]> Exercises

Exercises

The first three questions require a yes or no answer while the last requires a more lengthy solution

  1. Is this a linear first order ODE?
    d f d t + cos ( λ f ) = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgUcaRiGacogacaGGVbGaai4CamaabmaabaGaeq4UdWMaamOzaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@4350@

    NO because the unknown function appears in a cosine function which is not a linear function.

  2. Is this a linear first order ODE?
    d f d t + cos ( λ t ) f = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgUcaRiGacogacaGGVbGaai4CamaabmaabaGaeq4UdWMaamiDaaGaayjkaiaawMcaaiaadAgacqGH9aqpcaaIWaaaaa@4449@

    YES because the unknown function f(t) appears only to the first power.
    p ( s ) = cos ( λ t ) ,    g ( s ) = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9iGacogacaGGVbGaai4CamaabmaabaGaeq4UdWMaamiDaaGaayjkaiaawMcaaiaacYcacaqGGaGaaeiiaiaadEgadaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@4895@

  3. Is this a linear first order ODE?
    d f d t cos ( α t ) = f MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgkHiTiGacogacaGGVbGaai4CamaabmaabaGaeqySdeMaamiDaaGaayjkaiaawMcaaiabg2da9iaadAgaaaa@4385@

    YES because the unknown function f(t) appears only to the first power. But be careful to first rearrange the ODE in our notation in the discussion. Thus p ( s ) = 1 ,    g ( s ) = cos ( α t ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9iabgkHiTiaaigdacaGGSaGaaeiiaiaabccacaWGNbWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0Jaci4yaiaac+gacaGGZbWaaeWaaeaacqaHXoqycaWG0baacaGLOaGaayzkaaaaaa@496E@

  4. What is the solution of the following linear first order ODE?
    d f d t = 7 3 f ,     f ( 0 ) = 5 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabg2da9iaaiEdacqGHsislcaaIZaGaamOzaiaacYcacaqGGaGaaeiiaiaabccacaWGMbWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0JaaGynaaaa@459B@

    Solution: Put the equation in our preferred notation and identify p(s) and g(s).
    d f d t + 3 f = 7 ,     f ( 0 ) = 5 ,    p ( s ) = 3 ,   g ( s ) = 7 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgUcaRiaaiodacaWGMbGaeyypa0JaaG4naiaacYcacaqGGaGaaeiiaiaabccacaWGMbWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0JaaGynaiaacYcacaqGGaGaaeiiaiaadchadaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpcaaIZaGaaiilaiaabccacaWGNbWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0JaaG4naaaa@5346@
    u ( t ) = exp [ t p ( s ) d s ] ,    p ( s ) = 3 u ( t ) = exp [ t 3 d s ] = exp [ 3 t ] 1 u ( t ) = exp [ 3 t ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1bWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaciyzaiaacIhacaGGWbWaamWaaeaadaWdraqaaiaadchadaqadaqaaiaadohaaiaawIcacaGLPaaacaWGKbGaam4CaaWcbaGaamiDaaqab0Gaey4kIipaaOGaay5waiaaw2faaiaacYcacaqGGaGaaeiiaiaadchadaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpcaaIZaaabaGaamyDamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iGacwgacaGG4bGaaiiCamaadmaabaWaa8qeaeaacaaIZaGaamizaiaadohaaSqaaiaadshaaeqaniabgUIiYdaakiaawUfacaGLDbaacqGH9aqpciGGLbGaaiiEaiaacchadaWadaqaaiaaiodacaWG0baacaGLBbGaayzxaaaabaWaaSaaaeaacaaIXaaabaGaamyDamaabmaabaGaamiDaaGaayjkaiaawMcaaaaacqGH9aqpciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTiaaiodacaWG0baacaGLBbGaayzxaaaaaaa@7217@
    Next
    t u ( s ) g ( s ) d s + c = t exp [ 3 t ] ( 7 ) d s + c = 7 3 exp [ 3 t ] + c MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qeaeaacaWG1bWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaam4zamaabmaabaGaam4CaaGaayjkaiaawMcaaiaadsgacaWGZbaaleaacaWG0baabeqdcqGHRiI8aOGaey4kaSIaam4yaiabg2da9maapebabaGaciyzaiaacIhacaGGWbWaamWaaeaacaaIZaGaamiDaaGaay5waiaaw2faamaabmaabaGaaG4naaGaayjkaiaawMcaaiaadsgacaWGZbaaleaacaWG0baabeqdcqGHRiI8aOGaey4kaSIaam4yaiabg2da9maalaaabaGaaG4naaqaaiaaiodaaaGaciyzaiaacIhacaGGWbWaamWaaeaacaaIZaGaamiDaaGaay5waiaaw2faaiabgUcaRiaadogaaaa@5EF9@
    Putting this together
    f ( t ) = exp [ 3 t ] { 7 3 exp [ 3 t ] + c } MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iGacwgacaGG4bGaaiiCamaadmaabaGaeyOeI0IaaG4maiaadshaaiaawUfacaGLDbaadaGadaqaamaalaaabaGaaG4naaqaaiaaiodaaaGaciyzaiaacIhacaGGWbWaamWaaeaacaaIZaGaamiDaaGaay5waiaaw2faaiabgUcaRiaadogaaiaawUhacaGL9baaaaa@4DDC@ or f ( t ) = { 7 3 + c exp [ 3 t ] } MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9maacmaabaWaaSaaaeaacaaI3aaabaGaaG4maaaacqGHRaWkcaWGJbGaciyzaiaacIhacaGGWbWaamWaaeaacqGHsislcaaIZaGaamiDaaGaay5waiaaw2faaaGaay5Eaiaaw2haaaaa@4759@
    Now use the initial condition to find the constant c.
    f ( 0 ) = 5 ,    f ( 0 ) = { 7 3 + c exp [ 0 ] } = 5 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaiwdacaGGSaGaaeiiaiaabccacaWGMbWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0ZaaiWaaeaadaWcaaqaaiaaiEdaaeaacaaIZaaaaiabgUcaRiaadogaciGGLbGaaiiEaiaacchadaWadaqaaiaaicdaaiaawUfacaGLDbaaaiaawUhacaGL9baacqGH9aqpcaaI1aaaaa@4DDF@
    7 3 + c = 5 c = 8 3 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaI3aaabaGaaG4maaaacqGHRaWkcaWGJbGaeyypa0JaaGynaiabgkDiElaadogacqGH9aqpdaWcaaqaaiaaiIdaaeaacaaIZaaaaaaa@40E4@ . Thus f ( t ) = 1 3 { 7 + 8 exp [ 3 t ] } MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaiodaaaWaaiWaaeaacaaI3aGaey4kaSIaaGioaiGacwgacaGG4bGaaiiCamaadmaabaGaeyOeI0IaaG4maiaadshaaiaawUfacaGLDbaaaiaawUhacaGL9baaaaa@47EE@