fréchet) are tail dependent, the M4 model can be used to ap-

proximate tail values of X and Y , after being marginally transformed to unit

Fréchet scales, then one can use the approximate model to conduct statistical

inference, and qun
can be used as a sample-based measure of tail dependence.

2.4. Approximation theory of conditional tail probabilities

Here un is allowed to be random. We first show in Proposition 1 that the

tail dependence index λX,Y of X and Y , where (X,Y ) ∈ U in Definition 1, is

equal to the tail dependence index λ∗
X,Y of max(X,un) and max(Y, un) using a

random threshold, un = Tn,t, where Tn,t is a Fréchet variable with the distribution

function exp(−n/xt) for x > 0, n ≥ 0 and t > 0. It is easy to see that the class

of random vectors T = {(max(X,Tn,t), max(Y, Tn,t)) : n ≥ 0, t > 0} contains

U . This connection leads to a consistent test procedure for tail independence.

Proposition 1. If X and Y are unit Fréchet random variables, Tn,t has the

distribution function exp(−n/xt), for x > 0 and t > 1, and Tn,t is independent

of (X,Y ), then

(i) for any finite n ≥ 0,

lim
u→∞

P (X > u, Y > u)

P (X > u)
= lim

u→∞

P{max(X,Tn,t) > u, max(Y, Tn,t) > u}
P{max(X,Tn,t) > u}

.

(2.7)

Suppose X and Y are tail independent with

g(u) =
P (X > u)

P (X > u, Y > u)
. (2.8)

If X ′ and Y ′ are independent unit Fréchet random variables, and Tn,t is inde-
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pendent of (X ′, Y ′), with h(u) = min(g(u), n−1ut−1) and

g∗(u) =
P{max(X ′, Tn,t) > h(u), max(Y ′, Tn,t) > h(u)}

P{max(X ′, Tn,t) > h(u)}
,

then as u → ∞,

(ii) for any t > 1,

P (X > u, Y > u)

P (X > u)
= O

(
g∗(u)

)
, (2.9)

P{max(X,Tn,t) > u, max(Y, Tn,t) > u}
P{max(X,Tn,t) > u}

= O
(
g∗(u)

)
. (2.10)

Equation (2.7) is an alternative expression of (1.1), so λX,Y = λ∗
X,Y . If a test

procedure based on (X,Y ) concludes that X and Y are tail independent, one can

also conclude that max(X,Tn,t) and max(Y, Tn,t) with t > 1 are tail independent,

and vice versa.

Equation (2.9) can be expressed as

P (X > u, Y > u)

P (X > u)
(2.11)

= O
(P{max(h−1(X ′), h−1(Tn,t)) > u, max(h−1(Y ′), h−1(Tn,t)) > u}

P{max(h−1(X ′), h−1(Tn,t)) > u}

)
.

Remark 2. For any function g(u) (not necessarily defined by (2.8)) such

that g(u) → ∞ as u → ∞, (2.9) and (2.11) do not hold when X and Y are tail

dependent. In such case, the left hand of (2.11) is greater than zero, while the

right hand side is zero. When X and Y are tail independent, the g(u) (defined by

(2.8)) or the 1/g(u) function need not be g(u) ∼ L(u)u−1+1/η, η ∈ (0, 1), where

L(u) is a slowly varying function, as defined in Ledford and Tawn (1997).

Equations (2.9)–(2.11) show that the conditional tail probabilities between

tail independent random variables can be approximated by the conditional tail

probability of a pair of random variables (max(h−1(X ′), h−1(Tn,t)),max(h−1(Y ′),

h−1(Tn,t))). Bearing this in mind, under H0 the tail independence of (X,Y )

over a common random threshold Tn,t is equivalent to the tail independence

of (max(h−1(X ′), h−1(Tn,t)), max(h−1(Y ′), h−1(Tn,t))) for all t > 1. Thus, we

study the hypotheses (which is connected to (2.2)),

H∗
0 : (2.10) holds ←→ H∗

1 : (2.10) does not hold. (2.12)

If a test statistic calculated from a bivariate sample of (max(X,Tn,t),max(Y,

Tn,t)) does not reject the null hypothesis of data being drawn from (max(X ′,

Tn,t), max(Y ′, Tn,t)) with a chosen t value and a connecting function g(u) → ∞
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consecutive values from a max-stable process (including M4) with Fréchet mar-

gins can be approximated by a weighted maximum, Yid = max−∞<k<∞ αidkZk,

d = 1, . . . , D, for suitable coefficients {αidk}, where {Zk} are i.i.d. unit Fréchet.

Here “can be approximated” refers to convergence in distribution. See Smith and

Weissman (1996) for detailed arguments. Heffernan, Tawn and Zhang (2007) and

Zhang (2009) suggest that the M4 process model constitutes a rich family which

can be used in modeling a wide range of multivariate dependence. For Xi = Yid
and Yi = Yid′ belonging to the M4 model, it can be shown that the correspond-

ing qun
tends to a positive quantity in (0, 1] in probability, under Condition A1

(to be defined in Section 2.5), for the sequence {(Xi, Yi)} and un
P→ u (a finite

constant or infinity).

These results suggest that as long as two random variables X and Y (not

necessarily unit Fréchet) are tail dependent, the M4 model can be used to ap-

proximate tail values of X and Y , after being marginally transformed to unit

Fréchet scales, then one can use the approximate model to conduct statistical

inference, and qun
can be used as a sample-based measure of tail dependence.

2.4. Approximation theory of conditional tail probabilities

Here un is allowed to be random. We first show in Proposition 1 that the

tail dependence index λX,Y of X and Y , where (X,Y ) ∈ U in Definition 1, is

equal to the tail dependence index λ∗
X,Y of max(X,un) and max(Y, un) using a

random threshold, un = Tn,t, where Tn,t is a Fréchet variable with the distribution

function exp(−n/xt) for x > 0, n ≥ 0 and t > 0. It is easy to see that the class

of random vectors T = {(max(X,Tn,t), max(Y, Tn,t)) : n ≥ 0, t > 0} contains

U . This connection leads to a consistent test procedure for tail independence.

Proposition 1. If X and Y are unit Fréchet random variables, Tn,t has the

distribution function exp(−n/xt), for x > 0 and t > 1, and Tn,t is independent

of (X,Y ), then

(i) for any finite n ≥ 0,

lim
u→∞

P (X > u, Y > u)

P (X > u)
= lim

u→∞

P{max(X,Tn,t) > u, max(Y, Tn,t) > u}
P{max(X,Tn,t) > u}

.

(2.7)

Suppose X and Y are tail independent with

g(u) =
P (X > u)

P (X > u, Y > u)
. (2.8)

If X ′ and Y ′ are independent unit Fréchet random variables, and Tn,t is inde-
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pendent of (X ′, Y ′), with h(u) = min(g(u), n−1ut−1) and

g∗(u) =
P{max(X ′, Tn,t) > h(u), max(Y ′, Tn,t) > h(u)}

P{max(X ′, Tn,t) > h(u)}
,

then as u → ∞,

(ii) for any t > 1,

P (X > u, Y > u)

P (X > u)
= O

(
g∗(u)

)
, (2.9)

P{max(X,Tn,t) > u, max(Y, Tn,t) > u}
P{max(X,Tn,t) > u}

= O
(
g∗(u)

)
. (2.10)

Equation (2.7) is an alternative expression of (1.1), so λX,Y = λ∗
X,Y . If a test

procedure based on (X,Y ) concludes that X and Y are tail independent, one can

also conclude that max(X,Tn,t) and max(Y, Tn,t) with t > 1 are tail independent,

and vice versa.

Equation (2.9) can be expressed as

P (X > u, Y > u)

P (X > u)
(2.11)

= O
(P{max(h−1(X ′), h−1(Tn,t)) > u, max(h−1(Y ′), h−1(Tn,t)) > u}

P{max(h−1(X ′), h−1(Tn,t)) > u}

)
.

Remark 2. For any function g(u) (not necessarily defined by (2.8)) such

that g(u) → ∞ as u → ∞, (2.9) and (2.11) do not hold when X and Y are tail

dependent. In such case, the left hand of (2.11) is greater than zero, while the

right hand side is zero. When X and Y are tail independent, the g(u) (defined by

(2.8)) or the 1/g(u) function need not be g(u) ∼ L(u)u−1+1/η, η ∈ (0, 1), where

L(u) is a slowly varying function, as defined in Ledford and Tawn (1997).

Equations (2.9)–(2.11) show that the conditional tail probabilities between

tail independent random variables can be approximated by the conditional tail

probability of a pair of random variables (max(h−1(X ′), h−1(Tn,t)),max(h−1(Y ′),

h−1(Tn,t))). Bearing this in mind, under H0 the tail independence of (X,Y )

over a common random threshold Tn,t is equivalent to the tail independence

of (max(h−1(X ′), h−1(Tn,t)), max(h−1(Y ′), h−1(Tn,t))) for all t > 1. Thus, we

study the hypotheses (which is connected to (2.2)),

H∗
0 : (2.10) holds ←→ H∗

1 : (2.10) does not hold. (2.12)

If a test statistic calculated from a bivariate sample of (max(X,Tn,t),max(Y,

Tn,t)) does not reject the null hypothesis of data being drawn from (max(X ′,

Tn,t), max(Y ′, Tn,t)) with a chosen t value and a connecting function g(u) → ∞
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as u → ∞, within a pre-specified Type I error rate, one can first conclude that

(2.9) is true, then conclude that X and Y are tail independent. In Section 2.5,

we see that the choices of t and g(u) are not essential.

2.5. Limit distribution of TQCC with random thresholds

We derive the limiting distribution of TQCC, qun
, in cases of two random

thresholds un: un = Tn,t
P→ ∞ in Theorem 3; un = u∗nan with u∗n

P→ u∗ ∈ (0,∞),

an → ∞ and an/n → 0 as n → ∞ in Theorem 4.

Assumption T1: For 1 < t < 1 + δ, δ > 0, paired tail independent random

variables (Xi, Yi) satisfy

max1≤i≤nmax(Xi, Tn,t)/max(Yi, Tn,t)

max1≤i≤nmax(Xi, Tn,t)/Tn,t
= 1 + op(1),

max1≤i≤nmax(Yi, Tn,t)/max(Xi, Tn,t)

max1≤i≤nmax(Yi, Tn,t)/Tn,t
= 1 + op(1).

Remark 3. Assumption T1 is natural since the tail independence of (Xi, Yi)

(also (max(Xi, Tn,t),max(Yi, Tn,t))) implies max(Xi, Tn,t), i = 1, . . . , n and

max(Yi, Tn,t), i = 1, . . . , n, will hug Tn,t in each axis direction when the threshold

value Tn,t is sufficiently large.

Proposition 2. If g(u) ∼ L(u)u−1+1/η, η ∈ (0, 1], then T1 holds for tη < 1

when η < 1, T1 does not hold when η = 1.

Remark 4. Setting un = Tn,t, Example 1 satisfies T1.

Theorem 3. Suppose for given t > 1, all random variables X ′
1, . . . , X

′
n, Y

′
1 , . . . ,

Y ′
n, and Tn,t are independent, where X

′
i and Y ′

i are unit Fréchet random variables,

and Tn,t has the distribution function exp(−n/xt) for x > 0. If An,t = n{1 −
exp(−1/Tn,t)}, then

(i) for z > 0,

lim
n→∞

P
{
A−1

n,t max
1≤i≤n

max(X ′
i, Tn,t)

max(Y ′
i , Tn,t)

≤ z
}
= exp(−1

z
);

for z1 > 0 and z2 > 0,

lim
n→∞

P
{
A−1

n,t max
1≤i≤n

max(X ′
i, Tn,t)

max(Y ′
i , Tn,t)

≤ z1, A−1
n,t max

1≤i≤n

max(Y ′
i , Tn,t)

max(X ′
i, Tn,t)

≤ z2

}

= exp(− 1

z1
) exp(− 1

z2
).

TAIL DEPENDENCE MEASURES 11

(ii) Further,

2n{1− exp(− 1

Tn,t
)}q′

Tn,t

L→ χ2
4, (2.13)

where χ2
4 is a chi-squared random variable with four degrees of freedom; q′

Tn,t

is defined as q
un

by replacing un by Tn,t, Xi by X ′
i, and Yi by Y ′

i , i = 1, . . . , n

respectively.

Corollary 1. If random variables X1, . . . , Xn, Y1, . . . , Yn satisfy T1, where Xi

and Yi are unit Fréchet random variables, under the null hypothesis of (2.12),

2n{1− exp(− 1

Tn,t
)}q

Tn,t

L→ χ2
4, (2.14)

where χ2
4 is a chi-squared random variable with four degrees of freedom.

Theorem 4. Suppose {X ′
1, . . . , X

′
n, Y ′

1 , . . . , Y
′
n} are independent unit Fréchet

random variables and un = u∗nan satisfies u∗n
P→ u∗, an → ∞, and an/n → 0 as

n → ∞, where u∗ ∈ (0,∞) is a constant. Then 2n{1− exp(−1/un)}q′un

L→ χ2
4.

Corollary 2. Suppose random variables X1, . . . , Xn, Y1, . . . , Yn satisfy T1, where

Xi and Yi are unit Fréchet random variables. Under the null hypothesis of (2.12),

2n{1− exp(−1/un)}qun

L→ χ2
4.

When applying (2.9)-(2.14) to data, one might think it obligatory to deter-

mine a joint tail region, choose a t > 1 value, and simulate a threshold Tn,t before

applying (2.14). However, the process is much simplified due to the following.

The inclusion of Tn,t in the q
un

definition naturally projects all joint observations

into a tail region. As a result, the thresholds u and g(u) in both sides of (2.9)

are not essential as long as a simulated Tn,t value in the q
Tn,t

computation is

large enough. Then too, the limiting distribution in (2.14) does not depend on

the power transformation index t. Suppose that u1(t1) ∼ Tn,t1 for a pre-specified

t1. For any s1 > 0, it follows that u
1/s1
1 (t1) ∼ Tn,s1×t1 . One can use either the

simulated value of u1(t1) or u
1/s1
1 (t1) as a threshold in TQCC. For any given t1

and a simulated value of u1(t1) and any pre-specified threshold value un that

does not depend on t, one can solve u
1/s1
1 (t1) = un for s1, and use un to sub-

stitute for Tn,t. This is important for applications as one does not need to deal

with the simulated threshold Tn,t. For a given sample size n, we can set un as

the minimum of the sample 100pth percentile of {Xi} and the sample 100pth

percentile of {Yi}. Here p can be chosen as, say, .8, .9, .95, .975 etc. Such choices

of un were treated as non-random in Zhang (2008b), and the resulting testing

procedure had high empirical power under H1 of (2.2). Employing exceedances

694



10 ZHENGJUN ZHANG, CHUNMING ZHANG AND QIURONG CUI
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i are unit Fréchet random variables,

and Tn,t has the distribution function exp(−n/xt) for x > 0. If An,t = n{1 −
exp(−1/Tn,t)}, then

(i) for z > 0,

lim
n→∞

P
{
A−1

n,t max
1≤i≤n

max(X ′
i, Tn,t)

max(Y ′
i , Tn,t)

≤ z
}
= exp(−1

z
);

for z1 > 0 and z2 > 0,

lim
n→∞

P
{
A−1

n,t max
1≤i≤n

max(X ′
i, Tn,t)

max(Y ′
i , Tn,t)

≤ z1, A−1
n,t max

1≤i≤n

max(Y ′
i , Tn,t)

max(X ′
i, Tn,t)

≤ z2

}

= exp(− 1

z1
) exp(− 1

z2
).

TAIL DEPENDENCE MEASURES 11

(ii) Further,
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where χ2
4 is a chi-squared random variable with four degrees of freedom; q′
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is defined as q
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respectively.
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When applying (2.9)-(2.14) to data, one might think it obligatory to deter-

mine a joint tail region, choose a t > 1 value, and simulate a threshold Tn,t before
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into a tail region. As a result, the thresholds u and g(u) in both sides of (2.9)
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Tn,t

computation is

large enough. Then too, the limiting distribution in (2.14) does not depend on

the power transformation index t. Suppose that u1(t1) ∼ Tn,t1 for a pre-specified

t1. For any s1 > 0, it follows that u
1/s1
1 (t1) ∼ Tn,s1×t1 . One can use either the

simulated value of u1(t1) or u
1/s1
1 (t1) as a threshold in TQCC. For any given t1

and a simulated value of u1(t1) and any pre-specified threshold value un that

does not depend on t, one can solve u
1/s1
1 (t1) = un for s1, and use un to sub-

stitute for Tn,t. This is important for applications as one does not need to deal

with the simulated threshold Tn,t. For a given sample size n, we can set un as

the minimum of the sample 100pth percentile of {Xi} and the sample 100pth

percentile of {Yi}. Here p can be chosen as, say, .8, .9, .95, .975 etc. Such choices

of un were treated as non-random in Zhang (2008b), and the resulting testing

procedure had high empirical power under H1 of (2.2). Employing exceedances
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over a threshold is a common practice in extreme value theory and statistical

inference, see Coles (2001). Theorem 4 supports these empirical arguments.

Applying Theorems 3 and 4, Corollaries 1 and 2 and the arguments above,

we propose a testing procedure.

(1) For a given level α, if 2n{1 − exp(−1/un)}qun
> χ2

4,α, then H0 of (2.1) is

rejected, and we conclude that there exists tail dependence between two

random variables of interest. Here χ2
4,α is the upper α percentile of the χ2

4

distribution. In practice, we just choose un as the sample percentile.

(2) If H0 of (2.1) is rejected, using the arguments in Section 2.3 and the results

in Proposition 3, (2.4) can be used as an estimate of λ. This estimate may

be conservative, as shown in the proof of our Theorem 5 and the results

obtained in Wang (2012).

To derive the asymptotic power of the test statistics, we apply the distribu-

tion approximation discussed in Section 2.3. We use a condition to explore the

discriminating power of the test.

Condition A1: Let {ξi,j : i ≥ 1, −∞ < j < ∞} be mutually independent unit

Fréchet random variables, and suppose that tail dependent unit Fréchet random

variables Xi and Yi have the approximation representations

Xi = max
−∞<j<∞

αjξi,j , Yi = max
−∞<j<∞

βjξi,j , (2.15)

where αj ≥ 0, βj ≥ 0,
∑∞

j=−∞ αj = 1,
∑∞

j=−∞ βj = 1, and αj > 0 iff βj > 0 for

all j. Then there exist 0 < c1 < c2 < ∞ such that c1 ≤ αj/βj ≤ c2.

Based on Deheuvels (1983) and Smith and Weissman (1996), (2.15) can ar-

bitrarily closely approximate (in distribution) jointly max-stable unit Fréchet

random variables. Zhang (2009) further established approximation theory when

the range of index j is finite. Under A1, we establish Theorem 5 for the asymp-

totic power of the test. It is possible to explore the consistency under alternatives

beyond (2.15).

Theorem 5. Suppose that {Xi}ni=1 and {Yi}ni=1 satisfy A1. Then for un =

Tn,t
P→ ∞ in Theorem 3, and un = u∗nan with u∗n

P→ u∗ ∈ (0,∞), an → ∞ and

an/n → 0 in Theorem 4, 2n{1−exp(−1/un)}qun

P→ ∞, and the test is consistent.

Proposition 3. Suppose α1+α2 = 1 and β1+β2 = 1 in (2.15). Then q
un

P→ λ.

The convergence rate of q0, using {un = 0}, is 1/
√
n when X and Y follow

a joint bivariate Fréchet distribution (see Wang (2012)). As a side note, a result
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gives the limiting distribution of qun
for normally distributed random variables

without marginally transforming them to unit Fréchet variables.

Proposition 4. Suppose {(ϵi1, ϵi2) : i = 1, . . . , n} is a random sample from a

standard bivariate normal random variable with correlation coefficient |ρ| < 1. If

Nqn = ( max
1≤i≤n

{ϵi1/ϵi2}+ max
1≤i≤n

{ϵi2/ϵi1}−2)/( max
1≤i≤n

{ϵi1/ϵi2} × max
1≤i≤n

{ϵi2/ϵi1}−1),

then (2n
√

1− ρ2/π)Nqn
L→ χ2

4, as n → ∞.

Comparing Proposition 4 with Theorems 3 and 4, we see the convergence

rate, 1/n, of the limiting distribution of qun
and Nqn under different null hy-

potheses, either tail independence or independence. Theorem 5 and the results in

Wang (2012) suggest that the test based on Theorems 3 and 4 is consistent. The

limiting distribution of Nqn under the bivariate normal assumption in Propo-

sition 4 and the unit Fréchet marginal (after transformation) is still an open

problem. Zhang, Qi and Ma (2011) proved that the sample-based Pearson cor-

relation coefficient and TQCC with un = 0 are asymptotically independent. A

combination of these two coefficients outperforms many existing test statistics in

testing the hypothesis of independence. Clearly, Proposition 4 is not for testing

tail independence as the threshold is taken at −∞. Yet, the bivariate normal dis-

tribution satisfies the properties in Proposition 1 and (2.11). In Zhang (2008b),

simulation examples of bivariate normal random variables with ρ up to 0.8 showed

that the Type I errors were controlled within nominal levels with a sample size

of 300. We also conducted extensive simulation studies and found that with the

values of ρ and growing sample sizes, Type I errors are still controlled within the

nominal levels. Draisma et al. (2004) studied a maximum likelihood approach

in tail dependence estimation and reported that their approach worked well for

a bivariate normal distribution with ρ up to 0.6. In Section S1, we report new

simulation examples and compare the results with the results from two recently

published test statistics.

Before we close this section, we remark that TQCC is suitable for asymptotic

dependence, while the coefficient of tail dependence, the η of Ledford and Tawn

(1996, 1997), or equivalently χ̄ (see (Coles, 2001, p.164)), is an excellent measure

for the dependence in asymptotic independence; see some counter examples of

the existence of η in Schlather (2001). In practice, these two measures can both

be pronounced. In this present work, we apply TQCC measure to test asymptotic

independence for a large scale problem of precipitations, then report TQCC

values as tail dependence indices once the hypotheses of asymptotic independence

are rejected.
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random variables. Zhang (2009) further established approximation theory when

the range of index j is finite. Under A1, we establish Theorem 5 for the asymp-

totic power of the test. It is possible to explore the consistency under alternatives

beyond (2.15).

Theorem 5. Suppose that {Xi}ni=1 and {Yi}ni=1 satisfy A1. Then for un =

Tn,t
P→ ∞ in Theorem 3, and un = u∗nan with u∗n

P→ u∗ ∈ (0,∞), an → ∞ and

an/n → 0 in Theorem 4, 2n{1−exp(−1/un)}qun

P→ ∞, and the test is consistent.

Proposition 3. Suppose α1+α2 = 1 and β1+β2 = 1 in (2.15). Then q
un

P→ λ.

The convergence rate of q0, using {un = 0}, is 1/
√
n when X and Y follow
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testing the hypothesis of independence. Clearly, Proposition 4 is not for testing

tail independence as the threshold is taken at −∞. Yet, the bivariate normal dis-

tribution satisfies the properties in Proposition 1 and (2.11). In Zhang (2008b),

simulation examples of bivariate normal random variables with ρ up to 0.8 showed
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of 300. We also conducted extensive simulation studies and found that with the
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nominal levels. Draisma et al. (2004) studied a maximum likelihood approach

in tail dependence estimation and reported that their approach worked well for

a bivariate normal distribution with ρ up to 0.6. In Section S1, we report new

simulation examples and compare the results with the results from two recently

published test statistics.

Before we close this section, we remark that TQCC is suitable for asymptotic

dependence, while the coefficient of tail dependence, the η of Ledford and Tawn

(1996, 1997), or equivalently χ̄ (see (Coles, 2001, p.164)), is an excellent measure

for the dependence in asymptotic independence; see some counter examples of

the existence of η in Schlather (2001). In practice, these two measures can both

be pronounced. In this present work, we apply TQCC measure to test asymptotic

independence for a large scale problem of precipitations, then report TQCC

values as tail dependence indices once the hypotheses of asymptotic independence
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So far we have established the TQCC measure for examining Fréchet dis-

tributed random variables. In Section 3, we discuss its validity after marginal

transformation, often used on data before applying the tests.

3. Marginal Transformation and Generalized Extreme Value Distri-

butions

3.1. Limiting distribution of TQCC with estimated parameters in

GEV

In obtaining unit Fréchet scales via marginal distribution transformations,

the results in Section 2.5 are valid using the true marginal distributions. How-

ever, in practice true marginal distributions are unknown. In extreme value anal-

ysis, the generalized extreme value (GEV) distribution or the generalized Pareto

distribution (GPD) is often first fitted to observed data, and then data are trans-

formed to unit Fréchet scales, see Pickands (1975), Embretchts, Klüppelberg and

Mikosch (1997), and Smith (2003) for details. The GEV has the form

H(x; ξ, µ, ψ) = exp[−{1 + ξ(x− µ)

ψ
}−1/ξ
+ ] (3.1)

for local maxima of observations, where µ is a location parameter, ψ > 0 is a

scale parameter, and ξ is a shape parameter. In principle, unit Fréchet scales can

be obtained using the transformation −1/ log{H(x; ξ, µ, ψ)}. In this section, we

establish results to show that the calculated TQCC, with estimated parameters

in GEV, results in the same limiting distribution as if the true parameters in

GEV were known. For simplicity, we assume µ = 0 and ψ = 1 in (3.1).

Theorem 4. Let {(Xi, Yi)}ni=1 be a sample of T1 type tail independent ran-

dom variables (X, Y ) whose marginal domains of attraction are GEV random

variables with shape parameters ξX = ξ0;X and ξY = ξ0;Y , respectively. Suppose

estimators of ξX and ξY , ξ̂X = ξn;X(X1, . . . , Xn) and ξ̂Y = ξn;Y (Y1, . . . , Yn),

satisfy nαX (ξ̂X − ξ0;X)
L→ WX and nαY (ξ̂Y − ξ0;Y )

L→ WY , where αX > 0,

αY > 0 and WX and WY are random variables. If X̂i = −1/ log{H(Xi; ξ̂X)},
Ŷi = −1/ log{H(Yi; ξ̂Y )} and

q̂un
=

max
1≤i≤n

{max(X̂i, un)/max(Ŷi, un)}+ max
1≤i≤n

{max(Ŷi, un)/max(X̂i, un)} − 2

max
1≤i≤n

{max(X̂i, un)/max(Ŷi, un)} × max
1≤i≤n

{max(Ŷi, un)/max(X̂i, un)} − 1
,

(3.2)

then under the conditions in Theorems 3 and 4, 2n{1− exp(−1/un)}q̂un

L→ χ2
4.
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For applications, Theorem 4 lends support to applying TQCC to transformed

data in which those observed values larger than the chosen threshold value are

transformed using the inverse of fitted GEV distribution functions, while ob-

served values smaller than the threshold value are transformed based on rank

transformation. As TQCC also uses a threshold, one can see that observations

smaller than the threshold do not affect the inference using TQCC.

A broader Lemma 2 is needed to prove Theorem 4; it is a powerful tool

for proving uniform convergence of transformed random sequences and could be

applicable to other circumstances.

4. Data application

The data are daily precipitation totals covering the period 1950–1999 over

5,873 stations in the continental USA (excluding Alaska and Hawaii). The data

units are tenths of a millimeter. The data were obtained from Dr. Pavel Grois-

man of the National Climatic Data Center (NCDC), the same as used by Smith,

Grady and Hegerl (2007) and Shamseldin et al. (2008).

Despite extensive work in analyzing extreme precipitation events, especially

detections of trend, extreme value theory gives a fresh impetus in analyzing

climate changes. References include Smith, Grady and Hegerl (2007), Karl and

Knight (1998), Groisman et al. (1999), and Hegerl et al. (2006), among others.

Our main focus is on illustrating how variables are tail dependent on each other.

We fit GEV to each of 5,873 series, performed marginal transformations,

conducted TQCC-based tail independence tests, and report the tail dependence

measure (TQCC) after controlling the false discover rate (FDR) at level 0.05

using a nonparametric BH multiple testing procedure, referring to Benjamini

and Hochberg (1995) and Benjamini and Yekutieli (2001).

4.1. GEV fitting and extreme precipitation comparison

Regarding fitting GEV to data, Smith (1989) showed how a process of ex-

ceedances over a high threshold can be modeled in terms of the limiting GEV

distribution function of form (3.1). This procedure was used to fit the data

above a certain threshold. In each fitting, approximately 10% of observations

were above the chosen threshold value. For the purpose of illustration, in Table

1 we present fitted values ξ̂ of parameters in (3.1) for six selected stations. The

top three stations have the smallest ξ̂, whereas the bottom three have the largest.

From Table 1, one can see that the three stations whose precipitations have

shortest tails are around latitude 40◦N. Stations with longest tailed precipitations
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transformed using the inverse of fitted GEV distribution functions, while ob-
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transformation. As TQCC also uses a threshold, one can see that observations

smaller than the threshold do not affect the inference using TQCC.

A broader Lemma 2 is needed to prove Theorem 4; it is a powerful tool

for proving uniform convergence of transformed random sequences and could be

applicable to other circumstances.

4. Data application

The data are daily precipitation totals covering the period 1950–1999 over

5,873 stations in the continental USA (excluding Alaska and Hawaii). The data

units are tenths of a millimeter. The data were obtained from Dr. Pavel Grois-
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Our main focus is on illustrating how variables are tail dependent on each other.
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conducted TQCC-based tail independence tests, and report the tail dependence

measure (TQCC) after controlling the false discover rate (FDR) at level 0.05

using a nonparametric BH multiple testing procedure, referring to Benjamini
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Regarding fitting GEV to data, Smith (1989) showed how a process of ex-

ceedances over a high threshold can be modeled in terms of the limiting GEV

distribution function of form (3.1). This procedure was used to fit the data

above a certain threshold. In each fitting, approximately 10% of observations

were above the chosen threshold value. For the purpose of illustration, in Table

1 we present fitted values ξ̂ of parameters in (3.1) for six selected stations. The

top three stations have the smallest ξ̂, whereas the bottom three have the largest.

From Table 1, one can see that the three stations whose precipitations have

shortest tails are around latitude 40◦N. Stations with longest tailed precipitations
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Table 1. Information of six selected stations. The top three stations have the smallest
ξ̂, and the bottom three have the largest.

Station ID Shape ξ̂ (s.e.) Latitude Longitude Elevation City name
(I) −0.2316 (0.0604) 40.45 −111.70 1,720 Timpanogos, UT
(II) −0.2300 (0.0711) 40.15 −79.03 558 Boswell, PA
(III) −0.2248 (0.0703) 42.02 −86.25 265 Eau Claire, MI
(IV) 0.4383 (0.1065) 29.15 −95.45 8 Angleton, TX
(V) 0.4409 (0.0960) 31.30 −86.52 76 Andalusia, AL
(VI) 0.4977 (0.0970) 47.55 −116.17 680 Kellogg, ID

− −

ξ

−

−

Figure 3. Fitted values of ξ from time series at each of 5,873 stations. The left panel
shows the distribution of ξ̂. The right panel plots ξ̂ to US map using the inverse distance
method. Note that the values larger than 0.3 are truncated to 0.3 in order to display an
overall visual impression.

are spread to different latitudes, though two of them are around latitude 30◦N.

The standard errors suggest that all shape parameters are significantly different

from zero. We note that only two stations have the estimated ξ̂ values less than

−1 which may be a problem for asymptotic inference using a limiting normal

distribution. A two-step estimation procedure may be helpful and lead to relevant

asymptotics. In this study, we kept these two stations as they won’t affect the

main findings given that we are calculating thousands of TQCC test statistics.

In Figure 3, the right panel plots ξ̂ to a US color map using the inverse

distance method in a neighborhood of 10 points. The left panel plots the distri-

bution of ξ̂. One can see that precipitations over stations near the Gulf of Mexico

region and stations near the Atlantic ocean and along North Carolina coast have

heavier tails than precipitations over other stations.

These results suggest that precipitations are spatially nonstationary, clus-

tered, and asymmetric over all stations. From the left panel of Figure 3, one can

also see that the number of stations having positive values of ξ̂ is more than the

number of those having negative values. We note that similar findings regarding
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precipitation data have been reported in the literature, and our viewing angle is

an extreme value perspective.

4.2. Spatial tail dependence in precipitations across the continental

US

We assumed marginal transformations being performed, and used observa-

tions running from January 1, 1970 to December 31, 1999 to avoid unequal se-

quence lengths at different stations. We first calculated all pairwise (17,243,128

pairs) TQCCs among all 5,873 stations. We included all days with at least one

non-zero precipitation value from one of the paired stations within this time win-

dow. In Figure 4, the horizontal axis depicts the distance (in miles) between a

chosen station and the corresponding station with the largest TQCC value within

it, and the vertical axis depicts the distance between the chosen station and the

corresponding station with the smallest TQCC value within it. The correspond-

ing point displays these two types of distances. The scale associated with the

horizontal axis is much smaller than that on the vertical axis. The left panel

is drawn for all stations. The right panel filters stations to those with smallest

TQCC value greater than 0.05. One can see that, in general, the closer the two

stations, the larger the TQCC value. Again, this figure indicates, from the per-

spective of extreme weather condition, nonstationarity, spatial clusters, and tail

dependence in the precipitations across the continental USA.

For each station among 5,873 stations, we performed pairwise (144,224) tail

independence tests for stations within a distance of 84.7275 miles to the chosen

station. The distance of 84.7275 miles was chosen to be the 95th percentile of

distances between pairs with TQCC values greater than 0.05. As such, we only

consider regional paired stations for each of 5,873 stations.

We used TQCC value as an estimate of the tail dependence index of the

paired stations if the null hypothesis of tail independence was rejected by a

TQCC-based test. For the transformed sample {(Xi, Yi)} in each paired stations,

the threshold was chosen to be the smaller one of the two 95th percentiles of {Xi}
and {Yi}. With the distance of 84.7275, some of TQCC values less than 0.05 still

tested as significant. Using BH multiple testing to control the FDR at level 0.05,

the total number of rejections of the null hypotheses of tail independence was

141,006 for testing the same day tail dependence.

4.3. Overall tail dependence across regional-wise stations

For comparison purpose, at each station we obtained significant values of
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(II) −0.2300 (0.0711) 40.15 −79.03 558 Boswell, PA
(III) −0.2248 (0.0703) 42.02 −86.25 265 Eau Claire, MI
(IV) 0.4383 (0.1065) 29.15 −95.45 8 Angleton, TX
(V) 0.4409 (0.0960) 31.30 −86.52 76 Andalusia, AL
(VI) 0.4977 (0.0970) 47.55 −116.17 680 Kellogg, ID

− −

ξ

−

−

Figure 3. Fitted values of ξ from time series at each of 5,873 stations. The left panel
shows the distribution of ξ̂. The right panel plots ξ̂ to US map using the inverse distance
method. Note that the values larger than 0.3 are truncated to 0.3 in order to display an
overall visual impression.

are spread to different latitudes, though two of them are around latitude 30◦N.

The standard errors suggest that all shape parameters are significantly different

from zero. We note that only two stations have the estimated ξ̂ values less than

−1 which may be a problem for asymptotic inference using a limiting normal

distribution. A two-step estimation procedure may be helpful and lead to relevant

asymptotics. In this study, we kept these two stations as they won’t affect the

main findings given that we are calculating thousands of TQCC test statistics.

In Figure 3, the right panel plots ξ̂ to a US color map using the inverse

distance method in a neighborhood of 10 points. The left panel plots the distri-

bution of ξ̂. One can see that precipitations over stations near the Gulf of Mexico

region and stations near the Atlantic ocean and along North Carolina coast have

heavier tails than precipitations over other stations.

These results suggest that precipitations are spatially nonstationary, clus-

tered, and asymmetric over all stations. From the left panel of Figure 3, one can

also see that the number of stations having positive values of ξ̂ is more than the

number of those having negative values. We note that similar findings regarding
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precipitation data have been reported in the literature, and our viewing angle is

an extreme value perspective.

4.2. Spatial tail dependence in precipitations across the continental

US

We assumed marginal transformations being performed, and used observa-

tions running from January 1, 1970 to December 31, 1999 to avoid unequal se-

quence lengths at different stations. We first calculated all pairwise (17,243,128

pairs) TQCCs among all 5,873 stations. We included all days with at least one

non-zero precipitation value from one of the paired stations within this time win-

dow. In Figure 4, the horizontal axis depicts the distance (in miles) between a

chosen station and the corresponding station with the largest TQCC value within

it, and the vertical axis depicts the distance between the chosen station and the

corresponding station with the smallest TQCC value within it. The correspond-

ing point displays these two types of distances. The scale associated with the

horizontal axis is much smaller than that on the vertical axis. The left panel

is drawn for all stations. The right panel filters stations to those with smallest

TQCC value greater than 0.05. One can see that, in general, the closer the two

stations, the larger the TQCC value. Again, this figure indicates, from the per-

spective of extreme weather condition, nonstationarity, spatial clusters, and tail
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For each station among 5,873 stations, we performed pairwise (144,224) tail

independence tests for stations within a distance of 84.7275 miles to the chosen

station. The distance of 84.7275 miles was chosen to be the 95th percentile of

distances between pairs with TQCC values greater than 0.05. As such, we only

consider regional paired stations for each of 5,873 stations.

We used TQCC value as an estimate of the tail dependence index of the

paired stations if the null hypothesis of tail independence was rejected by a

TQCC-based test. For the transformed sample {(Xi, Yi)} in each paired stations,

the threshold was chosen to be the smaller one of the two 95th percentiles of {Xi}
and {Yi}. With the distance of 84.7275, some of TQCC values less than 0.05 still

tested as significant. Using BH multiple testing to control the FDR at level 0.05,

the total number of rejections of the null hypotheses of tail independence was

141,006 for testing the same day tail dependence.

4.3. Overall tail dependence across regional-wise stations

For comparison purpose, at each station we obtained significant values of
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Figure 4. Scatterplots of two types of distances in miles. Left: calculated at all stations;
right: calculated at those stations with the smallest TQCC value being greater than
0.05.

TQCC after controlling FDR at level 0.05, and took the maximum of them. We

then plotted a total of 5,873 maximal values of TQCC at all stations in Figures 5,

6 and 7, corresponding to the same day (with 141,006 significant tests), 1-lagged

day (today’s data at station si was combined with tomorrow’s data at station

sj into a pair of (Xt, Yt+1), with 138,778 significant tests) and 7-lagged day

(with 137,889 significant tests), respectively. The tail dependence map should be

interpreted as the conditional probability of observing heavy precipitations at si
given heavy precipitations having been observed at sj within a time window and

in the region where both stations are located. For different stations sj′ , heavy

precipitations may or may not be observed within that time window.

From the right panels of Figures 5, 6 and 7, we can see that the maximal

tail dependence decays as time lag increases, and that the dependence patterns

change. These patterns can be seen in the color maps and color bars. The

histograms in the left panels show that there is a decreasing trend, since the

spread of the histograms shrinks. These empirical findings are useful in guiding

climate model development and weather forecast in the perspective of extreme

weather co-movements.

Table 2 reports 10 largest values of TQCC on the same day (as in Figure 5)

and names of the corresponding paired stations. The paired stations are close to

each other: the differences of latitudes are less than 0.2 degrees, and the same is

true for longitudes. The TQCC in the second column of the table indicates that

the probability of one location having large precipitation, conditional on another

location concurring, is at least as high as 20%.

4.4. Illustrations of several individual stations

In this section, we choose two stations, Kellogg, Idaho and Wilmington,

TAIL DEPENDENCE MEASURES 19

Figure 5. Maximal precipitation tail dependence between one station and the remaining
stations on the same day. The colorbar on the right panel has been adjusted to reflect
the left panel with TQCCs being larger than 0.05, but the very large values are truncated
to the colorbar upper limit as they are just a few points.

Figure 6. Maximal precipitation tail dependence between one station and the remaining
stations on the lagged-1 day. The colorbar on the right panel has been adjusted to reflect
the left panel with TQCCs being larger than 0.05, but the very large values are truncated
to the colorbar upper limit as they are just a few points.

Figure 7. Maximal precipitation tail dependence between one station and the remaining
stations on the lagged-7 day. The colorbar on the right panel has been adjusted to reflect
the left panel with TQCCs being larger than 0.05, but the very large values are truncated
to the colorbar upper limit as they are just a few points.
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Figure 7. Maximal precipitation tail dependence between one station and the remaining
stations on the lagged-7 day. The colorbar on the right panel has been adjusted to reflect
the left panel with TQCCs being larger than 0.05, but the very large values are truncated
to the colorbar upper limit as they are just a few points.
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Table 2. The 10 largest values of TQCC and information of corresponding stations.

Pair ID TQCC Latitude Longitude Elevation City name
(I) 0.3787 33.92 −118.13 34 Downey, CA

33.97 −118.02 128 Whittier, CA
(II) 0.2652 44.40 −122.48 262 Cascadia, OR

44.10 −122.68 206 Leaburg, OR
(III) 0.2324 34.48 −119.50 633 Juncal Dam, CA

34.53 −119.78 312 Los Prietos Ranger, CA
(IV) 0.2271 40.08 −99.20 610 Harlan County Lake, NE

40.07 −99.13 573 Naponee, NE
(V) 0.2208 39.35 −123.12 309 Potter Valley, CA

39.13 −123.20 193 Ukiah, CA
(VI) 0.2206 42.48 −71.28 49 Bedford, MA

42.52 −71.13 27 Reading, MA
(VII) 0.2200 34.52 −119.68 473 Gibraltar Dam, CA

34.48 −119.50 633 Juncal Dam, CA
(VIII) 0.2198 34.08 −117.87 175 Covina Nigg, CA

33.97 −118.02 128 Whittier, CA
(IX) 0.2128 29.95 −90.13 6 New Orleans, LA

29.98 −90.02 3 New Orleans, LA
(X) 0.2092 33.53 −117.77 11 Laguna Beach, CA

33.73 −117.87 41 Santa Ana, CA

Table 3. Fitted values of GEV parameters and standard errors.

Station ID Shape ξ̂ (s.e.) Scale ψ̂ (s.e.) Location µ̂ (s.e.) City Name
(I) 0.4977 (0.0970) 5.0767 (0.1654) 377.4 (24.75) Kellogg, ID
(II) 0.3110 (0.0820) 5.8077 (0.1343) 920.5 (49.12) Southport, NC

North Carolina, to illustrate the patterns of tail dependence. The former is also

displayed in Table 1 with the largest ξ̂, while the latter is located in one of the

regions suffering from severe flooding in the last fifteen years.

Table 3 exhibits the estimated values (ξ̂, ψ̂, µ̂) in fitting the GEV distribution.

For each of the two chosen stations in Table 3, Table 4 illustrates the station

name achieving the largest value of TQCC with that station. The tail depen-

dence magnitudes (in the second column of Table 4) are significantly smaller than

those presented in Table 2, but they are statistically significant. In an extreme

value context, a tail dependence index as small as 2% may be already practically

significant and an effective test statistic should be able to detect such a small

tail dependence index given the relatively large sample size in our precipitation

data. As an illustration, let us consider Pair ID (II) which has 2,416 concurrent
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Table 4. The largest TQCC (p-values in parenthese) between each of the two chosen
stations and the rest of stations.

Pair ID TQCC Latitude Longitude Distance City name
(I) 0.0239 47.55 −116.17 0.9132 Kellogg, ID

(0.0000) 47.62 −117.52 Spokane, WA
(II) 0.0769 33.98 −78.00 0.3464 Southport, NC

(0.0000) 34.32 −77.92 Wilmington, NC

Figure 8. Left panel: Precipitation tail dependence between Kellogg, ID and the remain-
ing stations on the same day. Precipitation tail dependence between South Port, NC
and the remaining stations on the same day.

days of precipitations and 4,377 precipitation days at either station, respectively.

There are occasions that the two stations have strong precipitation concurrently,

flooding does occur in one place given that another place has a strong precipi-

tation, even though the probability is low generally. Here a strong precipitation

should be understood on a relative scale from station to station. These empirical

findings from historical records indicate that weather forecasting models need to

describe such tail dependence more accurately in extreme weather conditions.

Figure 8 displays distributions of TQCC between the selected station and

the remaining ones. Each of these plots itself can be viewed as a skewed and long

tailed distribution. This phenomenon suggests that flooding can be anywhere

which shares smaller tail dependence with other locations. These plots show

stronger tail dependence existing near the chosen stations. For instance, South

Port station and its neighboring regions once suffered from severe flooding. This

phenomenon, under extreme weather conditions, suggests potential flooding in

certain regions that show similar patterns of tail dependence, hence analysis

results may be helpful in regional flooding prevention and strategic policy making.
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5. Conclusions

In this study, generalizing a recently introduced tail dependence measure,

tail quotient correlation coefficient (Zhang (2008b)), we evaluated spatial tail

dependence of precipitations recorded at selected stations from NCDC rain gauge

data, including daily precipitation from 5,873 stations during 1950–1999. Much

work has been based on Ledford and Tawn (1996) tail dependence measure and

Coles (2001) χ̄ = 2η−1. There are various ways of estimating χ̄ and η, and some

reported results based on different estimators do not agree with each other. The

TQCC is directly related to tail values, is intuitively appealing, and enjoys a nice

geometric property. In our Figures 5–8 in Section 4, TQCC demonstrates its

unique feature of being a meaningful measure of tail dependence: skewed to the

right and with heavy tailed pattern, which may not be seen with other dependence

measures. The TQCC has a relatively high empirical power in detecting tail

dependence. In this paper, we further show that the test is consistent under

H1 of (2.2). In addition, one can easily calculate all pairwise TQCC among

all 5,873 stations. We have conducted a large number of pairwise tests for tail

independence with BH multiple testing correction.

Our results, from the perspective of tail dependence, reveal nonstationarity,

asymmetry, spatial clusters, and tail dependence in the data. Although various

studies have documented that there are tail dependencies in precipitation data,

the results obtained could be very useful in enhancing our understanding of

weather extremes and in guiding new climate model development. Our TQCC-

based analysis is for regionally paired stations only. A seasonal-based analysis

can be done for temperature dependence patterns, snowfall dependence patterns,

and smog spread patterns. We intend to study these applications.

The TQCC uses the largest values of two sequences of quotients. It is possible

to extend the definition of TQCC using either the first k largest quotients (e.g.

the geometric mean or other forms), or the 100pth percentiles of the two quotient

sequences. Such newly extended definitions are useful in measuring nonlinear

dependence between observations. Detailed investigation of this topic will be

given in a future study.

A final note is that the asymptotics of TQCC, under the alternative hypothe-

sis of tail dependent, depends on the distributions ofXi/Yi and Yi/Xi, precluding

any unified form of limit distributions. A project here is to provide a dictionary

of limit distributions of TQCCs under different joint dependencies. In practice, a

bootstrap approach can be applied to construct a bootstrap confidence interval.
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Supplementary Materials

Supplementary materials include simulation examples and all technical deriva-

tions. These materials are presented in Sections S1 and S2 respectively, and are

available online.
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