]> Exercises

Exercises

Take the integral with given limits

  1. x 2 6 x + 34 from -3 to 1

    eq1:=x^2-6x+34
    int(eq1, x=-3..1)

  2. sin ( x ) from 0 to Pi

    eq2:=sin(x)
    int(eq2, 0..Pi)

  3. 6 x 2 15 x + 12 x 5 + 4 x 3 + 4 x + 3 x 4 + 12 x 2 + 12 from 0 to 2

    eq3:=(6x^2-15x+12)/x^5+4x^3+4x+3x^4+12x^2+12
    int(eq3, x=0..2)

  4. You have taken an internship with a local company that makes businesses handicap accessible. They have discovered that the function
    ( x ) 3 12 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaaeWaaeaadaGcaaqaaiaadIhaaSqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaakeaacaaIXaGaaGOmaaaaaaa@3B08@
    works well for designing ramps. Your task is to find the surface area of one side of the ramp, i.e. the area under the curve for a ramp of generic length so that an estimate of cost of finishing supplies can be made quickly for a client. Find a function in terms of L, the length of the ramp, that gives the area of one side.

    eq4:=x^(3/2)/12
    int(eq4, x=0..L)