]> Exercises

Exercises

Follow the instructions for the exercises below

    Use Commands Only

  1. When x is less than -2, substitute y= x x 2 2 x + 4 into 1 2 1 + 2 y + 1 + 4 y 12 y 2 y
    (x should be the result)

    restart
    assume(x<-2)
    eq1:=1/2*(1+2*y+sqrt(1+4*y-12*y^2))/y
    y:=x/(x^2-2*x+4)
    eq1
    simplify(eq1)

  2. Make the appropriate assumption so that the result of 0 π cos ( n x ) d x is 0.

    restart
    assume(n, integer)
    eq2:=cos(n*x)
    int(eq2, x=0..Pi)

  3. When n is real, take the integral with respect to x and simplify:
    ( 1 + x ( 1 4 ) ) n x

    restart
    assume(n, real)
    eq3:=((1+x^(1/4))^n)/sqrt(x)
    inteq3:=int(eq3, x)
    simplify(inteq3)

  4. If p is greater than 0, integrate with respect to x from 1 to
    ( a x 2 + b x + c ) e p x

    restart
    assume(p>0)
    eq4:=(a*x^2+b*x+c)*exp(-p*x)
    inteq4:= int(eq4, x=1..infinity)
    simplify(inteq4)

    Use the Right Click Menu

  1. When n is real, take the integral with respect to x and simplify:
    ( 1 + x ( 1 4 ) ) n x

    restart
    assume(n, real)
    eq3:=((1+x^(1/4))^n)/sqrt(x)
    (Right-click: Integrate->x)
    (Right-click result: simplify)