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Abstract A new multiple testing procedure, called the FDRL procedure, was pro-
posed by Zhang et al. (Ann Stat 39:613–642, 2011) for detecting the presence of
spatial signals for large-scale 2D and 3D imaging data. In contrast to the conven-
tional multiple testing procedure, the FDRL procedure substitutes each p-value by a
locally aggregated median filter of p-values. This paper examines the performance of
another commonly used filter, mean filter, in the FDRL procedure. It is demonstrated
that when the p-values are independent and uniformly distributed under the true null
hypotheses, (i) in view of estimating the resulting false discovery rate, the mean filter
better alleviates the “lack of identification phenomenon” of the FDRL procedure than
the median filter; (ii) in view of signal detection, the median filter enjoys the “edge-
preserving property” and lends support to its better performance in detecting sparse
signals than the mean filter.

Keywords Brain fMRI · False discovery rate · Median · p-value · Sensitivity ·
Specificity
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1 Introduction

The multiple testing procedure plays an important role in detecting the presence of
spatial signals for large-scale imaging data. Typically, the spatial signals are sparse
but clustered. See Zhang and Yu (2008) for an application of multiple testing to
detecting regions of significant activation for brain fMRI data, and Efron (2010)’s
monograph for more insightful discussions. Zhang et al. (2011) provided empirical
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evidence that for a range of commonly used control levels, the conventional false dis-
covery rate (FDR) controlling procedure (Storey et al. 2004) can lack the ability to
detect statistical significance, even if the p-values under the true null hypotheses are
independent and uniformly distributed; more generally, ignoring the neighboring in-
formation of spatially structured data will tend to diminish the detection effectiveness
of the FDR procedure. Zhang et al. (2011) first introduced a scalar quantity αFDR∞
to characterize the extent to which the “lack of identification phenomenon” (LIP)
of the FDR procedure occurs, then proposed a new multiple comparison procedure,
called the FDRL procedure, to accommodate the spatial information of neighboring
p-values, via a locally aggregated filter of p-values. When the median filter is uti-
lized, Zhang et al. (2011) investigated theoretical properties of the FDRL procedure
under weak dependence of p-values. It was shown that the FDRL procedure allevi-
ates the LIP of the FDR procedure, i.e. α

FDRL∞ ≤ αFDR∞ , thus substantially facilitating
the selection of more stringent control levels.

It is natural to ask whether and to what extent the above conclusion for the median
filter holds for other commonly used filters, for example, the mean filter, and if so,
which one performs better. In the statistical estimation literature, it is well-known that
the “sample mean” has an asymptotically smaller variance than the “sample median”
in estimating a population mean (van-der Vaart 1998); conversely, the “sample me-
dian” is more robust against outlying observations than the “sample mean” (Brown
1983). Meanwhile, in the literature on image signal processing, it is widely believed
that the median filter possesses the “edge-preserving property” better than the mean
filter. Some new insight to this belief is offered in Arias-Castro and Donoho (2009).
It remains unclear whether the median filter outperforms the mean filter in FDR con-
trolling multiple testing procedures. As far as we know, this issue has not been clearly
and carefully addressed in the existing literature on multiple testing procedures.

This paper aims to examine the performance of the mean filter in the FDRL proce-
dure, from viewpoints of both the estimation of FDR and the detection of signals. (It
is anticipated that other filters can be studied similarly.) Theorems 1–2 confirm that
similar to the median filter, the FDRL procedure using the mean filter also reduces
the extent of the LIP of the FDR procedure, when the p-values are independent and
uniformly distributed under the true null hypotheses. There, technical manipulations
are different from those used in Zhang et al. (2011) for the median filter. Furthermore,
two recommendations are made for practical applications. (i) It is demonstrated that
the mean filter better alleviates the “lack of identification phenomenon” of the FDR
procedure than the median filter. Namely, α

FDRL∞ associated with the mean filter is
smaller than that associated with the median filter; (ii) the median filter enjoys the
“edge-preserving property” and lends support to its better performance in detecting
sparse signals than the mean filter. In cases with either more strongly correlated p-
values or less sparse signals, our empirical results suggest that the distinction between
the performance of the two types of filters diminishes.

Assessing and comparing the magnitude of LIP in part (i) are non-trivial. The
distribution of the “sample mean” of i.i.d. standard uniform variables will be invoked
in a suitable manner. The rest of the paper is organized as follows. Section 2 reviews
the FDR and FDRL procedures. Section 3.1 discusses the distribution of the mean
filter applied to i.i.d. standard uniform random variables; Sect. 3.2 explores properties
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Table 1 Outcomes from testing
n null hypotheses State � Decision Retain null Reject null Total

Null is true U V n0

Non-null is true T S n1

Total W R n

of α
FDRL∞ using the mean filter. Section 4 presents simulation comparisons of the FDR

procedure and the mean and median filtered FDRL procedures in 2D dependent data,
and 1D data with serially clustered signals. Section 5 ends the paper with a brief
discussion. The Appendix contains technical conditions and detailed derivations.

2 The FDR and FDRL controlling procedures

We begin with a brief review of the FDR and FDRL controlling procedures relevant
to the study. For testing a family of null hypotheses, {H0,i}ni=1, versus non-null hy-
potheses, {H1,i}ni=1, associated with the p-values {pi}ni=1, Table 1 summarizes the
outcomes when applying some significance rule. The false discovery rate, defined
as FDR = E( V

R∨1 ), depicts the expected proportion of true null hypotheses rejected
out of the total number of null hypotheses rejected (Benjamini and Hochberg 1995),
where R ∨ 1 = max{R,1}.

2.1 The FDR procedure

An empirical process definition of FDR, by means of FDR(t) = E{ V (t)
R(t)∨1 } for

t ∈ [0,1], was introduced by Storey et al. (2004), where V (t) = ∑n
i=1 I(H0,i is true,

pi ≤ t) and R(t) = ∑n
i=1 I(pi ≤ t), with I(·) denoting an indicator function. Other

quantities, U(t), T (t), S(t) and W(t), can be defined similarly. There, the point esti-
mate of FDR(t) is given by

F̂DR(t) = W(λ)t

{R(t) ∨ 1}(1 − λ)
, (2.1)

with the pointwise limit expressed as

F̂DR∞
(t) = [π0{1 − G0(λ)} + π1{1 − G1(λ)}]t

{π0G0(t) + π1G1(t)}(1 − λ)
, (2.2)

where λ ∈ (0,1) is a tuning constant, π0 = limn→∞ n0/n, π1 = 1 − π0, and G0(t) =
limn→∞ V (t)/n0 and G1(t) = limn→∞ S(t)/n1 are assumed to exist almost surely
for each t ∈ (0,1]. For a pre-chosen level α, a data-driven threshold for p-values is

tα(F̂DR) = sup
{
0 ≤ t ≤ 1 : F̂DR(t) ≤ α

}
.

A null hypothesis H0,i is rejected if pi ≤ tα(F̂DR).
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The measure proposed in Zhang et al. (2011) of “lack of identification phe-
nomenon” (LIP) for the above FDR controlling procedure is motivated by the ob-
servation that tα(F̂DR) is a non-decreasing function of α. As α decreases below
inf0<t≤1 F̂DR(t), the threshold tα(F̂DR) will drop to zero and the FDR procedure can
only reject those null hypotheses with p-values exactly equal to zero. This causes
LIP. For the estimation method F̂DR(·) in (2.1), Zhang et al. (2011) introduced a
measure of LIP by

αFDR∞ = inf
0<t≤1

F̂DR∞
(t),

where F̂DR∞
(t) is defined in (2.2). Note that αFDR∞ > 0 implies the occurrence of the

LIP, whereas αFDR∞ = 0 rules out the possibility of the LIP.

2.2 The FDRL procedure

For testing a set of 2D or 3D spatial signals {μ(υ) : υ ∈ V}, assume that the p-
values are {p(υ) : υ ∈ V} corresponding to hypotheses, for e.g., H0(υ) : μ(υ) = 0
versus H1(υ) : μ(υ) �= 0, and V = V0 ∪ V1, with V0 denoting the set of υ ∈ V un-
der H0(υ) and V1 the set of υ ∈ V under H1(υ). Zhang et al. (2011) proposed the
FDRL procedure which uses a local aggregation of p-values at points adjacent to υ .
The procedure consists of the steps below. Step 1: Choose a local neighborhood with
size k. Step 2: At each υ , find the set Nυ of its neighborhood points, and the set
{p(υ ′) : υ ′ ∈ Nυ} of the corresponding p-values. Step 3: At each υ , apply a transfor-
mation filter : [0,1]k 
→ [0,1] to the set of p-values in Step 2, leading to a “locally
aggregated” quantity,

p∗(υ) = filter
({

p
(
υ ′) : υ ′ ∈ Nυ

})
. (2.3)

Step 4: Determine a data-driven threshold for {p∗(υ) : υ ∈ V}. The FDR based on
p∗-values is defined by

FDRL(t) = E

{
V ∗(t)

R∗(t) ∨ 1

}

,

where V ∗(t) = ∑
υ∈V I{H0(υ) is true, p∗(υ) ≤ t} and R∗(t) = ∑

υ∈V I{p∗(υ) ≤ t}.
Accordingly, the point estimate of FDRL(t) is given by

F̂DRL(t) = W ∗(λ)Ĝ∗(t)
{R∗(t) ∨ 1}{1 − Ĝ∗(λ)} , (2.4)

where Ĝ∗(·) denotes an estimator of the sample distribution G̃∗(·) of {p∗(υ) : υ ∈
V0}. Zhang et al. (2011) developed two estimators, Ĝ∗(·), called Method I, and Ĝ∗

c (·),
called Method II (described in Sects. 3.2–3.3 of Zhang et al. (2011)). In brief, Method
I uses the empirical distribution function of {p∗(υ)} and is useful for large-scale
imaging data; Method II refines Method I via a mixture model approach and is useful
for data of limited resolution. The pointwise limit of (2.4) is

F̂DRL

∞
(t) = [π0{1 − G∗

0(λ)} + π1{1 − G∗
1(λ)}]G∗∞(t)

{π0G
∗
0(t) + π1G

∗
1(t)}{1 − G∗∞(λ)} , (2.5)
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Table 2 Illustration of the FDRL procedure

{p(υ) : υ ∈ V}
⇓ ←− via filter (median filter or mean filter) in (2.3)

{p∗(υ) : υ ∈ V}
⇓ ←− via estimation method (Method I or Method II)

Ĝ∗(·)
⇓ ←− via (2.4)

F̂DRL(·)
⇓ ←− via (2.6)

tα(F̂DRL)

⇓
check whether p∗(υ) ≤ tα(F̂DRL)

where G∗
0(t) = limn→∞ V ∗(t)/n0 and G∗

1(t) = limn→∞ S∗(t)/n1 exist almost surely
for each t ∈ (0,1], and G∗∞(t) = limn→∞ G∗(t), where G∗(·) denotes the cumula-
tive distribution function of a “locally aggregated” p∗-value corresponding to the true
null hypothesis. The data-driven threshold for p∗-values is

tα(F̂DRL) ≡ sup
{
0 ≤ t ≤ 1 : F̂DRL(t) ≤ α

}
. (2.6)

A null hypothesis H0(υ) is rejected if p∗(υ) ≤ tα(F̂DRL). Table 2 illustrates the
scheme of the FDRL procedure. Zhang et al. (2011) showed that similar to the FDR
procedure Storey et al. (2004), the “median filtered” FDRL procedure asymptotically
controls the FDR at level α.

Likewise, the measure of LIP for the estimation method F̂DRL(·) in (2.4) can be
defined as

αFDRL∞ = inf
0<t≤1

F̂DRL

∞
(t), (2.7)

where F̂DRL

∞
(t) is given in (2.5).

3 Property of α
FDRL∞ using the mean filter

3.1 Distribution of the mean filter

Our major theoretical results in Theorems 1–2 will concern the evaluation of α
FDRL∞ ,

which hinges on the distribution of the mean filter of p-values under the true null hy-
potheses. As seen from (2.5) and (A.2), such distribution corresponds to the distribu-

tion of Uk = ∑k
i=1 Ui/k, where {Ui}ki=1

i.i.d.∼ Unif(0,1) and k ≥ 1 is an integer, with
Unif(0,1) denoting the uniform distribution on the interval (0,1). Let G∗

0(·) denote

the cumulative distribution function (C.D.F.) of
∑k

i=1 Ui/k. This section will discuss
explicit expressions for both its probability density function (p.d.f.), dG∗

0(t)/dt , and
the C.D.F., G∗

0(t).
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For any integer k ≥ 1, the p.d.f. of the sum,
∑k

i=1 Ui , where {Ui}ki=1
i.i.d.∼

Unif(0,1), can be obtained by the formula (Feller 1968; p. 175 of Sadooghi-Alvandi
et al. 2009; p. 277 of Uspensky 1937),

{
1

(k−1)!
∑k

j=0(−1)j
(
k
j

){(x − j)+}k−1I(x ≥ j), if 0 < x < k,

0, otherwise,
(3.1)

where x+ = xI(x ≥ 0). According to (3.1), the mean,
∑k

i=1 Ui/k, has the p.d.f.

dG∗
0(t)

dt
=

{
k

(k−1)!
∑k

j=0(−1)j
(
k
j

){(kt − j)+}k−1 I(kt ≥ j), if 0 < t < 1,

0, otherwise.
(3.2)

In particular, for 0 < kt < 1,

dG∗
0(t)

dt
= k

(k − 1)! (−1)0
(

k

0

)
{
(kt)+

}k−1 = k

(k − 1)!k
k−1tk−1, (3.3)

which is proportional to tk−1. It follows from (3.2) that

d2G∗
0(t)

dt2
=

{
k2(k−1)
(k−1)!

∑k
j=0(−1)j

(
k
j

){(kt − j)+}k−2 I(kt ≥ j), if 0 < t < 1,

0, otherwise.
(3.4)

In addition, an integration of (3.2) yields

G∗
0(t) = 1

k!
k∑

j=0

(−1)j
(

k

j

)
{
(kt − j)+

}kI(kt ≥ j). (3.5)

As a comparison, the distribution of the median filter of p-values under the true
null hypotheses is that of Beta((k + 1)/2, (k + 1)/2) when k is an odd integer. The
behavior of its p.d.f. is proportional to t (k−1)/2(1 − t)(k−1)/2 = (t − t2)(k−1)/2, and
controlled by t (k−1)/2 for t ≈ 0. This aspect distinguishes the tail behavior of the
distribution of the median from that of the mean. Figure 1 plots the p.d.f. of the
mean filter and the p.d.f. of the median filter for k = 5 and k = 7. In each case, the
asymptotic normal density functions (van-der Vaart 1998) for the mean and median
of {U1, . . . ,Uk}, assuming k → ∞, are overlaid. Apparently, the distribution of the
mean filter converges faster to be normal.

We would like to make a remark on the distribution of G∗
0(·). Using Corollary 2 of

Ruiz (1996), an alternative expression for the p.d.f. of the sum,
∑k

i=1 Ui , is obtained
in the form,

{
1

2(k−1)!
∑k

j=0(−1)j
(
k
j

)
(x − j)k−1sign(x − j), if 0 < x < k,

0, otherwise,
(3.6)
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Fig. 1 Probability density functions for the mean filter (at top panels) and the median filter (at bottom
panels). Solid curve: p.d.f. of the filter; dashed curve: asymptotic normal approximation

where sign(x) equals −1 if x < 0, 0 if x = 0, and +1 if x > 0. From (3.6), the p.d.f.
of the mean,

∑k
i=1 Ui/k, is given by

dG∗
0(t)

dt
=

{
k

2(k−1)!
∑k

j=0(−1)j
(
k
j

)
(kt − j)k−1sign(kt − j), if 0 < t < 1,

0, otherwise.
(3.7)

For the equivalent forms, (3.2) and (3.7), whichever is more convenient will be used
in the proofs of Theorems 1–2.

3.2 Conditions for lack of identification phenomenon

For α
FDRL∞ defined in (2.7) using the mean filter, results analogous to those using the

median filter are established in Theorems 1–2. Theorem 1 presents conditions under
which the LIP does or does not take place with the FDR and FDRL procedures.
Theorem 2 demonstrates that αFDR∞ ≥ α

FDRL∞ under mild conditions. Thus, similar to
the median filter, the FDRL procedure using the mean filter also reduces the extent of
the LIP. Applications of Theorems 1–2 will be illustrated in a numerical example in
Sect. 4.1.

Theorem 1 Let {T (υ) : υ ∈ V ⊆ Zd} be the set of test statistics for testing the pres-
ence of the spatial signals {μ(υ) : υ ∈ V ⊆ Zd}. Consider the one-sided testing prob-
lem,

H0(υ) : μ(υ) = 0 versus H1(υ) : μ(υ) > 0.
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For j = 0 and j = 1, respectively, assume that T (υ), corresponding to the true
Hj(υ), are i.i.d. random variables having a C.D.F. Fj with a p.d.f. fj . Assume that
the neighborhood size k ≥ 3 used in the FDRL procedure is an integer and that
the proportion of boundary grid points within V0 shrinks to zero, as n → ∞, i.e.,
limn→∞ #V(0)

0 /n0 = 1, where V(0)
0 = {υ ∈ V : μ(υ ′) = 0 for any υ ′ ∈ Nυ}. Assume

Condition A in the Appendix. Let x0 = F−1
0 (1) = inf{t : F0(t) = 1}.

I. If limx→x0− f1(x)/f0(x) = ∞, then αFDR∞ = 0 and α
FDRL∞ = 0.

II. If lim supx→x0− f1(x)/f0(x) < ∞, then αFDR∞ > 0 and α
FDRL∞ > 0.

Theorem 2 Assume conditions in Theorem 1. Suppose that f0(·) is supported in an
interval; f1(x) ≤ f0(x) for any x ≤ F−1

0 (0.5); 1 − F0(F
−1
1 (0.5)) ≤ λ ≤ 0.5. Then

αFDR∞ ≥ α
FDRL∞ .

As a comparison, it is interesting to observe that when the mean filter is used,
Theorem 1 and Theorem 2 hold for any integer k ≥ 3, whereas when the median
filter is used, the corresponding Theorem 4.4 and Theorem 4.5 in Zhang et al. (2011)
hold for any odd integer k ≥ 3.

4 Simulation study

4.1 An illustrative example of αFDR∞ > α
FDRL∞ > 0

Consider a pixelated 2D image dataset consisting of n = 50 × 50 pixels, illustrated
in the left panel of Fig. 2, where the black rectangles represent the true significant
regions V1 with n1 = 0.16 × n pixels and the white background serves as the true
non-significant regions V0 with n0 = n − n1 pixels. The data Y(i, j) are simulated
from the model,

Y(i, j) = μ(i, j) + ε(i, j), i, j = 1, . . . ,50,

where the signals are μ(i, j) = 0 for (i, j) ∈ V0, and μ(i, j) = C for (i, j) ∈ V1 with
a constant C ∈ (0,∞), and the error terms {ε(i, j)} are i.i.d. following the centered
Exp(1) distribution. At each site (i, j), the observed data Y(i, j) is the (shifted) sur-
vival time and used as the test statistic for testing μ(i, j) = 0 versus μ(i, j) > 0.
Clearly, all test statistics are i.i.d., having the p.d.f.s f0(x) = exp{−(x + 1)}I(x + 1 >

0) under true null hypotheses, and f1(x) = exp{−(x + 1 − C)}I(x + 1 > C) un-
der true non-null hypotheses. Following the notation in Theorem 1, it is easily seen
that x0 = ∞, and lim supx→∞ f1(x)/f0(x) = exp(C) < ∞. An appeal to Theorem 1

yields αFDR∞ > 0 and α
FDRL∞ > 0, and thus both the FDR and the FDRL procedures

will encounter the LIP. Moreover, if C > log(2) and exp(−C)/2 ≤ λ ≤ 0.5, then
sufficient conditions in Theorem 2 are satisfied and hence αFDR∞ ≥ α

FDRL∞ .
Actual computations indicate that α

FDRL∞ using the mean filter (with detailed
derivations in the appendix) is smaller than that using the median filter. For exam-
ple, set λ = 0.1; assume that the neighborhood in the FDRL procedure is illustrated

Author's personal copy



Assessing mean and median filters in multiple testing 59

Fig. 2 Left panel: the true significant regions for the 2D simulated datasets. Middle panel: neighbors of a
point at (x, y) used in the FDRL procedure for 2D data. Right panel: neighbors of a point at x used in the
FDRL procedure for 1D data

Table 3 Comparing αFDR∞ ,

α
FDRL∞ using the median filter

and α
FDRL∞ using the mean

filter, where k = 5. Here λ = 0.1

C αFDR∞ α
FDRL∞

Median filter Mean filter

log(4) 0.6396 0.0858 0.005853973160543

log(8) 0.4130 0.0103 0.000160445958336

log(12) 0.3043 0.0030 0.000021098127390

log(16) 0.2471 0.0013 0.000005006765093

log(20) 0.2079 0.0007 0.000001640622308

log(24) 0.1795 0.0004 0.000000659329957

log(28) 0.1579 0.0002 0.000000305048585

log(32) 0.1409 0.0002 0.000000156462168

log(36) 0.1273 0.0001 0.000000086825394

in the middle panel of Fig. 2, that is, k = 5. Table 3 indicates that the mean filter com-
bined with the FDRL procedure better alleviates the LIP of the FDR procedure than
the median filter. Whether or not the conclusion that α

FDRL∞ using the median filter
exceeds α

FDRL∞ using the mean filter holds in general situations needs to be further
investigated.

Figure 3 compares the regions detected as significant by the FDR and the “mean
filtered” FDRL procedures. As a comparison, a counterpart using the median filter is
presented in Fig. 4. Comparing Figs. 3–4, it is clearly seen that for α ≈ 0, the mean
filter better detects the significance than the median filter, in agreement with Table 3.
On the other hand, the median filter better preserves the edges between regions de-
clared to be insignificant and significant.

4.2 2D dependent data

For the sake of comparison, all simulation set-ups for dependent data are identical to
those in Sect. 5 of Zhang et al. (2011), except that the mean filter replaces the median
filter in the FDRL procedure. It will be seen that in the presence of dependence,
the distinction between the performance of the mean filter relative to median filter
diminishes.
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Fig. 3 Lack of identification phenomenon when α varies from 0 to αFDR∞ = 0.4130. The sites that are
called statistically significant based on the realization are shown in black. Left panels: the FDR procedure.
Middle panels: the FDRL procedure using Method I. Right panels: the FDRL procedure using Method II.
Here λ = 0.1

4.2.1 Example 1: weakly correlated case

The data Y(i, j) are generated according to the model,

Y(i, j) = μ(i, j) + ε(i, j), i, j = 1, . . . ,258, (4.1)

where the signals are μ(i, j) = 0 for (i, j) ∈ V0, μ(i, j) = 4 in the larger black rect-
angle and μ(i, j) = 2 in the smaller black rectangle. The errors {ε(i, j)} have zero-
mean, unit-variance and are spatially dependent, by taking ε(i, j) = {e(i − 1, j) +
e(i, j) + e(i + 1, j) + e(i, j − 1) + e(i, j + 1)}/√5, where {e(i, j)}259

i,j=0 are i.i.d.
N(0,1). At each pixel (i, j), Y(i, j) is used as the test statistic for testing μ(i, j) = 0
against μ(i, j) > 0.

To evaluate the performance of Method I and Method II in estimating G̃∗(t), Fig. 5
displays the plots of Ĝ∗(t) versus G̃∗(t) and Ĝ∗

c (t) versus G̃∗(t). The agreement with
45 degree lines indicates that both estimation methods developed for the median filter
can be well applicable to the mean filter.
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Fig. 4 The caption is similar to that for Fig. 3, except that the median filter is used

Fig. 5 Left: Ĝ∗(t) versus G̃∗(t); right: Ĝ∗
c (t) versus G̃∗(t); straight line: the 45 degree reference line.

Here α = 0.01 and λ = 0.1

To examine the overall performance of the estimated FDR(t) and FDRL(t) for a
same threshold t ∈ [0,1], we replicate the simulation 100 times. For notational con-
venience, denote by FDP(t) = V (t)/{R(t) ∨ 1} and FDPL(t) = V ∗(t)/{R∗(t) ∨ 1}
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Fig. 6 Panel (a): compare the average values of F̂DR(t) and those of F̂DRL(t) using Methods I and II.
Panel (b): compare the average values of F̂DR(t) and those of FDP(t). Panel (c): compare the average val-
ues of F̂DRL(t) using Method I and those of FDPL(t). Panel (d): compare the average values of F̂DRL(t)

using Method II and those of FDPL(t). Here λ = 0.1

the false discovery proportions of the FDR and FDRL procedures, respectively. The
average values (over 100 data) of F̂DR(t) and F̂DRL(t) at each point t are plotted in
Fig. 6(a). It is clearly observed that F̂DRL(t) using both Methods I and II is below
F̂DR(t), demonstrating that the FDRL procedure produces the estimated false dis-
covery rates lower than those of the FDR procedure. Meanwhile, Fig. 6 compares the
average values of FDP(t) and those of F̂DR(t) in panel (b), and the average values of
FDPL(t) using Methods I and II and those of F̂DRL(t) in panels (c) and (d), respec-
tively. For each procedure, the two types of estimates are very close to each other,
again lending support to the estimation procedure.

We randomly generate 100 sets of simulated data and perform the FDR and FDRL

procedures for each dataset, with the control levels α varying from 0 to 0.1. The
choices λ = 0.1 and λ = 0.4 are considered. In either case, we observe from Fig. 7
that the average sensitivity (over the datasets) of the FDRL procedure using Method
I is consistently higher than that of the FDR procedure, whereas the average speci-
ficities of both procedures approach one and are nearly indistinguishable. In addition,
the bottom panels indicate that the FDR procedure yields larger (average) false dis-
covery proportions than the FDRL procedure. It is apparent that the results in Fig. 7
are not very sensitive to the choice of λ.
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Fig. 7 Comparison of the average sensitivity (top panels), average specificity (middle panels) and average
false discovery proportion (bottom panels). Left panels: λ = 0.1. Right panels: λ = 0.4

Fig. 8 The captions are similar to those for Fig. 5, except that Example 2 is studied

4.2.2 Example 2: more strongly correlated case

We generate one dataset according to the same model (4.1) as in Example 1, but with
more strongly correlated errors, ε(i, j) = ∑6

i=0
∑6

j=0 e(i, j)/7, where {e(i, j)}264
i,j=0

are i.i.d. N(0,1). As seen from Fig. 8, estimation Methods I and II for the “mean fil-
tered” FDRL procedure with strongly correlated data perform as well as with weakly
correlated data (given in Fig. 5).
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Fig. 9 Comparison of the FDR and FDRL procedure for Example 3. Top left: the true significant regions;
top middle: the FDR procedure; top right: the FDRL procedure using Method I. Bottom left: the FDRL

procedure using Method II; bottom middle: Ĝ∗(t) versus G̃∗(t); bottom right: Ĝ∗
c (t) versus G̃∗(t); straight

line: the 45 degree reference line. Here α = 0.01 and λ = 0.1

4.2.3 Example 3: large proportion of boundary grid points

The efficacy of the FDRL procedure is illustrated in Fig. 9 by a simulated data gener-
ated according to the same model (4.1) as in Example 1, but with a large proportion of
boundary grid points, where μ(i, j) = 0 for (i, j) ∈ V0 and μ(i, j) = 4 for (i, j) ∈ V1.
Similar plots using μ(i, j) = 2 for (i, j) ∈ V1 are obtained in Fig. 10. It is observed
that the FDR procedure slightly outperforms the FDRL procedure in the presence of
strong signals, whereas the FDRL procedure better detects weaker signals. Note that
detecting weaker signals, which arise more often in practical applications, is more
challenging than detecting stronger signals. In this sense, there is no adverse effect of
using the FDRL procedure to detect strong or weak signals.

4.3 1D serially clustered signals

Applications of the FDRL procedure are not limited to 2D and 3D data. In this exam-
ple, we evaluate the performance of the FDRL procedure to 1D data with serially clus-
tered signals. The data are independently generated according to Yi ∼ N(μi,1), i =
1, . . . ,10000, and Yi is used for testing hypotheses H0,i : μi = 0 versus H1,i : μi > 0.
The serial structure is designed as follows: indices i from true non-null hypotheses
are partitioned into two groups, I1 = {1001, . . . ,2000} and I2 = {5001, . . . ,6000},
where μi ≡ 1.5 for i ∈ I1 and μi ≡ 2.0 for i ∈ I2. The neighborhood in the FDRL

procedure is illustrated in the right panel of Fig. 2, that is, k = 3. The calculated FDP
and detection power, based on 500 sets of simulated data, are shown in Table 4. Both
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Fig. 10 The captions are similar to those for Fig. 9, except that the amount of signals is reduced from
μ = 4 to weaker signals μ = 2

Table 4 Compare the
calculated FDP and detection
power, using the FDRL

procedure with the mean and
median filters, and the FDR
procedure. Here λ = 0.1

α FDRL procedure, Method I FDR procedure

Mean filter Median filter

FDP Power FDP Power FDP Power

0.01 0.009 0.377 0.011 0.291 0.002 0.005

0.02 0.019 0.479 0.020 0.389 0.017 0.037

0.03 0.028 0.543 0.030 0.457 0.027 0.063

0.04 0.037 0.591 0.039 0.507 0.036 0.088

0.05 0.046 0.628 0.048 0.547 0.045 0.112

0.06 0.055 0.659 0.057 0.581 0.054 0.136

0.07 0.064 0.685 0.066 0.610 0.064 0.159

0.08 0.073 0.708 0.075 0.636 0.073 0.182

0.09 0.082 0.727 0.085 0.658 0.082 0.203

0.10 0.091 0.745 0.094 0.679 0.091 0.224

0.20 0.181 0.856 0.189 0.809 0.183 0.403

0.30 0.271 0.915 0.282 0.879 0.275 0.548

the FDR and the FDRL procedures maintain control of the false discovery rates.
However, by capturing the structural information of the data, the FDRL procedure
(Method I), using either the mean or median filter, is apparently more powerful than
the FDR procedure. (Results using Method II of the FDRL procedure are similar
and omitted.) Moreover, the mean filter increases detection power than the median
filter.
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5 Discussion

In the context of large-scale simultaneous inference, the hypotheses are often accom-
panied with a scientifically meaningful structure. Examples include spatial geometry
and clustering/grouping by pattern similarity, which are, however, ignored by many
conventional multiple testing procedures. The FDRL procedure proposed by Zhang
et al. (2011) makes an effort to incorporate spatial information associated with large-
scale imaging data, by utilizing a locally median filter of p-values. This paper ex-
amines the performance of another commonly used filter, mean filter, in the FDRL

procedure. By making theoretical and empirical comparisons between the mean and
median filters, we hope to provide valuable insight into understanding properties of
the FDRL procedure on the estimation of FDR and detection of sparse signals.

In summary, both the mean and the median filters in the FDRL procedure reduce
the extent of LIP of the FDR procedure when the p-values under the true nulls are in-
dependent and uniformly distributed. In practical applications, both filters have their
own merits, while simultaneously achieving the goals of edge-preserving property,
robustness property and detection power may not be feasible. If preserving the edges
between significant and non-significant regions is a major concern, or if robustness
to outlying points is cared, the median filter will be preferred. See comparisons in
Figs. 3–4. If the detection power is essential, the mean filter will be a better choice.
See comparisons in Tables 3–4.

A number of challenging issues remain to be explored. For the example in Table 3,
α

FDRL∞ using the mean filter does not exceed α
FDRL∞ using the median filter. Does this

relation hold in other cases? Moreover, large-scale multiple testing tasks often exhibit
dependence, and leveraging the dependence among individual tests is an important
but challenging problem in statistics. Whether and to which extent the FDRL pro-
cedure deals with general types of dependence structure? We leave these issues for
future research.
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Appendix

Throughout the proof, since αFDR∞ has been treated in the Appendix of Zhang et al.
(2011), derivations will be confined to α

FDRL∞ of the mean filter.

Condition A
A0 The neighborhood size k is an integer not depending on n.
A1 limn→∞ n0/n = π0 exists and π0 < 1.

Proof of Theorem 1 Note that for the original p-values,

G0(t) = t, G1(t) = 1 − F1
(
F−1

0 (1 − t)
)
. (A.1)
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Also, for the “mean filtered” p∗(υ)-values, for any υ ∈ Vj , where j = 0,1, we obtain

P
{
p∗(υ) ≤ t

}

= P
{
mean

(
p1(υ), . . . , pk(υ)

) ≤ t
}

= P
{
mean

(
Gj

(
p1(υ)

)
, . . . ,Gj

(
pk(υ)

)) ≤ Gj(t)
}

= P
{
mean(U1, . . . ,Uk) ≤ Gj(t)

}

= G∗
0

(
Gj(t)

) =
{

G∗
0(t), if υ ∈ V0,

G∗
0(G1(t)) = G∗

1(t), if υ ∈ V1.
(A.2)

Thus, for p∗(υ)-values under true H0(υ), G∗
0(t) is the C.D.F. corresponding to the

p.d.f. in (3.7); for p∗(υ)-values under true H1(υ), G∗
1(t) is the C.D.F. corresponding

to the p.d.f. in (3.7) with t replaced by G1(t).
Part I. So for the FDRL procedure, by (3.2),

dG∗
0(t)

dt
= k

(k − 1)!
k∑

j=0

(−1)j
(

k

j

)
{
(kt − j)+

}k−1 I(kt ≥ j),

dG∗
1(t)

dt
= dG∗

0(G1(t))

dG1(t)

dG1(t)

dt
,

= k

(k − 1)!
k∑

j=0

(−1)j
(

k

j

)
[{

kG1(t) − j
}
+
]k−1 I

{
kG1(t) ≥ j

}dG1(t)

dt
.

Applying L’Hospital’s rule and the fact limt→0+ G1(t) = 0,

lim
t→0+

G1(t)

t
= lim

t→0+
dG1(t)

dt
= lim

t→0+
f1(F

−1
0 (1 − t))

f0(F
−1
0 (1 − t))

= lim
x→x0−

f1(x)

f0(x)
= ∞, (A.3)

where x = F−1
0 (1− t). Note that F̂DRL

∞
(t) is a decreasing function of G∗

1(t)/G∗
0(t).

Using limt→0+ G∗
1(t) = 0, limt→0+ G∗

0(t) = 0, and (3.3),

lim
t→0+

G∗
1(t)

G∗
0(t)

= lim
t→0+

dG∗
1(t)

dt

dG∗
0(t)

dt

= lim
t→0+

∑k
j=0(−1)j

(
k
j

)[{kG1(t) − j}+]k−1 I{kG1(t) ≥ j}
∑k

j=0(−1)j
(
k
j

){(kt − j)+}k−1 I(kt ≥ j)

dG1(t)

dt

= lim
t→0+

{
G1(t)

t

}k−1

lim
t→0+

dG1(t)

dt
(A.4)

which together with (A.3) shows limt→0+ G∗
1(t)/G∗

0(t) = limt→0+{G1(t)/t}k = ∞.

Thus, sup0<t≤1 G∗
1(t)/G∗

0(t) = ∞, that is, α
FDRL∞ = 0 for the FDRL procedure.
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Part II. Following F̂DRL

∞
(t), we conclude that α

FDRL∞ �= 0 if

sup
0<t≤1

G∗
1(t)/G∗

0(t) < ∞. (A.5)

We first verify (A.5) for the FDRL procedure. Assume (A.5) fails, i.e., sup0<t≤1G
∗
1(t)/

G∗
0(t) = ∞. Note that for any δ > 0, the function G∗

1(t)/G∗
0(t), for t ∈ [δ,1],

is continuous and bounded away from ∞, thus, sup0<t≤1 G∗
1(t)/G∗

0(t) = ∞ only
if there exists a sequence t1 > t2 > · · · > 0, such that limm→∞ tm = 0 and
limm→∞ G∗

1(tm)/G∗
0(tm) = ∞. For each m, recall that both G∗

1(t) and G∗
0(t) are

continuous on [0, tm], and differentiable on (0, tm). Applying Cauchy’s mean-
value theorem, there exists ξm ∈ (0, tm) such that G∗

1(tm)/G∗
0(tm) = {G∗

1(tm) −
G∗

1(0)}/{G∗
0(tm) − G∗

0(0)} = dG∗
1(t)/dt

dG∗
0(t)/dt

|t=ξm . Since limm→∞ G∗
1(tm)/G∗

0(tm) = ∞,

it follows that lim supt→0+
dG∗

1(t)/dt

dG∗
0(t)/dt

= ∞, which combined with (A.4) implies

lim sup
t→0+

dG1(t)

dt
= ∞. (A.6)

On the other hand, the condition lim supx→x0− f1(x)/f0(x) < ∞ indicates that

lim sup
t→0+

dG1(t)

dt
= lim sup

t→0+
f1(F

−1
0 (1 − t))

f0(F
−1
0 (1 − t))

= lim sup
x→x0−

f1(x)

f0(x)
< ∞, (A.7)

where x = F−1
0 (1 − t). Clearly, (A.7) contradicts (A.6). The proof is completed. �

Proof of Theorem 2 We first show Lemma 1.

Lemma 1 Let B(t) be the C.D.F. of the p.d.f. corresponding to (3.7) with k ≥ 3.
Then I. for t ∈ (0,0.5), B(t)/t is a strictly increasing function and B(t) < t ; II. for
t ∈ (0.5,1), B(t) > t ; III. for t1 ∈ (0,0.5] and t2 ∈ [t1,1], B(t1)/t1 ≤ B(t2)/t2.

Proof Since (3.7) is symmetric with respect to 0.5, we deduce that B(t) = 1 −
B(1 − t) and B ′(t) = B ′(1 − t), i.e. the p.d.f. B ′(t) is symmetric with respect to
0.5. It follows that

B ′′(t) = (−1)B ′′(1 − t), (A.8)

namely, B ′′(t) is antisymmetric with respect to 0.5. More precisely, it is easy to see
from (3.7) that

B ′′(t) = k2(k − 1)

2(k − 1)!
k∑

j=0

(−1)j
(

k

j

)

(kt − j)k−2sign(kt − j).

Hence from (3.4) and (A.8), the possible roots of B ′′(t) are at {0,0.5,1}. For positive
t close to 0, B ′′(t) is a positive polynomial function of degree k − 2.
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To show part I, define F1(t) = B(t)/t . Then F′
1(t) = {B ′(t)t − B(t)}/t2, where

d{B ′(t)t − B(t)}/dt = B ′′(t)t . For t ∈ (0,0.5), (A.8) and the above analysis indi-
cate B ′′(t) > 0, i.e., B ′(t)t − B(t) is strictly increasing, implying B ′(t)t − B(t) >

B ′(0)0 − B(0) = 0. Hence for t ∈ (0,0.5), B(t)/t is strictly increasing and therefore
B(t)/t < B(0.5)/0.5 = 1.

For part II, define F2(t) = B(t) − t . Then F′′
2(t) = B ′′(t). By (A.8), B ′′(t) < 0 for

t ∈ (0.5,1), thus F2(t) is strictly concave, giving F2(t) > max{F2(0.5),F2(1)} = 0.
Last, we show part III. For t2 ∈ [t1,0.5], part I indicates that B(t1)/t1 ≤ B(t2)/t2;

for t2 ∈ [0.5,1], part II indicates that B(t2)/t2 ≥ 1 which, combined with B(t1)/t1 ≤
1 from part I, yields B(t1)/t1 ≤ B(t2)/t2. �

We now prove Theorem 2. It suffices to show that

{
1 − G1(λ)

}
/(1 − λ) ≥ {

1 − G∗
1(λ)

}
/
{
1 − G∗

0(λ)
}
, (A.9)

sup
0<t≤1

G1(t)/t ≤ sup
0<t≤1

G∗
1(t)/G

∗
0(t). (A.10)

To verify (A.9), it suffices to show that G1(λ) ≤ G∗
1(λ) and λ ≥ G∗

0(λ). Following
(A.2), for 0 ≤ t ≤ 1,

G∗
1(t) = G∗

0

(
G1(t)

)
. (A.11)

Applying (A.11), (A.1), 1 − F0(F
−1
1 (0.5)) ≤ λ and part II of Lemma 1 yields

G1(λ) ≤ G∗
1(λ); applying λ ≤ 0.5 and part I of Lemma 1 implies λ ≥ G∗

0(λ). This
shows (A.9).

To verify (A.10), let M = sup0<t≤1 G1(t)/t . Since G1(1)/1 = 1, we have M ≥ 1
which will be discussed in two cases. Case 1: if M = 1, then

sup
0<t≤1

G∗
1(t)

G∗
0(t)

≥ G∗
1(1)

G∗
0(1)

= 1 = sup
0<t≤1

G1(t)

t
. (A.12)

Case 2: if M > 1, then there exist t0 ∈ [0,1] and tn ∈ (0,1) such that limn→∞ tn = t0,
and

lim
n→∞

{
G1(tn)/tn

} = sup
0<t≤1

{
G1(t)/t

} = M > 1. (A.13)

Thus, there exists N1 such that for all n > N1,

G1(tn) > tn. (A.14)

Cases of t0 = 1, t0 = 0 and t0 ∈ (0,1) will be discussed separately. First, if t0 = 1,
then M = limn→∞{G1(tn)/tn} = limn→∞ G1(tn) ≤ 1, which contradicts (A.13).
Thus t0 < 1. Second, if t0 = 0, then there exists N2 such that tn < 0.5 for all n > N2.
Thus for all n > N ≡ max{N1,N2}, applying (A.11), (A.14) and part III of Lemma 1,
we have

G∗
1(tn)/G1(tn) = G∗

0

(
G1(tn)

)
/G1(tn) ≥ G∗

0(tn)/tn.

Author's personal copy



70 C. Zhang

This together with (A.13) shows

sup
0<t≤1

G∗
1(t)

G∗
0(t)

≥ lim sup
n→∞

G∗
1(tn)

G∗
0(tn)

≥ lim
n→∞

G1(tn)

tn
= M = sup

0<t≤1

G1(t)

t
. (A.15)

Third, for t0 ∈ (0,1), since both F0 and F1 are differentiable and f0 is supported in a
single interval, G1(t)/t = {1 − F1(F

−1
0 (1 − t))}/t is differentiable in (0,1). Thus,

sup
0<t≤1

G1(t)/t = G1(t0)/t0 = M, (A.16)

and d{G1(t)/t}/dt |t=t0 = 0. Notice

d{G1(t)/t}
dt

∣
∣
∣
∣
t=t0

=
dG1(t)

dt
|t=t0 − G1(t0)/t0

t0
=

dG1(t)
dt

|t=t0 − M

t0
= 0. (A.17)

If t0 > 0.5, then F−1
0 (1 − t0) ≤ F−1

0 (0.5). By (A.3) and the assumption on f0 and f1,
dG1(t)/dt |t=t0 = f1(F

−1
0 (1 − t0))/f0(F

−1
0 (1 − t0)) ≤ 1, which contradicts (A.17).

Thus, 0 < t0 ≤ 0.5. This together with (A.11), (A.16), and part III of Lemma 1 gives

G∗
1(t0)/G1(t0) = G∗

0

(
G1(t0)

)
/G1(t0) ≥ G∗

0(t0)/t0.

This together with (A.16) shows,

sup
0<t≤1

G∗
1(t)

G∗
0(t)

≥ G∗
1(t0)

G∗
0(t0)

≥ G1(t0)

t0
= M = sup

0<t≤1

G1(t)

t
. (A.18)

Combining (A.12), (A.15) and (A.18) completes the proof.

Calculation of α
FDRL∞ of the mean filter in Table 3 of Sect. 4.1 From (A.1) and the

conditions given in Sect. 4.1,

G0(t) = t for t ∈ [0,1], and G1(t) =
{

teC, if t ∈ [0, e−C],
1, if t ∈ (e−C,1]. (A.19)

Now we compute α
FDRL∞ of the mean filter. Recall that the distribution G∗

0(t) is

that of Uk = ∑k
i=1 Ui/k, where {Ui}ki=1

i.i.d.∼ Unif(0,1), and the distribution G∗(t) is
also that of Uk . Similarly, by (A.2), the distribution G∗

1(t) is that of Uk/e
C .

Hence, F̂DRL

∞
(t) = [π0 + π1{1 − G∗

1(λ)}/{1 − G∗
0(λ)}]/{π0 +π1G

∗
1(t)/G∗

0(t)},
yielding

αFDRL∞ = π0 + π1{1 − G∗
1(λ)}/{1 − G∗

0(λ)}
π0 + π1 sup0<t≤1 G∗

1(t)/G∗
0(t)

.

Note that

G∗
1(t)

G∗
0(t)

= P(Uk ≤ teC)

P(Uk ≤ t)
=

⎧
⎨

⎩

P(Uk≤teC)

P(Uk≤t)
, if 0 ≤ t ≤ e−C,

1
P(Uk≤t)

, if e−C < t ≤ 1.
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Note that 1/P(Uk ≤ t) is decreasing in t . By a graphical approach for k = 5,
P(Uk ≤ teC)/P(Uk ≤ t) is also decreasing in t . Thus, supt∈(0,1] G∗

1(t)/G∗
0(t) =

limt→0+ G∗
1(t)/G∗

0(t) = limt→0+{G1(t)/t}k = eCk from (A.4) and (A.19). So

α
FDRL∞ = [π0 + π1{1 − G∗

1(λ)}/{1 − G∗
0(λ)}]/(π0 +π1e

Ck), where G∗
0(·) can be cal-

culated from (3.5). The completes the derivation.
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