]> Examples:

Examples:

  1. Solve the below matrix multiplication problems.

    ( 1 2 3 4 5 6 7 8 9 ) * ( 1 0 0 0 1 0 0 0 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaaGymaaqaaiaaikdaaeaacaaIZaaabaGaaGinaaqaaiaaiwdaaeaacaaI2aaabaGaaG4naaqaaiaaiIdaaeaacaaI5aaaaaGaayjkaiaawMcaaiaacQcadaqadaqaauaabeqadmaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaaaaa@471F@

    ( 1 2 3 4 5 6 7 8 9 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaaGymaaqaaiaaikdaaeaacaaIZaaabaGaaGinaaqaaiaaiwdaaeaacaaI2aaabaGaaG4naaqaaiaaiIdaaeaacaaI5aaaaaGaayjkaiaawMcaaaaa@3E44@ Comment: Notice the solution is equal to the first matrix. This is because of the multiplication with an identity matrix.

  2. ( 2 3 4 5 1 3 1 2 2 ) * ( 5 4 4 2 0 1 3 1 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaaGOmaaqaaiaaiodaaeaacaaI0aaabaGaaGynaaqaaiaaigdaaeaacaaIZaaabaGaeyOeI0IaaGymaaqaaiaaikdaaeaacaaIYaaaaaGaayjkaiaawMcaaiaacQcadaqadaqaauaabeqadmaaaeaacaaI1aaabaGaaGinaaqaaiaaisdaaeaacqGHsislcaaIYaaabaGaaGimaaqaaiaaigdaaeaacaaIZaaabaGaeyOeI0IaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaaaaa@49E2@

    ( 16 4 15 32 17 24 3 6 0 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaaGymaiaaiAdaaeaacaaI0aaabaGaaGymaiaaiwdaaeaacaaIZaGaaGOmaaqaaiaaigdacaaI3aaabaGaaGOmaiaaisdaaeaacqGHsislcaaIZaaabaGaeyOeI0IaaGOnaaqaaiaaicdaaaaacaGLOaGaayzkaaaaaa@43C0@

  3. ( .5 .2 .1 .4 1.2 3 .6 2.3 1 ) * ( 0 1.1 1.4 .4 3.2 .4 .2 .8 .7 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaaiOlaiaaiwdaaeaacaGGUaGaaGOmaaqaaiabgkHiTiaac6cacaaIXaaabaGaeyOeI0IaaiOlaiaaisdaaeaacaaIXaGaaiOlaiaaikdaaeaacaaIZaaabaGaeyOeI0IaaiOlaiaaiAdaaeaacaaIYaGaaiOlaiaaiodaaeaacaaIXaaaaaGaayjkaiaawMcaaiaacQcadaqadaqaauaabeqadmaaaeaacaaIWaaabaGaaGymaiaac6cacaaIXaaabaGaaGymaiaac6cacaaI0aaabaGaaiOlaiaaisdaaeaacaaIZaGaaiOlaiaaikdaaeaacaGGUaGaaGinaaqaaiaac6cacaaIYaaabaGaaiOlaiaaiIdaaeaacaGGUaGaaG4naaaaaiaawIcacaGLPaaaaaa@5809@

    ( .06 1.11 .71 1.08 5.8 2.02 1.12 7.5 .78 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaaiOlaiaaicdacaaI2aaabaGaaGymaiaac6cacaaIXaGaaGymaaqaaiaac6cacaaI3aGaaGymaaqaaiaaigdacaGGUaGaaGimaiaaiIdaaeaacaaI1aGaaiOlaiaaiIdaaeaacaaIYaGaaiOlaiaaicdacaaIYaaabaGaaGymaiaac6cacaaIXaGaaGOmaaqaaiaaiEdacaGGUaGaaGynaaqaaiaac6cacaaI3aGaaGioaaaaaiaawIcacaGLPaaaaaa@4E15@