Defining Functions

2.1 Example: error_approx
We first consider a simple function, from a programming point of view, but involving a complicated formula. The function is the mathematical expression

or, in an equivalent form that involves fewer multiplications,

[image: image1.png]
This function is a rather good approximation to the error function that you have encountered previously in this course. The approximation is only valid for nonnegative values of x. Suppose you wanted to use this function in your calculations. One way to do it is to type it in carefully once and then copy and paste it wherever else you need it. However, that will make the code rather difficult to read. A better solution is to write a function error_approx to compute the value. Then whenever you wish to use the function, you can call error_approx to get the value.

Another reason to use a function is that the formula given for the approximation is only valid for nonnegative values of x, but it can be extended to all values of x with the formula e(x) = - e(|x|) for negative values of x. This can be included in our function to extend our approximation to negative values of the input.

Here is one way to write the function.

function val = error_approx(x)

% error_approx - computes a good approximation to the error

% function.

a = abs(x) ;

s = sign(x) ;

val = s*(1 – 1/(1 + (0.278393 + (0.230389 ...

 + (0.000972 + 0.078108*a)*a)*a)*a)^4);

We now go through this function line by line. These lines of should go in a Matlab m-file and the name of the file must be error_approx.m (the name of the function followed by the .m extension).

· The first word in the file, function, indicates that this file contains a function. Next is the basic information about the function: the name of the output, the name of the function, and the inputs. This function has the name error_approx and it has one input, designated as x, and one output, designated as val. The first line of each Matlab function always has this basic form.

· Starting on the second line are comments describing what the function does. These comments giving information about the function are not an essential part of the function, but they are very useful. The Matlab command help error_approx will print out these lines so that the user can find out what the function does and how to call it. Also, it makes it easier for anyone looking at the file understand how the function works.

· The next lines compute the function. We have used the three dots (...) to indicate that the formula is continued to the next line. This can be used to make complicated expressions easier to read. The value of val, which is specified in the first line as the name of the output of the function, must be computed in the function. Usually it is the last quantity computed.

There are a couple things to be commented on. The parameters x and val used in the definition of the function are independent of the variable names used to call the function. Thus Matlab statements such as

val = 1.25 ;

x = error_approx(val)

z = error_approx(x)

c = error_approx(3.14159)

y = error_approx(pi)

are all valid ways to call the function. Also, the variables inside the function definition are all local to the function. They have no connection to variables with the same name in other program units.

You can check how good the approximation computed by error_approx is by comparing the results you get from it to the results you get from using the Matlab function erf which computes the error function using a much better approximation. (Actually, all the functions such as sin and cos that Matlab has are approximations. They are, however, very good approximations.)

Notice that by putting the computation of the mathematical expression in a function, the remainder of the code will be much more readable. The more readable the code is, the easier it is for you to understand what is going on.

Exercise: Modify error_approx to compute a vector of values for a vector of inputs.

