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High-dimensional regression and classification
under a class of convex loss functions
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The weighted L1 penalty was used to revise the tradi-
tional Lasso in the linear regression model under quadratic
loss. We make use of this penalty to investigate the high-
dimensional regression and classification under a wide class
of convex loss functions. We show that for the dimension
growing nearly exponentially with the sample size, the pe-
nalized estimator possesses the oracle property for suitable
weights, and its induced classifier is shown to be consistent
to the optimal Bayes rule. Moreover, we propose two meth-
ods, called componentwise regression (CR) and penalized
componentwise regression (PCR), for estimating weights.
Both theories and simulation studies provide supporting evi-
dence for the advantage of PCR over CR in high-dimensional
regression and classification. The effectiveness of the pro-
posed method is illustrated using real data sets.
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1. INTRODUCTION

Penalization was introduced to regularize overparameter-
ized problems, and has succeeded in dealing with the chal-
lenges posed by analyzing high-dimensional data sets. L1

penalty was used in Lasso by Tibshirani (1996) to simulta-
neously select variables and estimate parameters for a lin-
ear model with a fixed number of parameters. From then
on, the L1 penalty has exhibited its attractiveness in both
theoretical and experimental perspectives by extensive stud-
ies (for example, Knight and Fu, 2000). However, Lasso can
not select variables consistently without essential conditions
(Meinshausen and Buhlmann, 2006; Zhao and Yu, 2006).
To remedy this drawback, Zou (2006) introduced imposing
adaptive weights on the L1 penalties of the parameters, and
showed that using the weighted L1 penalties can enable con-
sistent selection of variables under general conditions. Zou
(2006) further showed that the resultant estimator achieves
the oracle property (Donoho and Johnstone, 1994): it is
asymptotically as efficient as the oracle estimator.
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As popular penalization methods, L1 and weighted L1

penalties have been further investigated in large/high-
dimensional linear models and likelihood models. For the L1

penalty, Meinshausen and Yu (2008) investigated the L2-
consistency of the Lasso estimator in linear models when
the number of parameters pn grows nearly exponentially
with the sample size n; Zhang and Huang (2008) considered
a rate consistency of the Lasso estimation when the high-
dimensional linear model is sparse in the sense that most
coefficients are small in absolute values. More recent contri-
butions include Bach (2010) and Kakade et al. (2010). For
the weighted L1 penalty, Huang et al. (2008) applied the
adaptive Lasso to a sparse high-dimensional linear model,
and extended the oracle property of the penalized estima-
tor. Other useful penalties with application to large/high-
dimensional linear models and likelihood models include the
smoothly clipped absolute deviation (SCAD) penalty dis-
cussed by Fan and Peng (2004) and Lv and Fan (2009).

However, as mentioned above, most research efforts on L1

and weighted L1 penalizations have been limited to linear
models and likelihood models. One exception is van der Geer
(2008), which dealt with Lasso in high-dimensional models
with Lipschitz loss functions. However, that work focused
on the prediction error of the Lasso estimator instead of
the performance of the estimator itself. Other exceptions
include Belloni and Chernozhukov (2009) and Zhou et al.
(2009). However, they are particularly interested in quantile
regression and gaussian graphical modeling respectively. Re-
cently, to generalize the conventional penalized likelihood,
Zhang et al. (2010) introduced penalized Bregman diver-
gence. It used the concept of Bregman divergence, which
unifies nearly all of the commonly used loss functions in the
regression analysis and classification procedure (Zhang et
al., 2009). For instance, an important application of Breg-
man divergence is the quasi-likelihood model (Wedderburn,
1974) which is popular when the underlying distribution of
the observations is not fully specified. Zhang et al. (2010)
studied the statistical properties of the penalized Bregman
divergence estimator in conjunction with either nonconvex
or convex penalties. The dimension pn in that work has ei-
ther a smaller or nearly the same order as the sample size
n, depending on the choice of penalties. However, the high-
dimensional setting, where pn can grow faster than n, was
not investigated by Zhang et al. (2010).

Therefore, it remains an open problem to broaden the
scope of penalization in a high-dimensional setting. To fill
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this gap, we study the penalized estimator and classifier
for high-dimensional data in this work, where pn can grow
nearly exponentially with the sample size n. Compared with
Zhang et al. (2010), we focus on those loss functions be-
longing to the class of convex Bregman divergence. We also
restrict our investigations to the weighted L1 penalization.
Using convex loss functions and weighted L1 penalties fa-
cilitates the derivation of the statistical properties for the
penalized estimator and classifier in a high-dimensional set-
ting. From the regression viewpoint, in high-dimensional re-
gression models utilizing convex Bregman divergence as loss
functions, the weighted L1 penalized estimator is shown to
possess the oracle property for suitable weights. From the
classification viewpoint, the classifier induced by the penal-
ized estimator is shown to be asymptotically consistent to
the optimal Bayes rule.

Meanwhile, we discuss how to estimate the adaptive
weights. The marginal regression method in Huang et al.
(2008) is generalized to componentwise regression (CR) in
our framework, which can provide satisfactory estimates of
the weights under appropriate conditions. Furthermore, we
propose a novel weight estimation method, called penalized
componentwise regression (PCR). Compared with CR, PCR
needs weaker conditions to estimate satisfactory weights.
The numerical studies in this paper illustrate the application
of the weighted L1 penalty to high-dimensional regression
and classification. The results verify the advantage of the
weighted L1 penalty over the L1 penalty in model fitting,
variable selection, and classification. The numerical results
also indicate that PCR is preferable to CR for estimating
the adaptive weights in practice.

The rest of the paper is organized as follows. Section 2
establishes the weighted L1 penalization under convex Breg-
man divergence. We discuss the statistical properties of
the penalized estimator for appropriate weights there. Sec-
tion 3 studies the application of the weighted L1 penaliza-
tion to classification. Section 4 proposes two methods, CR
and PCR, for estimating weights. Section 5 presents the re-
sults from simulations and real data examples. All techni-
cal details are included in the Appendix and supplemen-
tal materials (http://www.intlpress.com/SII/p/2013/6-2/
SII-6-2-jiang-supplement.pdf).

2. REGRESSION UNDER CONVEX LOSS
FUNCTIONS

In this section, we introduce the penalized Bregman di-
vergence estimator similar to that in Zhang et al. (2010),
and provide the oracle property of the weighted L1 penal-
ized estimator in a high-dimension setting.

2.1 Penalized Bregman divergence

Assume the set of training samples is given by Tn =
{(Xn1, Yn1), . . . , (Xnn, Ynn)}, observed independently from a
common probability distribution. Let (Xn, Yn) be the generic

pair of a random realization from this distribution, where
Xn = (X1, . . . , Xpn)

T is the input random vector and Yn is
the output random variable. We assume the following un-
derlying model for the training data,

(1) m(Xn) = E(Yn|Xn) = F−1(βn,0;0 + XTnβn;0).

In (1), F is a known link function, βn,0;0 ∈ R
1 and βn;0 =

(βn,1;0, . . . , βn,pn;0)
T ∈ R

pn are the unknown true param-
eters. Some parameters in βn;0 are assumed to be exactly

zero, and we write βn;0 = (β
(I)T
n;0 ,β

(II)T
n;0 )T without loss of

generality, in which β
(I)
n;0 is the part of nonzero parameters

and β
(II)
n;0 = 0. sn is used to denote the number of nonzero

parameters, i.e., the length of β
(I)
n;0.

Similar to Zhang et al. (2010), define the weighted L1

penalized Bregman divergence estimator to be the minimizer
of the following criterion function,

�n(βn,0,βn) =
1

n

n∑
i=1

Q(Yni, F
−1(βn,0 + XTniβn))(2)

+ λn

pn∑
j=1

wn,j |βn,j |,

where βn = (βn,1, . . . , βn,pn)
T , λn > 0 is the tuning param-

eter, and wn,1, . . . , wn,pn are the nonnegative weights for
parameters βn,1, . . . , βn,pn . The loss function Q(·, ·) in (2) is
the Bregman divergence proposed by Bregman (1967),

Q(ν, μ) = −q(ν) + q(μ) + (ν − μ)q′(μ),

where q is a given concave function.
In general, Q(Y, μ) serves as a loss function for a random

variable Y and its estimation μ. A large family of commonly
used loss functions in regression and classification are Breg-
man divergence with suitably chosen generating functions q.
For example, q(μ) = aμ − μ2 with a constant a results in
the quadratic loss Q(Y, μ) = (Y − μ)2. For a binary output
variable Y , q(μ) = −{μ log(μ) + (1 − μ) log(1 − μ)} yields
the deviance loss Q(Y, μ) = −{Y log(μ) + (1 − Y ) log(1 −
μ)}; q(μ) = 2{μ(1 − μ)}1/2 generates the exponential loss
Q(Y, μ) = exp[−(Y −1/2) log{μ/(1−μ)}]. We refer to Zhang
et al. (2010) and the references therein for more details
about the application of Bregman divergence.

For θ = F (μ), define qj(y; θ) = (∂j/∂θj)Q(y, F−1(θ)) for
j = 1, 2, . . . . Then,

q1(y; θ) = (y − μ)q′′(μ)/F ′(μ),

q2(y; θ) = −q′′(μ)/{F ′(μ)}2 + (y − μ)A(μ),

where A(μ) = {q′′′(μ)F ′(μ) − q′′(μ)F ′′(μ)}/{F ′(μ)}3. The
loss function Q in (2) is convex with respect to the param-
eters βn,0 and βn given that q2(y; θ) > 0. In practice, a
lot of commonly used loss functions are actually convex,
e.g., quadratic loss with identity link for continuous output

286 Y. Jiang and C. Zhang



variables, deviance loss or exponential loss with logit link
for binary output variables, deviance loss with log link for
counting output variables, etc. Therefore, we restrict our in-
vestigations to convex loss functions throughout this work.

2.2 Oracle property of the penalized
estimator

Let β̃n = (βn,0,β
T
n )

T , and correspondingly X̃n =
(1, XTn )

T . Then, the criterion function (2) can be written
as
(3)

�n(β̃n) =
1

n

n∑
i=1

Q(Yni, F
−1(X̃

T

niβ̃n)) + λn

pn∑
j=1

wn,j |βn,j |,

and the penalized estimator is denoted by
̂̃
βn =

(β̂n,0, β̂
T

n )
T . In addition, we write the parameters β̃n into

two parts as β̃
(I)

n = (βn,0, βn,1, . . . , βn,sn)
T and β(II)

n =

(βn,sn+1, . . . , βn,pn)
T . Accordingly, X̃

(I)

n = (1, X1, . . . , Xsn)
T

and X
(II)
n = (Xsn+1, . . . , Xpn)

T .
Before presenting the oracle property of the penalized

Bregman divergence estimator, we introduce some necessary
notation as follows: first,

Hn;0 = −E

[
q′′(m(Xn))

{F ′(m(Xn))}2
X̃
(I)

n X̃
(I)T

n

]
,

Ωn;0 = E

[
var(Yn|Xn)

{q′′(m(Xn))}2
{F ′(m(Xn))}2

X̃
(I)

n X̃
(I)T

n

]
;

second, with ‖ · ‖ and ‖ · ‖∞ denoting the L2 and L∞ norm
respectively, define

Pn(β̃
(I)

n ) =
1

n

n∑
i=1

q2(Yni; X̃
(I)T

ni β̃
(I)

n )X
(II)
ni X̃

(I)T

ni ,

ρn = sup{‖Pn(β̃
(I)

n )u‖∞ :

‖u‖ = 1, ‖β̃
(I)

n − β̃
(I)

n;0‖ ≤ log(n)
√

sn/n};

last, write the weights for β̃
(I)

n as a diagonal matrix Wn =
diag(0, wn,1, . . . , wn,sn), and define

w(I)
max = max

1≤j≤sn
wn,j and w

(II)
min = min

sn+1≤j≤pn

wn,j

to be the maximum weight for the nonzero parameters and
the minimum weight for the zero parameters respectively.

Theorem 1. Suppose s5n/n → 0 and log(pn − sn)/

min{n, nλ2
n(w

(II)
min)

2} = oP (1) as n → ∞. Assume Con-

ditions 1–4 in the Appendix, and further w
(I)
max =

OP {1/(λn
√
n)}, (w

(II)
min)

−1 = oP {λn
√
n/(ρn

√
sn)}. With

probability tending to one, there exists a global minimizer̂̃
βn of �n in (3) which satisfies that

(1) β̂
(II)

n = 0,

(2)
√
nAnΩ

−1/2
n;0

[
Hn;0(

̂̃
β
(I)

n −β̃
(I)

n;0)+λnWnsign(β̃
(I)

n;0)
] L−→

N(0, G) for any k×(sn+1) matrix An such that AnA
T
n → G

with G being a k × k semi-positive definite matrix, where

sign(β̃
(I)

n;0) = {sign(βn,0;0), sign(βn,1;0), . . . , sign(βn,sn;0)}T .
Theorem 1 provides the oracle property of the penal-

ized Bregman divergence estimator under a class of convex
loss functions. As mentioned in Section 2.1, the convexity
of loss functions is assumed through Condition 1(b) in the
Appendix. To illustrate more clearly the conditions and con-
clusions of this theorem, we make a few comments as follows.

First, ρn indicates how strongly the relevant and irrele-
vant input variables are correlated. For the purpose of illus-
tration, let us consider the case of linear regression with
the quadratic loss and identity link. In this case, ρn =

sup{‖Pnu‖∞ : ‖u‖ = 1} with Pn = (2/n)
∑n

i=1 X
(II)
ni X̃

(I)T

ni .
Suppose that the input variables are centralized and stan-
dardized. Pn is proportional to the sample correlation ma-
trix between the relevant and irrelevant input variables. The
sample correlation matrix plays a central role in the “irrep-
resentable condition” in Zhao and Yu (2007) and the “adap-
tive irrepresentable condition” in Huang et al. (2008).

Moreover, in the above case of linear regression with input
variables centralized and standardized,

ρn ≤ max
sn+1≤j≤pn

∥∥∥∥∥ 2n
n∑

i=1

Xij X̃
(I)

ni

∥∥∥∥∥
≤ (sn + 1)1/2 max

0≤k≤sn,sn+1≤j≤pn

∣∣∣∣∣ 2n
n∑

i=1

XijXik

∣∣∣∣∣ .
Specifically, if the relevant and irrelevant input variables are
uncorrelated, under Condition 3 in the Appendix, ρn =
OP ([sn log{sn(pn − sn)}/n]1/2) by Bernstein’s inequality
(Lemma 2.2.9 in van der Vaart andWellner, 1996). It is note-
worthy that Huang et al. (2008) also imposed a constraint
on max0≤k≤sn,sn+1≤j≤pn | 1n

∑n
i=1 XijXik| in their “partial

orthogonality condition”.
Second, following the discussion of ρn as above,

we assume in Theorem 1 the condition (w
(II)
min)

−1 =
oP {λn

√
n/(ρn

√
sn)} for the weights. This condition de-

scribes the following relationship: the stronger the correla-
tions between the relevant and irrelevant input variables,
the larger the minimum weight for irrelevant input vari-
ables needs to be. However, regardless of the correlation
structure of the input variables, we can always prove that
ρn = OP (

√
sn) under the conditions in Theorem 1 (the proof

is in the Appendix). Therefore, (w
(II)
min)

−1 = oP (λn
√
n/sn)

is always a sufficient condition for Theorem 1.
Third, regarding the dimension of the data, there are two

conditions in Theorem 1. On the one hand, the condition
s5n/n → 0 imposes the constraint on the number of relevant
input variables. However, it is worth mentioning that this
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condition can be weakened to s2n/n → 0 for part (1) of The-
orem 1 (see Lemma 3 in the Appendix). On the other hand,

the condition log(pn−sn)/min{n, nλ2
n(w

(II)
min)

2} = oP (1) im-
poses the constraint on the number of irrelevant input vari-
ables. Taking sn = nc1 with 0 < c1 < 1/5 as an exam-

ple, w
(II)
min can be nc2/(λn

√
n) with some c2 > c1 as men-

tioned above. Then, the constraint becomes log(pn − sn) =
o{min(n2c2 , n)}. This indicates that the allowed number of
irrelevant input variables can grow almost exponentially fast
of min(n2c2 , n).

Last, the asymptotic distribution of the penalized Breg-
man divergence estimator depends on the Q-loss only
through the second derivative of its generating q-function.
The asymptotic covariance matrix of the penalized estima-
tor is given by H−1

n;0Ωn;0H
−1
n;0 where both Hn;0 and Ωn;0

involve q′′(·). It can be shown that this covariance matrix
can achieve its lowest bound when the generating q-function
satisfies the so-called generalized Bartlett identity (Bartlett,
1953; Zhang et al., 2010). This provides an insight of how
different loss functions can impact the asymptotic behav-
ior of their penalized estimators. We refer to the equation
(11) in Zhang et al. (2010) and the discussions thereafter for
details.

2.3 Comparison with a previous result

Huang et al. (2008) obtained the oracle property of the
penalized estimator using weighted L1 penalty in the frame-
work of linear models. Since their quadratic loss function be-
longs to the class of convex loss functions discussed in our
work, we would like to see how our result relates to theirs.
Both results provide the oracle property of the penalized
estimator, so we compare key conditions under which this
conclusion is derived.

First, for the error terms εn = Yn − m(Xn), we restrict
εn in Condition 3 in the Appendix; while the condition in
Huang et al. (2008) is their condition (A1):

P (|εn| > t) ≤ K exp(−Ctd) for t ≥ 0,

with certain constants 1 ≤ d ≤ 2, C > 0 and K > 0.
By the proof of Lemma 2.2.1 in van der Vaart and Well-
ner (1996), it is seen that their condition (A1) implies that
E{exp(D|εn|d)} ≤ 2 for D = C/(1 + K), and this further
concludes that E(|εn|ld) ≤ l!(1/D)l for l = 1, 2, . . . . Con-
sequently by Liapounov’s inequality (Shao, 2003, page 30),
E(|εn|l) ≤ (l!)1/d{(1/D)1/d}l for l = 1, 2, . . . . This implies
our condition for εn, since 1 ≤ d ≤ 2. Therefore, our condi-
tion for the error terms is slightly weaker than their condi-
tion (A1).

Next, for the allowed number of irrelevant input vari-
ables pn− sn, we have two conditions log(pn− sn)/n = o(1)

and log(pn − sn)/{nλ2
n(w

(II)
min)

2} = oP (1). Since Huang et
al. (2008) imposed a constraint pn = O(exp(na)) for a con-
stant 0 < a < 1, which is stronger than our first condition,
we only focus on the second. As mentioned in Huang et al.

(2008), their model can include the most covariates when
the error terms have a sub-Gaussian tail [d = 2 in their con-
dition (A1)]. When d = 2 in (A1), they imposed condition
(A4):

log(pn − sn)(Mn2 + r−1
n )2/(nλ2

n) → 0,

where Mn2 controls the proxies ηn,j of the true parameters
βn,j;0, and rn describes the asymptotic rate of the difference

between the initial estimators β̂∗
n,j and these proxies. Mn2

and rn satisfy their condition (A2):

rn max
1≤j≤pn

|β̂∗
n,j − ηn,j | = OP (1), rn → ∞,

max
sn+1≤j≤pn

|ηn,j | ≤ Mn2.

According to (A2) and their definition wn,j = |β̂∗
n,j |−1,

(w
(II)
min)

−1 = max
sn+1≤j≤pn

|β̂∗
n,j | = OP (Mn2 + r−1

n ).

This, together with their condition (A4), implies that

log(pn − sn)/{nλ2
n(w

(II)
min)

2} = oP (1), exactly the same as
our second condition about pn − sn. This observation sug-
gests that our conditions for pn − sn are weaker than those
in Huang et al. (2008).

Last, it is slightly difficult to compare the allowed num-
ber of relevant input variables sn. Our work requires that
s2n/n → 0 for the variable selection consistency, and
s5n/n → 0 for the oracle property of the penalized estima-
tor; while in their work sn depends on the above-mentioned
rn and λn, and has a lower order than n. This observation
underscores the necessity of sparsity in high-dimensional re-
gression.

3. APPLICATION TO CLASSIFICATION

In binary classification problems, Yn only takes values 0

and 1. In this case, the penalized estimator (β̂n,0, β̂
T

n )
T de-

fined as the minimizer of (2) naturally induces the following
classifier for a future input variable xn,

(4) φ̂n(xn) = I{F−1(β̂n,0 + xTn β̂n) > 1/2}.

In classification literature, the misclassification loss by
a classification rule φ at a data point (x, y) is defined as
l(y, φ(x)) = I{y 	= φ(x)}. The risk of φ is the expected
misclassification loss R(φ) = E{l(Y, φ(X))} = P{φ(X) 	= Y }.
The optimal Bayes rule, which minimizes the risk, is φB(x) =
I{m(x) > 1/2}.

The Bayes rule is denoted by φn,B(xn) = I{m(xn) >
1/2} in our setting. For a test sample (Xn, Yn), which is an
i.i.d. copy of the samples in the training set Tn, the optimal
Bayes risk is R(φn,B) = P{φn,B(Xn) 	= Yn}. Meanwhile, the

conditional risk of the classifier φ̂n is given by R(φ̂n) =

P{φ̂n(Xn) 	= Yn|Tn}.
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A rule φ̂n is called consistent if its conditional risk con-
verges to the optimal Bayes risk in the sense that

E{R(φ̂n)} −R(φn,B) → 0.

Theorem 2. Under the conditions of Theorem 1, the clas-
sifier in (4) is consistent to the Bayes rule.

Similar to Theorem 9 in Zhang et al. (2010), Theorem 2
verifies the classification consistency attained by the penal-
ized Bregman divergence classifier. We omit its proof and
refer to Zhang et al. (2010) for details.

4. ESTIMATION OF WEIGHTS

In this section, we explore how to estimate the weights
{wn,j : j = 1, . . . , pn} before we apply the weighted L1

penalization to high-dimensional regression and classifica-

tion. For simplicity of notation, we denote γ
(I)
n = λn

√
n and

γ
(II)
n = λn

√
n/(ρn

√
sn) hereafter.

4.1 Componentwise regression

Huang et al. (2008) applied marginal regression to es-
timate the weights in high-dimensional linear models. We
show that their method can be generalized to our setting
with a class of convex loss functions. Following Zhang et al.
(2010), we call this generalization “componentwise regres-
sion (CR)”.

In CR, an initial estimator β̂
CR

n is computed to minimize
the componentwise regression criterion function,

�CR
n (βn) =

1

n

n∑
i=1

pn∑
j=1

Q(Yni, F
−1(Xijβn,j)).(5)

Then, the weights are estimated by

ŵn,j = |β̂CR
n,j |−1, j = 1, . . . , pn.(6)

It is noteworthy that CR is the same as marginal regression
when Q is the quadratic loss and F is the identity link.
In addition to estimating weights in penalization methods,
marginal regression is also very useful in high-dimensional
variable screening (Fan and Lv, 2008; Fan et al., 2009; Fan
and Song, 2010).

With the estimated weights {ŵn,j : j = 1, . . . , pn}, de-
fine ŵ

(I)
max = max1≤j≤sn ŵn,j and ŵ

(II)
min = minsn+1≤j≤pn ŵn,j

to be the estimates of w
(I)
max and w

(II)
min respectively. Theo-

rem 3 justifies the applicability of CR under certain con-
ditions, with its proof included in the supplemental ma-
terials (http://www.intlpress.com/SII/p/2013/6-2/SII-6-2-
jiang-supplement.pdf).

Theorem 3. Suppose γ
(I)
n = O(1),

√
nγ

(I)
n → ∞,√

nγ
(II)
n → ∞, log(sn) = o(nγ

(I)2
n ) and log(pn − sn) =

o{min(nγ
(II)
n , nγ

(II)2
n )}. Assume that E(Xn) = 0. Under

Conditions 1–6 in the Appendix, where An = γ
(I)
n and

Bn = γ
(II)
n in Condition 5, the estimates ŵn,j in (6) sat-

isfy that ŵ
(I)
max = OP (1/γ

(I)
n ) and (ŵ

(II)
min)

−1 = oP (γ
(II)
n ) as

needed in Theorem 1.

Condition 5 in the Appendix imposes a requirement on
the marginal correlations between input variables and the
output variable. Roughly, An represents the minimum ab-
solute marginal correlation for the relevant input variables;
Bn represents the maximum absolute marginal correlation
for the irrelevant input variables. It seems natural to as-
sume Bn = o(An). However, it may not be essential. In

Theorem 3, An = γ
(I)
n and Bn = γ

(II)
n . Depending on ρn, Bn

can have a larger order than An (e.g., when ρn
√
sn → 0).

This implies that the irrelevant variables can have stronger
correlations with the output variable than the relevant vari-
ables, given that the correlations between the irrelevant and
relevant variables are weak enough.

To approximately achieve the condition E(Xn) = 0 in
Theorem 3, in application, the data can always be prepro-
cessed by centralizing the input variables X1, . . . , Xpn . This
technique has been regularly used in previous works (e.g.,
Zou, 2006 and Huang et al., 2008).

4.2 Penalized componentwise regression

Following the discussion after Theorem 3, Condition 5
is relatively strong when Bn = o(An). That is, the rele-
vant variables have to be more strongly correlated with the
output variable than the irrelevant variables. So, a natural
question arises: can we relax Condition 5 by improving the
weight estimation method? To this end, we propose an alter-
native method named “penalized componentwise regression
(PCR)” as follows.

In PCR, we compute the initial estimator β̂
PCR

n which
minimizes a penalized version of the componentwise regres-
sion criterion function,

�PCR
n (βn) =

1

n

n∑
i=1

pn∑
j=1

Q(Yni, F
−1(Xijβn,j)) + κn

pn∑
j=1

|βn,j |.

(7)

The weight estimates ŵn,j are then given by

ŵn,j = |β̂PCR
n,j |−1, j = 1, . . . , pn.(8)

We present the theoretical property of PCR in two dif-
ferent cases. Case (1): PCR is mainly proposed to weaken

Condition 5 when Bn = o(An). As An = γ
(I)
n and Bn = γ

(II)
n

in Theorem 3, we impose the restriction that γ
(II)
n = o(γ

(I)
n )

(i.e., ρn
√
sn → ∞) and see how PCR can weaken Condi-

tion 5. Case (2): PCR is not limited to be only applicable

to Case (1) where γ
(II)
n = o(γ

(I)
n ). We provide the justifi-

cation for PCR in a general case without the restriction
as well. Theorem 4 presents the applicability of PCR in
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both cases, with its proof included in the supplemental ma-
terials (http://www.intlpress.com/SII/p/2013/6-2/SII-6-2-
jiang-supplement.pdf).

Theorem 4. Suppose γ
(I)
n = O(1), κn = o(γ

(I)
n ) and

log(sn) = o(nγ
(I)2
n ). Assume that E(Xn) = 0. Assume Con-

ditions 1(a) and 2–5 in the Appendix, where An = γ
(I)
n in

Condition 5.

Case (1): If γ
(II)
n = o(γ

(I)
n ), we assume that γ

(II)
n = o(κn),

Bn = O(κn) and log(pn − sn) = o(nκ2
n).

Case (2): In general, we assume Conditions 1(b) and 6,

Bn = O{max(κn, γ
(II)
n )}, log(pn − sn) = o(n) and log(pn −

sn) = o{max(nκ2
n, nγ

(II)2
n )}.

Then, in either case (1) or case (2), there exist local

minimizers β̂PCR
n,j in (7) such that the corresponding es-

timates ŵn,j in (8) satisfy that ŵ
(I)
max = OP (1/γ

(I)
n ) and

(ŵ
(II)
min)

−1 = oP (γ
(II)
n ) as needed in Theorem 1.

We present the comparison between CR and PCR sepa-
rately for case (1) and case (2). In case (1), first, Condition 5
is weakened. Compared with Theorem 3, the condition of Bn

is relaxed to Bn = O(κn) from Bn = γ
(II)
n , since γ

(II)
n = o(κn)

in this case. Second, Condition 1(b) is not required, which
means PCR is applicable beyond the convex loss function
framework. Third, PCR allows more input variables to be
included in the model than CR. This is observed by com-
paring the conditions on pn − sn in the two theorems.

In case (2), first, we observe that the restriction γ
(II)
n =

o(γ
(I)
n ) can be removed if we only consider convex loss func-

tions. In this framework where CR is applicable, PCR is

always applicable regardless of the relationship between γ
(I)
n

and γ
(II)
n . Second, the conditions regarding Bn and pn − sn

can also be weaker than those in Theorem 3, depending on
the choice of κn.

In application, we treat κn in (7) as a tuning parameter,
and use a tuning set or cross validation to select the optimal
one. It is validated by our experimental studies that PCR is
preferable to CR for estimating the weights, as we will see
in Section 5.

5. NUMERICAL STUDIES

This section includes numerical studies which intend to
evaluate the performance of high-dimensional regression and
classification under different convex loss functions. We focus
on the comparison between L1 and weighted L1 penalization
methods. Meanwhile, the adaptive weights are estimated us-
ing both CR and PCR. The algorithm for the optimization
with L1 and weighted L1 penalties has been studied thor-
oughly in the literature (Osborne et al., 2000; Efron et al.,
2004; Rosset and Zhu, 2007), so we do not include the details
here.

5.1 Simulations

This subsection contains two simulation studies: one for
linear models which use quadratic loss, and the other for
binary response models which use deviance loss and expo-
nential loss. In addition to L1 and weighted L1 penalization
methods, we also include a naive method using the adap-
tive weights for completeness, i.e., selecting a proportion of
variables with top smallest weights. The proportion of vari-
ables selected by the naive method is regarded as a tuning
parameter.

5.1.1 Quadratic loss

The data are generated from the following model,

Xn = (X1, . . . , Xpn)
T ∼ N(0,Σ),

εn ∼ N(0, 1),

Yn = βn,0;0 + XTnβn;0 + εn,

where Xn is independent of εn, βn,0;0 = 2.5 and βn;0 =

(2.5, 2.5, 1, 1, 1, 0, . . . , 0)T . We set that n = 100, sn = 5,
pn = 500 or 1, 000. The covariance matrix Σ = (σij) used
to generate Xn is chosen as σij = ρ+(1−ρ) I(i = j) (type I)
or σij = ρ|i−j| (type II), for i = 1, . . . , pn and j = 1, . . . , pn.

In each setting, 100 sets of training data are generated.
First, each set is normalized before computation so that
the mean and standard deviation for each input variable
Xj across the 100 samples are 0 and 1 respectively. Then,
we compute the penalized estimators using the normalized
training set. Last, the resultant estimators are transformed
back to the original location and scale. The tuning param-
eters λn and κn in (3) and (7) are searched on a surface
of grid points, and selected by minimizing the residual sum
of squares evaluated on an independently generated tuning
set with the same size as the training set. The proportion
of variables selected by the naive method is also tuned sim-
ilarly to λn and κn. The following results are evaluated in
each setting.

Result I. Model fitting criterion MME. The model error
(ME) is approximated by 1

5000

∑5000
l=1 {m̂(xnl)−m(xnl)}2 at a

sequence {xnl}5000l=1 simulated independently from the train-
ing set. We report the median of the MEs (MME) from the
100 training samples.

Result II. Variable selection criteria #CZ and #CNZ. We
record the number of parameters which are correctly iden-
tified as zero when their true values are zero, and the num-
ber of parameters which are correctly identified as nonzero
when their true values are nonzero. Reported are the aver-
ages (#CZ and #CNZ) from the 100 training samples.

Tables 1 and 2 summarize the simulation results when
pn = 500 and pn = 1, 000 respectively, from which we can
draw the following conclusions.

First, the weighted L1 penalty outperforms the L1

penalty, in both model fitting and variable selection. The
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Table 1. Simulation results for quadratic loss. pn = 500

Penalty MME #CZ #CNZ MME #CZ #CNZ

ρ = 0
L1 0.417 465.96 6.00
weighted L1 (CR) 0.280 482.51 5.95
weighted L1 (PCR) 0.258 482.36 5.95
naive (CR) 1.270 481.18 5.14
naive (PCR) 1.270 481.24 5.14

ρ = 0.1 (type I) ρ = 0.1 (type II)
L1 0.366 471.53 6.00 0.375 470.04 6.00
weighted L1 (CR) 0.241 479.01 6.00 0.197 485.53 5.98
weighted L1 (PCR) 0.225 479.45 6.00 0.184 486.51 5.98
naive (CR) 1.124 478.25 5.23 0.456 482.86 5.55
naive (PCR) 1.122 478.28 5.23 0.441 482.97 5.55

ρ = 0.5 (type I) ρ = 0.5 (type II)
L1 0.352 471.83 6.00 0.232 478.96 6.00
weighted L1 (CR) 0.314 476.01 6.00 0.093 491.63 6.00
weighted L1 (PCR) 0.281 476.53 6.00 0.068 493.08 6.00
naive (CR) 1.400 480.06 4.49 0.081 492.08 6.00
naive (PCR) 1.400 480.06 4.49 0.071 492.45 6.00

ρ = 0.9 (type I) ρ = 0.9 (type II)
L1 0.332 472.00 5.66 0.137 486.43 6.00
weighted L1 (CR) 0.324 473.29 5.68 0.072 492.13 6.00
weighted L1 (PCR) 0.313 474.67 5.60 0.067 492.28 6.00
naive (CR) 0.495 486.05 3.96 0.074 492.63 5.97
naive (PCR) 0.495 486.05 3.96 0.075 492.59 5.97

Table 2. Simulation results for quadratic loss. pn = 1000

Penalty MME #CZ #CNZ MME #CZ #CNZ

ρ = 0
L1 0.566 960.07 6.00
weighted L1 (CR) 0.408 978.88 5.91
weighted L1 (PCR) 0.390 979.51 5.91
naive (CR) 1.564 980.98 4.91
naive (PCR) 1.564 981.04 4.91

ρ = 0.1 (type I) ρ = 0.1 (type II)
L1 0.502 961.29 6.00 0.489 964.59 6.00
weighted L1 (CR) 0.364 973.28 6.00 0.294 981.95 6.00
weighted L1 (PCR) 0.338 973.76 6.00 0.261 982.57 6.00
naive (CR) 1.498 979.13 4.92 0.704 982.19 5.42
naive (PCR) 1.498 979.12 4.92 0.704 982.15 5.43

ρ = 0.5 (type I) ρ = 0.5 (type II)
L1 0.529 962.41 6.00 0.277 976.35 6.00
weighted L1 (CR) 0.467 967.64 6.00 0.115 991.15 6.00
weighted L1 (PCR) 0.440 967.80 6.00 0.078 991.94 6.00
naive (CR) 1.638 980.76 4.11 0.068 992.93 5.97
naive (PCR) 1.638 980.76 4.11 0.068 992.94 5.97

ρ = 0.9 (type I) ρ = 0.9 (type II)
L1 0.429 964.92 5.15 0.165 983.57 6.00
weighted L1 (CR) 0.408 965.83 5.14 0.083 992.43 6.00
weighted L1 (PCR) 0.421 966.79 5.13 0.075 992.58 6.00
naive (CR) 0.558 984.71 3.66 0.063 993.75 6.00
naive (PCR) 0.558 984.71 3.66 0.063 993.66 6.00
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Table 3. Simulation results for deviance loss. pn = 500

Penalty MME MMR #CZ #CNZ MME MMR #CZ #CNZ

ρ = 0
L1 5.51 19.3 472.46 4.69
weighted L1 (CR) 4.60 17.9 486.23 4.08
weighted L1 (PCR) 4.07 17.0 490.61 3.73
naive (CR) 3.90 16.5 494.46 3.18
naive (PCR) 3.84 16.5 494.50 3.16

ρ = 0.1 (type I) ρ = 0.1 (type II)
L1 5.05 17.3 472.60 4.56 5.03 18.1 471.41 5.02
weighted L1 (CR) 4.27 16.1 485.10 4.31 4.24 16.9 486.26 4.50
weighted L1 (PCR) 4.00 15.8 487.31 4.16 3.85 16.0 490.42 4.19
naive (CR) 4.18 16.0 493.87 3.23 3.94 16.1 494.52 3.48
naive (PCR) 4.09 15.9 493.77 3.29 3.93 16.1 494.45 3.52

ρ = 0.5 (type I) ρ = 0.5 (type II)
L1 3.84 13.5 476.06 3.74 3.72 13.8 472.61 5.38
weighted L1 (CR) 3.77 13.3 482.21 3.58 2.04 11.5 489.08 5.38
weighted L1 (PCR) 3.69 13.1 483.58 3.54 1.69 11.1 492.18 5.37
naive (CR) 6.75 16.6 492.25 2.37 1.89 11.3 494.60 4.78
naive (PCR) 6.13 16.2 491.94 2.52 1.87 11.3 494.56 4.80

ρ = 0.9 (type I) ρ = 0.9 (type II)
L1 1.72 9.1 481.98 1.81 2.35 10.1 478.81 4.77
weighted L1 (CR) 1.88 9.4 485.37 1.62 0.88 8.2 492.39 4.92
weighted L1 (PCR) 1.82 9.2 483.68 1.71 0.80 8.0 493.53 5.15
naive (CR) 3.44 10.9 492.11 1.23 1.07 8.3 494.73 4.57
naive (PCR) 3.06 10.5 491.94 1.26 0.97 8.3 494.72 4.59

weighted L1 penalized estimator achieves smaller model er-
rors, and it can correctly identify more zero parameters. In
other words, using the weighted L1 penalty fits a more accu-
rate model, and it tends to exclude more irrelevant variables.
Both methods show strong abilities to identify nonzero pa-
rameters in our simulation study, i.e., both can include al-
most all relevant variables in the model.

The naive method which just selects variables with top
smallest weights, however, is much worse than penalization
methods in model fitting in most settings. For variable se-
lection, the naive method tends to select a smaller model
than penalization methods, keeping fewer relevant variables
but excluding more irrelevant ones.

Second, when applied in the weighted L1 penalization
method, PCR achieves better results in model fitting than
CR, resulting in smaller MMEs. Furthermore, PCR identi-
fies slightly more zero parameters correctly than CR, which
means that PCR can exclude more irrelevant variables from
the model.

5.1.2 Deviance/exponential loss

The data are generated from

Xn = (X1, . . . , Xpn)
T ∼ N(0,Σ),

Yn|Xn = xn ∼ Bernoulli(m(xn)).

The F -link function employed is logit(m(xn)) =
βn,0;0 + xTnβn;0, where βn,0;0 = 2.5 and βn;0 =

(2.5, 2.5, 1, 1, 1, 0, . . . , 0)T . The other settings are the
same as in the previous subsection.

The simulation procedure is similar to that in Sec-
tion 5.1.1. 100 sets of training data are generated. The penal-
ized estimators are calculated from each normalized training
set and then transformed back to the original location and
scale. In calculation, both deviance loss and exponential loss
are used. The tuning parameters λn, κn, and the propor-
tion of variables selected by the naive method are all chosen
by minimizing the empirical loss evaluated on a tuning set.
Besides Result I and Result II (as in Section 5.1.1), we
additionally report the following criterion.

Result III. Classification criterion MMR. We calculate the
misclassification rate (MR) by evaluating the classifier on an
independently generated test set with size 10, 000. Reported
are the medians of the MRs (MMR) from the 100 training
samples.

Tables 3–6 present the simulation results for the two
loss functions and two choices of pn respectively. MME and
MMR are recorded by their percentages in these tables (with
the sign % omitted for conciseness). These results show the
same patterns as the results in Tables 1–2 for comparing the
performance in model fitting and variable selection. So we
focus on comparing the performance in classification.

First, a comparison of the results indicates that the
weighted L1 penalty outperforms the L1 penalty in clas-
sification, as a smaller misclassification rate is achieved by

292 Y. Jiang and C. Zhang



Table 4. Simulation results for exponential loss. pn = 500

Penalty MME MMR #CZ #CNZ MME MMR #CZ #CNZ

ρ = 0
L1 5.06 18.8 478.68 4.39
weighted L1 (CR) 4.41 17.6 489.06 3.93
weighted L1 (PCR) 3.84 16.8 491.91 3.74
naive (CR) 3.83 16.6 494.58 3.13
naive (PCR) 3.85 16.6 494.58 3.09

ρ = 0.1 (type I) ρ = 0.1 (type II)
L1 4.78 17.3 479.49 4.37 4.99 18.1 479.08 4.59
weighted L1 (CR) 4.29 16.4 488.36 3.94 4.36 17.1 489.50 4.14
weighted L1 (PCR) 4.12 16.1 489.56 3.86 3.98 16.4 491.89 3.90
naive (CR) 4.24 16.1 494.48 2.99 3.99 16.3 494.64 3.21
naive (PCR) 4.21 16.0 494.54 2.97 3.94 16.2 494.63 3.25

ρ = 0.5 (type I) ρ = 0.5 (type II)
L1 3.90 13.5 479.36 3.65 3.13 13.1 480.61 5.33
weighted L1 (CR) 4.08 13.5 484.91 3.36 2.04 11.5 491.83 5.13
weighted L1 (PCR) 4.08 13.4 485.69 3.29 1.78 11.3 493.51 5.13
naive (CR) 7.48 17.8 493.40 2.16 2.52 11.8 494.81 4.27
naive (PCR) 6.67 16.8 493.24 2.32 2.44 11.6 494.77 4.26

ρ = 0.9 (type I) ρ = 0.9 (type II)
L1 1.89 9.1 482.86 1.71 1.90 9.6 482.89 4.82
weighted L1 (CR) 2.13 9.6 487.58 1.59 1.06 8.3 493.41 4.77
weighted L1 (PCR) 1.97 9.3 485.91 1.68 0.93 8.1 493.62 5.03
naive (CR) 4.31 11.7 493.33 1.21 1.54 8.9 494.68 4.13
naive (PCR) 3.53 11.1 492.83 1.22 1.56 8.9 494.64 4.03

Table 5. Simulation results for deviance loss. pn = 1, 000

Penalty MME MMR #CZ #CNZ MME MMR #CZ #CNZ

ρ = 0
L1 6.11 20.2 970.12 4.33
weighted L1 (CR) 5.08 18.3 985.80 3.89
weighted L1 (PCR) 4.31 17.3 990.99 3.48
naive (CR) 3.82 16.6 994.69 2.99
naive (PCR) 3.82 16.6 994.70 2.95

ρ = 0.1 (type I) ρ = 0.1 (type II)
L1 5.77 18.7 972.05 4.21 5.88 19.1 971.07 4.57
weighted L1 (CR) 4.83 17.4 984.04 4.04 4.66 17.5 986.39 4.22
weighted L1 (PCR) 4.81 17.2 987.31 3.81 4.13 16.7 990.83 3.91
naive (CR) 4.49 16.5 993.70 3.05 4.04 16.4 994.54 3.21
naive (PCR) 4.49 16.5 993.83 3.01 4.01 16.4 994.55 3.22

ρ = 0.5 (type I) ρ = 0.5 (type II)
L1 4.27 14.2 972.65 3.28 4.35 14.7 970.59 5.17
weighted L1 (CR) 4.08 14.1 980.02 3.15 2.56 12.4 988.94 5.18
weighted L1 (PCR) 4.09 13.7 981.28 3.18 1.90 11.4 992.62 5.18
naive (CR) 7.06 17.2 992.10 2.10 2.53 12.1 994.68 4.44
naive (PCR) 6.54 17.0 992.05 2.17 2.53 12.1 994.70 4.43

ρ = 0.9 (type I) ρ = 0.9 (type II)
L1 1.70 9.1 980.39 1.64 2.72 10.7 975.49 4.61
weighted L1 (CR) 1.92 9.4 984.93 1.49 1.07 8.4 991.93 4.78
weighted L1 (PCR) 1.79 9.2 983.30 1.55 0.85 8.2 993.30 4.99
naive (CR) 3.74 10.8 991.37 1.20 1.37 8.7 994.86 4.37
naive (PCR) 3.16 10.5 991.80 1.26 1.39 8.7 994.87 4.25
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Table 6. Simulation results for exponential loss. pn = 1, 000

Penalty MME MMR #CZ #CNZ MME MMR #CZ #CNZ

ρ = 0
L1 5.89 20.2 978.29 4.07
weighted L1 (CR) 4.89 18.3 988.38 3.68
weighted L1 (PCR) 4.31 17.4 991.87 3.53
naive (CR) 4.02 16.7 994.52 3.06
naive (PCR) 3.96 16.7 994.62 2.98

ρ = 0.1 (type I) ρ = 0.1 (type II)
L1 5.05 17.9 975.49 4.24 5.35 18.9 977.54 4.41
weighted L1 (CR) 4.53 16.9 987.15 3.81 4.33 17.1 988.64 3.94
weighted L1 (PCR) 4.39 16.5 989.02 3.77 4.03 16.5 991.67 3.79
naive (CR) 4.09 16.0 994.10 3.03 4.04 16.4 994.56 3.27
naive (PCR) 4.04 16.0 994.15 3.03 4.05 16.5 994.61 3.16

ρ = 0.5 (type I) ρ = 0.5 (type II)
L1 4.11 14.0 977.45 3.43 3.73 14.1 975.15 5.25
weighted L1 (CR) 4.14 13.8 983.79 3.21 2.40 12.1 990.59 5.04
weighted L1 (PCR) 4.01 13.8 984.52 3.20 1.95 11.4 992.87 5.01
naive (CR) 7.55 17.9 992.72 2.04 2.75 12.6 994.68 4.19
naive (PCR) 6.73 16.8 992.57 2.19 2.75 12.5 994.66 4.20

ρ = 0.9 (type I) ρ = 0.9 (type II)
L1 1.82 9.2 982.40 1.62 2.21 10.0 980.39 4.82
weighted L1 (CR) 2.14 9.7 987.37 1.42 1.23 8.6 993.17 4.57
weighted L1 (PCR) 1.96 9.5 985.23 1.53 1.07 8.3 993.85 4.88
naive (CR) 4.20 11.4 992.16 1.20 1.84 9.1 994.77 4.15
naive (PCR) 3.73 11.0 992.56 1.20 1.76 9.1 994.77 3.95

using the weighted L1 penalty. In addition, the naive method
performs reasonably well when the correlations among input
variables are weak or moderate. However, when the corre-
lations increase, its performance is derogated obviously and
becomes worse than either penalization method.

Second, when applied in the weighted L1 penalization
method, PCR achieves further advantages in classification
compared with CR, since PCR possesses slightly smaller
misclassification rates.

Third, there is no significant evidence for the differ-
ent impacts caused by different loss functions on the high-
dimensional regression and classification in this simulation.
The penalized estimator/classifier performs similarly under
deviance loss and exponential loss.

5.2 Real data

This subsection illustrates high-dimensional regression
and classification with convex loss functions using two real
data sets—the MNIST data and the lymphoma data.

5.2.1 MNIST data

The MNIST database, one of the most famous databases
in digit recognition, was created by LeCun et al. (1998). The
handwritten digits were size normalized and centered in a
28 × 28 = 784 pixel image. The resultant image contains
grey levels in each pixel. Thus each image can be regarded
as a 784 dimensional vector of grey levels, and each pixel’s
information is used as an input variable. The digit categories

of the images (digit 0 to digit 9) are regarded as the output
variable.

We only use the samples with digit 6 or digit 9 in this
study, since we are focusing on binary classification problem
(the same two digits were chosen in Wang et al., 2006).
The MNIST dataset contains 6, 876 (5, 918 training and 958
test) samples of digit 6 and 6, 958 (5, 949 training and 1, 009
test) samples of digit 9. We randomly choose 2n1 “balanced”
samples (“balanced” means that n1 samples of digit 6 and
n1 samples of digit 9) from the training set, which form
our training set; again we randomly choose 2n2 “balanced”
test samples to form our test set. Since we consider high-
dimensional models in this study, we choose n1 to be 25,
50 and 75 in our experiment. Also, n2 is set to be 800. The
data are normalized before further investigation, so that the
mean and standard deviation for each input variable across
the samples are 0 and 1 respectively.

The penalized estimators are all obtained from the train-
ing set only, and their corresponding classifiers are then eval-
uated on the test set. The tuning parameters λn and κn are
selected by minimizing the misclassification rate with 3-fold
cross validation of the training set. The following results of
the estimators/classifiers are evaluated.

Result I’. Cross validation error. When cross validation is
used to select λn and κn, for each fold of samples, a classifier
is built using the other two folds, and a misclassification rate
can be evaluated on the validation fold. Cross validation

294 Y. Jiang and C. Zhang



error is the average of these three misclassification rates,
using the optimal tuning parameters.

Result II’. Test error. A classifier is obtained from regres-
sion estimates using the training sample. Test error is the
misclassification rate by evaluating this classifier on the test
set.

Result III’. Number of selected variables. It is the number
of the relevant pixels whose coefficients are estimated as
nonzero.

The final results are tabulated in Table 7, with “CVE”
for cross validation error, “TE” for test error, and “# pix-
els” for the number of selected pixels. The results of the
penalized estimators/classifiers are similar under deviance
loss and exponential loss. Using weighted L1 penalty with
PCR performs the best in terms of CVE and TE, and most
time it selects the fewest pixels. However, with the increas-
ing size of the training set, the differences between the three
methods become smaller.

5.2.2 Lymphoma data

Alizadeh et al. (2000) identified two molecularly distinct
forms of diffuse large B-cell lymphoma (DLBCL) by study-
ing the lymphoma data. These two forms of DLBCL, called
“germinal centre B-like DLBCL” and “activated B-like DL-
BCL”, had gene expression patterns indicative of different
stages of B-cell differentiation.

The publicly available dataset contains 4, 026 genes across
47 samples, of which 24 are germinal centre B-like DLBCL
and 23 are activated B-like DLBCL. However, there are a
few missing values in the data, so we use the k-NN (k-nearest
neighbors) method to impute the missing expression data.
After imputing, the data are normalized so that the mean
and standard deviation for each gene across the 47 samples
are 0 and 1 respectively.

We randomly divide the data into a training set with 31
samples (16 cases of germinal centre B-like DLBCL and 15
cases of activated B-like DLBCL) and a test set with 16
samples (8 cases of germinal centre B-like DLBCL and 8
cases of activated B-like DLBCL). The penalized estimators
are all obtained from the training set only, and their corre-
sponding classifiers are then evaluated on the test set. The
tuning parameters λn and κn are selected by 3-fold cross
validation with the training set. The same types of results
as Result I’, Result II’ and Result III’ in the analysis
of MNIST data are recorded.

100 random training/test splits of the whole data are per-
formed and the above procedure is repeated to record 100
CVEs, 100 TEs and 100 numbers of selected genes. Table
8 tabulates the median of CVEs, the median of TEs and
the average number of selected genes. The penalized estima-
tors/classifiers perform consistently for two loss functions.
Weighted L1 penalty with PCR performs the best in terms
of CVE and TE, and approximately only half of the number
of genes are selected by weighted L1 penalty compared with
L1 penalty.

APPENDIX A. CONDITIONS

We present the conditions for our main theoretical re-
sults. Some of the conditions below are purely technical and
serve only to provide theoretical understanding of the newly
proposed methodology. We have no intent to make the con-
ditions the weakest possible. Throughout the Appendix, ‖·‖
is used only for the L2 norm, and ‖ · ‖1 and ‖ · ‖∞ denote
the L1 norm and the L∞ norm respectively.

Condition 1. Condition 1 consists of two parts: 1(a) and
1(b).

1(a). q and F are smooth functions, satisfying that
q′′(·) < 0 and F ′(·) 	= 0.

1(b). q2(y; θ) > 0 for all θ ∈ R and all y in the range of
Yn.

Condition 2. supn≥1 ‖β
(I)
n;0‖1 < ∞, and

√
n/snβ

(I)
min → ∞

where β
(I)
min = min1≤j≤sn |βn,j;0|.

Condition 3. supn≥1 ‖Xn‖∞ = BX < ∞; for a constant

H > 0, supn≥1 E{|Yn −m(Xn)|l} ≤ l!H l for l = 2, 3, 4, . . . .

Condition 4. Define

Hn(β̃
(I)

n ) = E[q2(Yn; X̃
(I)T

n β̃
(I)

n )X̃
(I)

n X̃
(I)T

n ].

The eigenvalues of Hn(β̃
(I)

n ) are uniformly bounded away

from 0 for any β̃
(I)

n satisfying that ‖β̃
(I)

n − β̃
(I)

n;0‖ ≤
log(n)

√
sn/n. Meanwhile, the eigenvalues of Ωn;0 are uni-

formly bounded away from 0.

Condition 5. For two nonnegative sequences sn1 and
sn2, we use sn1 � sn2 to denote that there ex-
ists a constant c > 0 such that sn1 ≥ csn2 for
all n ≥ 1. Then, min1≤j≤sn |E(XjYn)| � An and
maxsn+1≤j≤pn |E(XjYn)| = o(Bn) for two positive se-
quences An and Bn.

Condition 6. With a constant ε > 0,

infn,sn+1≤j≤pn E{q2(Yn; γ
(II)
n εjXj)X

2
j } ≥ η > 0 for any

constants εj ∈ (0, ε) with sn + 1 ≤ j ≤ pn.

APPENDIX B. SOME TECHNICAL
LEMMAS

This section presents some technical lemmas that are
used in proving the main results.

B.1 Lemma 1

Lemma 1. Under Conditions 1(a), 2 and 3, there exist
some positive constants C1 and C2 both independent of j
such that, with t > 0,

P

(∣∣∣∣∣
n∑

i=1

q1(Yni; X̃
T

niβ̃n;0)Xij

∣∣∣∣∣ > t

)
≤ 2 exp

(
−t2

C1n+ C2t

)
,

for 1 ≤ j ≤ pn.
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Table 7. MNIST data results

n1 Penalty deviance loss exponential loss
CVE TE # pixels CVE TE # pixels

25 L1 4.17% 9.63% 11 4.17% 9.63% 11
weighted L1 (CR) 4.17% 7.75% 5 6.25% 7.88% 7
weighted L1 (PCR) 0.00% 7.88% 3 0.00% 7.94% 4

50 L1 3.03% 7.69% 25 3.03% 7.75% 22
weighted L1 (CR) 4.04% 6.63% 19 4.04% 8.25% 14
weighted L1 (PCR) 2.02% 6.25% 14 2.02% 6.25% 15

75 L1 2.00% 2.56% 37 2.00% 2.62% 34
weighted L1 (CR) 1.33% 2.88% 27 2.67% 3.06% 21
weighted L1 (PCR) 2.00% 2.50% 29 2.67% 2.50% 27

Table 8. Lymphoma data results

Penalty deviance loss exponential loss
CVE TE # genes CVE TE # genes

L1 16.7% 12.5% 16.04 13.3% 12.5% 13.73
weighted L1 (CR) 3.33% 6.25% 7.75 3.33% 12.5% 7.17
weighted L1 (PCR) 3.33% 6.25% 8.36 0.00% 12.5% 7.72

Proof. This lemma is derived directly from Bernstein’s in-
equality (Lemma 2.2.11 in van der Vaart and Wellner,
1996). Under Conditions 1(a), 2 and 3, supn≥1 |m(Xn)| <
∞, then supn≥1 |(q′′/F ′)(m(Xn))| = A < ∞. Let Zij =

q1(Yni; X̃
T

niβ̃n;0)Xij . Then Z1j , . . . , Znj are i.i.d. with mean
0, and the moment condition in Bernstein’s inequality is
satisfied as

E(|Zij |l) ≤ l!(AHBX)l ≤ l!M l−2vi/2, l = 2, 3, 4, . . . ,

with M = AHBX and vi ≡ 2(AHBX)2. So, Berstein’s in-
equality implies that

P

(∣∣∣∣∣
n∑

i=1

Zij

∣∣∣∣∣ > t

)
≤ 2 exp

{
−t2

2(nv1 +Mt)

}
.

Lemma 1 is proved by setting C1 = 2v1 and C2 = 2M .

B.2 Lemma 2

We define an “oracle subproblem” of (3) as
(B.1)

�On (β̃
(I)

n ) =
1

n

n∑
i=1

Q(Yni, F
−1(X̃

(I)T

ni β̃
(I)

n )) + λn

sn∑
j=1

wn,j |βn,j |.

The criterion function in (B.1) is called an oracle subprob-
lem of (3) since it only includes those relevant input vari-
ables.

Lemma 2. Under Conditions 1(a) and 2–4, assume further

that s2n/n → 0 and w
(I)
max = OP {1/(λn

√
n)}. Then, with

probability tending to one, there exists a local minimizer
̂̃
b
(I)

n

of �On in (B.1) satisfies that ‖̂̃b(I)

n − β̃
(I)

n;0‖ = OP (
√

sn/n).

Proof. Let αn =
√

sn/n and un = (un0, un1, . . . , unsn)
T ∈

R
sn+1. It suffices to show that for any given ε > 0, there is

a constant Cε large enough such that, for large n,

P
(

inf
‖un‖=Cε

�On (β̃
(I)

n;0 + αnun) > �On (β̃
(I)

n;0)
)
≥ 1− ε.

By Taylor’s expansion, �On (β̃
(I)

n +αnun)−�On (β̃
(I)

n;0) = I1+
I2 where

I1 = I1,1 + I1,2

=
αn

n

n∑
i=1

q1(Yni; X̃
(I)T

ni β̃
(I)

n;0)(X̃
(I)T

ni un)

+
α2
n

2n

n∑
i=1

q2(Yni; X̃
(I)T

ni β̃
(I)∗
n )(X̃

(I)T

ni un)
2,

I2 = λn

sn∑
j=1

wnj{|βn,j;0 + αnunj | − |βn,j;0|},

with β̃
(I)∗
n located between β̃

(I)

n;0 and β̃
(I)

n;0 + αnun.
It is seen that

|I1,1| ≤ αn

∥∥∥ 1
n

n∑
i=1

q1(Yni; X̃
(I)T

ni β̃
(I)

n;0)X̃
(I)

ni

∥∥∥‖un‖

= OP (sn/n)‖un‖,

I1,2 =
sn
2n

uT
nE

[
q2(Yn; X̃

(I)T

n β̃
(I)∗
n )X̃

(I)

n X̃
(I)T

n

]
un

+OP (s
2
n/n

3/2)‖un‖2,

I2 ≥ − λnαn

sn∑
j=1

wnj |unj | ≥ −λn(sn/n
1/2)w(I)

max‖un‖.
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As ‖β̃
(I)∗
n − β̃

(I)

n,0‖ ≤ Cεαn, for n large enough,

‖β̃
(I)∗
n − β̃

(I)

n;0‖ ≤ log(n)
√

sn/n. The eigenvalues of

E[q2(Yn; X̃
(I)T

n β̃
(I)∗
n )X̃

(I)

n X̃
(I)T

n ] are therefore bounded away
from 0 by Condition 4. Together with the conditions

s2n/n → 0 and w
(I)
max = OP {1/(λn

√
n)}, we can

choose Cε large enough and set ‖un‖ = Cε, such that

{sn/(2n)}uT
nE[q2(Yn; X̃

(I)T

n β̃
(I)∗
n )X̃

(I)

n X̃
(I)T

n ]un dominates all
other terms in I1 and I2 with probability 1 − ε when n is
large enough.

B.3 Lemma 3

Lemma 3. In addition to the conditions in Lemma 2, as-

sume Condition 1(b), log(pn − sn)/min{n, nλ2
n(w

(II)
min)

2} =

oP (1), and (w
(II)
min)

−1 = oP {λn
√
n/(ρn

√
sn)}. Then, with

probability tending to one, there exists a global minimizer̂̃
βn of �n in (3) satisfying that

̂̃
β
(I)

n is the minimizer
̂̃
b
(I)

n of

the oracle subproblem (B.1) in Lemma 2 and that β̂
(II)

n = 0.

Proof. Under Condition 1(b),
̂̃
b
(I)

n = (̂bn,0, . . . , b̂n,sn)
T is

also a global minimizer due to the convexity of �On , satis-
fying the Karush-Kuhn-Tucker necessary conditions (Theo-
rem A.1 in Wright, 1997):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1
∑n

i=1 q1(Yni; X̃
(I)T

ni
̂̃
b
(I)

n ) = 0,

n−1
∑n

i=1 q1(Yni; X̃
(I)T

ni
̂̃
b
(I)

n )Xij = −λnwn,jsign(̂bn,j),

for j with b̂n,j 	= 0,

|n−1
∑n

i=1 q1(Yni; X̃
T

ni
̂̃
b
(I)

n )Xij | ≤ λnwn,j ,

for j with b̂n,j = 0.

Comparing these conditions with the Karush-Kuhn-
Tucker sufficient conditions (Theorem A.2 in Wright, 1997)
for the convex criterion function �n in (3), it is seen that

(
̂̃
b
(I)T

n ,0T )T will be a global minimizer of �n if

b̂n,j 	= 0, for 1 ≤ j ≤ sn,(B.2) ∣∣∣∣ 1n
n∑

i=1

q1(Yni; X̃
(I)T

ni
̂̃
b
(I)

n )Xij

∣∣∣∣ ≤ λnwn,j ,(B.3)

for sn + 1 ≤ j ≤ pn.

We separately verify (B.2) and (B.3) as follows.

First, Lemma 2 concludes that ‖̂̃b(I)

n − β̃
(I)

n;0‖ =

OP (
√

sn/n). Therefore,

P
(
sign(̂bn,j) 	= sign(βn,j;0) for some j ∈ {1, . . . , sn}

)
≤ P

(
|̂bn,j − βn,j;0| ≥ |βn,j;0| for some j ∈ {1, . . . , sn}

)
≤ P

(
max

1≤j≤sn
|̂bn,j − βn,j;0| ≥ β

(I)
min

)
→ 0,

by the assumption that
√
n/snβ

(I)
min → ∞. Thus (B.2) holds

with probability tending to one.
Second, by Taylor’s expansion, (B.3) holds if we can prove

P

(
max

sn+1≤j≤pn

∣∣∣∣ 1n
n∑

i=1

q1(Yni; X̃
(I)T

ni β̃
(I)

n;0)Xij

∣∣∣∣> λn

2
w

(II)
min

)
→ 0,

(B.4)

P

(
max

sn+1≤j≤pn

∣∣∣∣ 1n
n∑

i=1

q2(Yni; X̃
(I)T

ni β̃
(I)∗
n ){X̃(I)Tni (

̂̃
b
(I)

n − β̃
(I)

n;0)}

(B.5)

×Xij

∣∣∣∣ > λn

2
w

(II)
min

)
→ 0,

with β̃
(I)∗
n located between β̃

(I)

n;0 and
̂̃
b
(I)

n .
We first prove (B.4). As in the proof of Lemma 1,

denote Zij = q1(Yni; X̃
(I)T

ni β̃
(I)

n;0)Xij . Since log(pn −
sn)/{nλ2

n(w
(II)
min)

2} = oP (1), it follows that for any ε > 0,

P{log(pn − sn) > εnλ2
n(w

(II)
min)

2} = o(1). Thus,

P

(
max

sn+1≤j≤pn

∣∣∣ 1
n

n∑
i=1

Zij

∣∣∣ > λn

2
w

(II)
min

)(B.6)

≤ P

(
max

sn+1≤j≤pn

∣∣∣ n∑
i=1

Zij

∣∣∣ > √
n log(pn − sn)

4ε

)
+ o(1).

By Lemma 1 and Bonferroni inequality,

P

(
max

sn+1≤j≤pn

∣∣∣ n∑
i=1

Zij

∣∣∣ > √
n log(pn − sn)

4ε

)(B.7)

≤ 2(pn − sn) exp

{
−n log(pn − sn)/(4ε)

C1n+ C2

√
n log(pn − sn)/(4ε)

}
= 2 exp

{
−n log(pn − sn)

C1n+ C2

√
n log(pn − sn)/(4ε)

×
( 1

4ε
− C1 − C2

√
log(pn − sn)

4nε

)}
.

Since log(pn − sn)/n = o(1), we can choose ε > 0
small enough, such that for large enough n, 1/(4ε) − C1 −
C2

√
log(pn − sn)/(4nε) > 0. Then the upper bound in (B.7)

is o(1). This, together with (B.6), implies (B.4).
We then prove (B.5).

max
sn+1≤j≤pn

∣∣∣∣∣ 1n
n∑

i=1

q2(Yni; X̃
(I)T

ni β̃
(I)∗
n ){X̃(I)Tni (

̂̃
b
(I)

n − β̃
(I)

n;0)}Xij

∣∣∣∣∣
≤ sup

‖u‖=1

max
sn+1≤j≤pn

∣∣∣∣∣ 1n
n∑

i=1

q2(Yni; X̃
(I)T

ni β̃
(I)∗
n )(X̃

(I)T

ni u)Xij

∣∣∣∣∣
× ‖̂̃b(I)

n − β̃
(I)

n;0‖
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≤ sup
‖u‖=1

∥∥∥∥Pn(β̃
(I)∗
n )u

∥∥∥∥
∞

OP (
√

sn/n) = OP (ρn
√

sn/n),

from the definition of Pn(β̃
(I)

n ) and ρn, and the fact that

‖β̃
(I)∗
n − β̃

(I)

n;0‖ = OP (
√

sn/n). (B.5) is therefore proved by

(w
(II)
min)

−1 = oP {λn
√
n/(ρn

√
sn)}.

APPENDIX C. PROOF OF THEOREM 1

Part (1) of Theorem 1 is proved by Lemma 3. Part (2)
of Theorem 1 is a direct conclusion by applying part (ii)
of Theorem 6 in Zhang et al. (2010) to the oracle subprob-
lem (B.1).

In addition, let us prove that ρn = OP (
√
sn) as men-

tioned in the discussion after Theorem 1:

ρn = sup
{∥∥∥∥Pn(β̃

(I)

n )u

∥∥∥∥
∞

:

‖u‖ = 1, ‖β̃
(I)

n − β̃
(I)

n;0‖ ≤ log(n)
√

sn/n
}

≤ sup
{ 1

n

n∑
i=1

∣∣∣q2(Yni; X̃
(I)T

ni β̃
(I)

n )
∣∣∣ sup
‖u‖=1

∣∣∣X̃(I)Tni u
∣∣∣BX :

‖β̃
(I)

n − β̃
(I)

n;0‖ ≤ log(n)
√

sn/n
}

= OP (
√
sn),

as n−1
∑n

i=1 |q2(Yni; X̃
(I)T

ni β̃
(I)

n )| = OP (1) uniformly for any

β̃
(I)

n satisfying ‖β̃
(I)

n − β̃
(I)

n;0‖ ≤ log(n)
√

sn/n.
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Supplemental Materials

Yuan Jiang and Chunming Zhang

We present the proofs for Theorems 3–4. Throughout the supplemental materials,
‖ ∙ ‖ is used only for the L2 norm, and ‖ ∙ ‖1 and ‖ ∙ ‖∞ denote the L1 norm and the L∞
norm respectively.

Proof of Theorem 3

Let Vij(α) = q1(Yni;Xijα)Xij . β̂
CR
n,j are the solutions of the following equations

hn,j(α) =
1

n

n∑

i=1

Vij(α) = 0, j = 1, . . . , pn.

With Condition 1(b), hn,j(∙) is an increasing function.

Part 1: j ∈ {1, . . . , sn}.

To prove ŵ
(I)
max = OP (1/γ

(I)
n ), it suffices to prove that there exists a small enough δ > 0

such that

P

(

min
1≤j≤sn

|β̂CRn,j | ≤ γ
(I)
n δ

)

= o(1). (1)

Since hn,j(∙) is an increasing function and hn,j(β̂CRn,j ) = 0,

P (|β̂CRn,j | ≤ γ
(I)
n δ) ≤ P{hn,j(−γ

(I)
n δ) ≤ 0 ≤ hn,j(γ

(I)
n δ)}. (2)

By Taylor’s expansion,

Vij(±γ
(I)
n δ) = q1(Yni; 0)Xij + (±γ

(I)
n δ)q2(Yni;±γ

(I)
n δ

∗Xij)X
2
ij,

with δ∗ ∈ (0, δ). Let μ0 = F−1(0) and C0 = q′′(μ0)/F ′(μ0) 6= 0, thus

E{V1j(±γ
(I)
n δ)} = C0E(YnXj) + (±γ

(I)
n δ)E{q2(Yn;±γ

(I)
n δ

∗Xj)X
2
j }.

Because |E(YnXj)| ≥ cγ
(I)
n , and max1≤j≤sn |E{q2(Yn;±γ

(I)
n δ∗Xj)X

2
j }| is bounded, we

can choose δ small enough, such that for 1 ≤ j ≤ sn,

|E{V1j(±γ
(I)
n δ)}| ≥

1

2
|C0||E(YnXj)| ≥

c

2
|C0|γ

(I)
n

and sign[E{V1j(γ
(I)
n δ)}] = sign[E{V1j(−γ

(I)
n δ)}].
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Assuming E{V1j(γ
(I)
n δ)} < 0 and E{V1j(−γ

(I)
n δ)} < 0 without loss of generality,

P{hn,j(−γ
(I)
n δ) ≤ 0 ≤ hn,j(γ

(I)
n δ)}

≤ P

(
n∑

i=1

[Vij(γ
(I)
n δ)− E{Vij(γ

(I)
n δ)}] ≥ −nE{V1j(γ

(I)
n δ)}

)

≤ P

(
n∑

i=1

[Vij(γ
(I)
n δ)− E{Vij(γ

(I)
n δ)}] ≥

c

2
|C0|nγ

(I)
n

)

≤ 2 exp

(
−c2C20n

2γ
(I)2
n /4

C1n+ C2c|C0|nγ
(I)
n /2

)

, (3)

where the last inequality can be obtained similar to proving Lemma 1 (with possibly
different C1 and C2). By (2), (3) and Bonferroni inequality, for a small enough δ > 0,

P
(
min
1≤j≤sn

|β̂CRn,j | ≤ γ
(I)
n δ
)
≤ 2sn exp

(
−c2C20n

2γ
(I)2
n /4

C1n+ C2c|C0|nγ
(I)
n /2

)

= o(1). (4)

The equality in (4) follows from γ
(I)
n = O(1),

√
nγ
(I)
n →∞ and log(sn) = o(nγ

(I)2
n ).

Part 2: j ∈ {sn + 1, . . . , pn}.

To prove (ŵ
(II)
min)

−1 = oP (γ
(II)
n ), it suffices to prove that for any ε > 0,

P

(

max
sn+1≤j≤pn

|β̂CRn,j | ≥ γ
(II)
n ε

)

= o(1). (5)

As hn,j(β̂
CR
n,j ) = 0, it follows that

P
(
|β̂CRn,j | ≥ γ

(II)
n ε
)
≤ P{hn,j(γ

(II)
n ε) ≤ 0}+ P{hn,j(−γ

(II)
n ε) ≥ 0}. (6)

Similar to Part 1,

E{V1j(γ
(II)
n ε)} = C0E(YnXj) + εγ

(II)
n E{q2(Yn; γ

(II)
n ε

∗Xj)X
2
j },

with ε∗ ∈ (0, ε). Since E(YnXj) = o(γ
(II)
n ) and E{q2(Yn; γ

(II)
n ε∗Xj)X

2
j } ≥ η,

E{V1j(γ
(II)
n ε)} ≥ εηγ

(II)
n /2, as n→∞.

Again by an application of Bernstein’s inequality as in (3), for large n,

P{hn,j(γ
(II)
n ε) ≤ 0} = P

(
1

n

n∑

i=1

[Vij(γ
(II)
n ε)− E{Vij(γ

(II)
n ε)}] ≤ −E{V1j(γ

(II)
n ε)}

)

≤ P

( n∑

i=1

[Vij(γ
(II)
n ε)− E{Vij(γ

(II)
n ε)}] ≤ −εηnγ

(II)
n /2

)

≤ 2 exp
( −ε2η2n2γ(II)2n /4

C1n+ C2εηnγ
(II)
n /2

)
. (7)
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Similarly,

P{hn,j(−γ
(II)
n ε) ≥ 0} ≤ 2 exp

( −ε2η2n2γ(II)2n /4

C1n+ C2εηnγ
(II)
n /2

)
. (8)

Thus by (6), (7), (8) and Bonferroni inequality,

P

(

max
sn+1≤j≤pn

|β̂CRn,j | ≥ γ
(II)
n ε

)

≤ 4(pn − sn) exp

(
−ε2η2n2γ(II)2n /4

C1n+ C2εηnγ
(II)
n /2

)

= o(1). (9)

The equality in (9) follows from the conditions
√
nγ
(II)
n → ∞, log(pn − sn) = o(nγ

(II)
n )

and log(pn − sn) = o(nγ
(II)2
n ).

Proof of Theorem 4

Minimizing (4.3) is equivalent to minimizing the following criterion functions,

`PCRn,j (α) =
1

n

n∑

i=1

Q(Yni, F
−1(Xijα)) + κn|α|, j = 1, . . . , pn.

Part 1: j ∈ {1, . . . , sn}.

Similar to the proof of Theorem 3, we prove that for a small enough δ > 0, there exist
local minimizers β̂PCRn,j of `

PCR
n,j (α) such that

P
(
min
1≤j≤sn

|β̂PCRn,j | > γ
(I)
n δ
)
→ 1. (10)

It suffices to prove that for a small enough δ > 0 and some large enough Cn > 0, there
exist some βj with |βj| = 2δ such that

P
(
min
1≤j≤sn

{
inf
|α|≤δ
`PCRn,j (γ

(I)
n α)− `

PCR
n,j (γ

(I)
n βj)

}
> 0
)
→ 1, (11)

and
P
(
min
1≤j≤sn

{
inf
|α|≥Cn

`PCRn,j (γ
(I)
n α)− `

PCR
n,j (γ

(I)
n βj)

}
> 0
)
→ 1. (12)

(11) and (12) imply that with probability tending to one, there must exist local minimizers

β̂PCRn,j of `
PCR
n,j (α) such that γ

(I)
n δ < |β̂PCRn,j | < γ

(I)
n Cn for 1 ≤ j ≤ sn, and this implies (10).

First, we prove (12). We notice that for every n ≥ 1, when |α| → ∞,

min
1≤j≤sn

{
`PCRn,j (γ

(I)
n α)− `

PCR
n,j (γ

(I)
n βj)

}
≥ κnγ

(I)
n |α| − max

1≤j≤sn
`PCRn,j (γ

(I)
n βj)→∞.

Thus (12) holds.
Second, we prove (11). By Taylor’s expansion, for 1 ≤ j ≤ sn,

`PCRn,j (γ
(I)
n α) =

1

n

n∑

i=1

Q(Yni, F
−1(0)) +

γ
(I)
n

n
α

n∑

i=1

q1(Yni; 0)Xij

+
1

2

γ
(I)2
n

n
α2

n∑

i=1

q2(Yni; γ
(I)
n α

∗
jXij)X

2
ij + γ

(I)
n κn|α|,

3



with α∗j between 0 and α. Thus, we have that

min
1≤j≤sn

{
inf
|α|≤δ
`PCRn,j (γ

(I)
n α)− `

PCR
n,j (γ

(I)
n βj)

}

≥ min
1≤j≤sn

inf
|α|≤δ

{γ(I)n
n
(α− βj)

n∑

i=1

q1(Yni; 0)Xij

}

+ min
1≤j≤sn

[1
2

γ
(I)2
n

n
inf
|α|≤δ

{
α2

n∑

i=1

q2(Yni; γ
(I)
n α

∗
jXij)X

2
ij − β

2
j

n∑

i=1

q2(Yni; γ
(I)
n β

∗
jXij)X

2
ij

}]

+ min
1≤j≤sn

inf
|α|≤δ
{γ(I)n κn(|α| − |βj|)}

≡ I1 + I2 + I3,

with α∗j between 0 and α, and β
∗
j between 0 and βn,j .

Let μ0 = F
−1(0) and C0 = q

′′(μ0)/F
′(μ0) 6= 0, for I1,

I1 ≥ γ
(I)
n min
1≤j≤sn

inf
|α|≤δ
{C0(α− βj)E(YnXj)}

+ γ(I)n min
1≤j≤sn

inf
|α|≤δ

[

C0(α− βj)
1

n

n∑

i=1

{YniXij − E(YnXj)}

]

− γ(I)n max
1≤j≤sn

sup
|α|≤δ

{
C0μ0(α− βj)

1

n

n∑

i=1

Xij

}

≡ I1,1 + I1,2 + I1,3.

We can see that

|I1,3| ≤ γ
(I)
n |C0μ0| max

1≤j≤sn

{

sup
|α|≤δ

(

3δ

∣
∣
∣
∣
1

n

n∑

i=1

Xij

∣
∣
∣
∣

)}

= OP (γ
(I)
n {log(sn)/n}

1/2)δ,

since max1≤j≤sn |n
−1
∑n
i=1Xij| = OP ({log(sn)/n}

1/2) from Bernstein’s inequality (Lemma

2.2.9 in van der Vaart and Wellner, 1996). Again |I1,2| = OP (γ
(I)
n {log(sn)/n}1/2)δ by a

similar argument as in the proof of Theorem 3. Now we choose βj = −2δsign{C0E(YnXj)}
satisfying |βj| = 2δ. Then

I1,1 = γ
(I)
n min
1≤j≤sn

inf
|α|≤δ

(
[α + 2δsign{C0E(YnXj)}]C0E(YnXj)

)

≥ γ(I)n min
1≤j≤sn

{δ|C0E(YnXj)|} ≥ |C0|cγ
(I)
n Anδ.

For I2 and I3,

|I2| ≤
1

2

γ
(I)2
n

n
max
1≤j≤sn

sup
|α|≤δ

{

α2
∣
∣
∣
∣

n∑

i=1

q2(Yni;Xijγ
(I)
n α

∗
j )X

2
ij

∣
∣
∣
∣

+ β2j

∣
∣
∣
∣

n∑

i=1

q2(Yni;Xijγ
(I)
n β

∗
j )X

2
ij

∣
∣
∣
∣

}

= OP (γ
(I)2
n )δ

2,
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and |I3| = O(γ
(I)
n κn)δ.

Under the conditions An = γ
(I)
n , κn = o(γ

(I)
n ) and log(sn) = o(nγ

(I)2
n ), we can choose a

small enough δ > 0 such that with probability tending to one, I1,1 dominates I1,2, I1,3, I2
and I3. Thus (11) is proved.

Part 2: j ∈ {sn + 1, . . . , pn}.

We prove that for any ε > 0, there exist local minimizers β̂PCRn,j of `
PCR
n,j (α) such that

P
(
max

sn+1≤j≤pn
|β̂PCRn,j | ≤ γ

(II)
n ε
)
→ 1. (13)

It suffices to prove that for any ε > 0,

P
(
min

sn+1≤j≤pn

{
inf
|α|=ε
`PCRn,j (γ

(II)
n α)− `

PCR
n,j (0)

}
> 0
)
→ 1. (14)

By Taylor’s expansion,

min
sn+1≤j≤pn

{
inf
|α|=ε
`PCRn,j (γ

(II)
n α)− `

PCR
n,j (0)

}

≥ min
sn+1≤j≤pn

inf
|α|=ε

{γ(II)n
n
α

n∑

i=1

q1(Yni; 0)Xij

}

+ min
sn+1≤j≤pn

inf
|α|=ε

{γ(II)2n

2n
α2

n∑

i=1

q2(Yni; γ
(II)
n α

∗
jXij)X

2
ij

}
+ inf
|α|=ε
(γ(II)n κn|α|)

≡ I1 + I2 + I3,

with α∗j ∈ (0, α). For I1, it is seen that

|I1| ≤ max
sn+1≤j≤pn

sup
|α|=ε

{
γ
(II)
n

n

∣
∣
∣
∣α

n∑

i=1

C0(Yni − μ0)Xij

∣
∣
∣
∣

}

≤
γ
(II)
n

n
|C0|ε max

sn+1≤j≤pn

∣
∣
∣
∣

n∑

i=1

YniXij

∣
∣
∣
∣+
γ
(II)
n

n
|C0μ0|ε max

sn+1≤j≤pn

∣
∣
∣
∣

n∑

i=1

Xij

∣
∣
∣
∣.

Since |
∑n
i=1 YniXij| ≤ |

∑n
i=1{YniXij −E(YnXj)}|+ |

∑n
i=1E(YnXj)| and similar to Part

1,

max
sn+1≤j≤pn

∣
∣
∣
∣
1

n

n∑

i=1

Xij

∣
∣
∣
∣ = OP ({log(pn − sn)/n}

1/2),

max
sn+1≤j≤pn

∣
∣
∣
∣
1

n

n∑

i=1

{YniXij − E(YnXj)}

∣
∣
∣
∣ = OP ({log(pn − sn)/n}

1/2),

we have that |I1| ≤ OP (γ
(II)
n {log(pn − sn)/n}1/2)ε+ oP (γ

(II)
n Bn)ε.

The proof may be separated for case (1) and case (2) in Theorem 4 from here.
Case (1): For I2, we have that

|I2| ≤ max
sn+1≤j≤pn

sup
|α|=ε

{
γ
(II)2
n

2n
α2
∣
∣
∣
∣

n∑

i=1

q2(Yni; γ
(II)
n α

∗
jXij)X

2
ij

∣
∣
∣
∣

}

= OP (γ
(II)2
n )ε2.

5



Thus I3 = γ
(II)
n κnε dominates I1 and I2 with probability tending to one, since log(pn −

sn) = o(nκ
2
n), Bn = O(κn) and γ

(II)
n = o(κn). So (14) is proved.

Case (2): I2 is always positive with Condition 1(b). Moreover,

I2 ≥
1

2
γ(II)2n min

sn+1≤j≤pn
inf
|α|=ε

[
α2E{q2(Yn; γ

(II)
n α

∗
jXj)X

2
j }
]
−
1

2
γ(II)2n ×

max
sn+1≤j≤pn

sup
|α|=ε

(

α2

∣
∣
∣
∣
∣
1

n

n∑

i=1

[
q2(Yni; γ

(II)
n α

∗
jXij)X

2
ij − E{q2(Yn; γ

(II)
n α

∗
jXj)X

2
j }
]
∣
∣
∣
∣
∣

)

≥
1

2
γ(II)2n ε2η −

1

2
γ(II)2n ε2OP ({log(pn − sn)/n}

1/2).

Thus, I3 = γ
(II)
n κnε and the term

1
2
γ
(II)2
n ε2η in I2 dominate all other terms with prob-

ability tending to one, since log(pn− sn) = o{max(nκ2n, nγ
(II)2
n )}, Bn = O{max(κn, γ

(II)
n )}

and log(pn − sn) = o(n). So (14) is also proved.
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