]> Examples:

Examples:

  1. Which of the following is a linear first order ODE?

    a. d f d t + λ f 2 = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgUcaRiabeU7aSjaadAgadaahaaWcbeqcbaCaaiaaikdaaaGccqGH9aqpcaaIWaaaaa@40B1@
    b. d f d t + λ 2 f = ln ( t ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgUcaRiabeU7aSnaaCaaaleqajeaWbaGaaGOmaaaakiaadAgacqGH9aqpciGGSbGaaiOBamaabmaabaGaamiDaaGaayjkaiaawMcaaaaa@445D@
    c. d f d t + λ 2 ( f ) 1 2 = 7 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgUcaRiabeU7aSnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaamOzaaGaayjkaiaawMcaamaaCaaaleqajeaWbaWcdaWccaqcbaCaaiaaigdaaeaacaaIYaaaaaaakiabg2da9iaaiEdaaaa@44D6@

    a. d f d t + λ f 2 = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgUcaRiabeU7aSjaadAgadaahaaWcbeqcbaCaaiaaikdaaaGccqGH9aqpcaaIWaaaaa@40B1@ : NO, f appears to the second power so it is not linear
    b. d f d t + λ 2 f = ln ( t ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgUcaRiabeU7aSnaaCaaaleqajeaWbaGaaGOmaaaakiaadAgacqGH9aqpciGGSbGaaiOBamaabmaabaGaamiDaaGaayjkaiaawMcaaaaa@445D@ : YES, This is a linear first order ODE
    c. d f d t + λ 2 ( f ) 1 2 = 7 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgUcaRiabeU7aSnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaamOzaaGaayjkaiaawMcaamaaCaaaleqajeaWbaWcdaWccaqcbaCaaiaaigdaaeaacaaIYaaaaaaakiabg2da9iaaiEdaaaa@44D6@ : NO, f is raised to the half power which makes it non-linear

  2. What is the unknown function f(t) that solves the following linear first order ODE?

    d f d t + 2 f = 0 ,     f ( 0 ) = 10 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG0baaaiabgUcaRiaaikdacaWGMbGaeyypa0JaaGimaiaacYcacaqGGaGaaeiiaiaabccacaWGMbWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0JaaGymaiaaicdaaaa@463E@
    Use the formula in the discussion to solve.

    Solution:
    u ( t ) = exp [ t p ( s ) d s ] ,    p ( s ) = 2 u ( t ) = exp [ t 2 d s ] = exp [ 2 t ] 1 u ( t ) = exp [ 2 t ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1bWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaciyzaiaacIhacaGGWbWaamWaaeaadaWdraqaaiaadchadaqadaqaaiaadohaaiaawIcacaGLPaaacaWGKbGaam4CaaWcbaGaamiDaaqab0Gaey4kIipaaOGaay5waiaaw2faaiaacYcacaqGGaGaaeiiaiaadchadaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpcaaIYaaabaGaamyDamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iGacwgacaGG4bGaaiiCamaadmaabaWaa8qeaeaacaaIYaGaamizaiaadohaaSqaaiaadshaaeqaniabgUIiYdaakiaawUfacaGLDbaacqGH9aqpciGGLbGaaiiEaiaacchadaWadaqaaiaaikdacaWG0baacaGLBbGaayzxaaaabaWaaSaaaeaacaaIXaaabaGaamyDamaabmaabaGaamiDaaGaayjkaiaawMcaaaaacqGH9aqpciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTiaaikdacaWG0baacaGLBbGaayzxaaaaaaa@7213@
    Next
    t u ( s ) g ( s ) d s + c = t exp [ 2 t ] ( 0 ) d s + c = 0 + c MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qeaeaacaWG1bWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaam4zamaabmaabaGaam4CaaGaayjkaiaawMcaaiaadsgacaWGZbaaleaacaWG0baabeqdcqGHRiI8aOGaey4kaSIaam4yaiabg2da9maapebabaGaciyzaiaacIhacaGGWbWaamWaaeaacaaIYaGaamiDaaGaay5waiaaw2faamaabmaabaGaaGimaaGaayjkaiaawMcaaiaadsgacaWGZbaaleaacaWG0baabeqdcqGHRiI8aOGaey4kaSIaam4yaiabg2da9iaaicdacqGHRaWkcaWGJbaaaa@579A@
    thus
    f ( t ) = c exp [ 2 t ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaadogaciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTiaaikdacaWG0baacaGLBbGaayzxaaaaaa@42B7@ and f ( 0 ) = 10 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaigdacaaIWaaaaa@3B96@ so the final result is f ( t ) = 10 exp [ 2 t ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaaigdacaaIWaGaciyzaiaacIhacaGGWbWaamWaaeaacqGHsislcaaIYaGaamiDaaGaay5waiaaw2faaaaa@4344@ .

  3. Solve the following linear first order ODE.

    d y d t = λ y ( t ) ,      y ( 0 ) = y 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG0baaaiabg2da9iabgkHiTiabeU7aSjaadMhadaqadaqaaiaadshaaiaawIcacaGLPaaacaGGSaGaaeiiaiaabccacaqGGaGaaeiiaiaadMhadaqadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpcaWG5bWaaSbaaSqaaiaaicdaaeqaaaaa@4A54@

    Solution: First, identify each of the terms in the equation with the formulas that you learned in the discussion. This ODE is written is a slightly different form than the standard ODE in the discussion. Thus we bring all the terms containing y(t) to the left hand side and put all the terms that contain just some other arbitrary function on the right hand side.

    d y d t + λ y ( t ) = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG0baaaiabgUcaRiabeU7aSjaadMhadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@419C@ Now you can see p ( s ) = λ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9iabeU7aSbaa@3C1D@ and g ( s ) = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3B1A@
    u ( t ) = exp [ t p ( s ) d s ] ,    p ( s ) = λ u ( t ) = exp [ t λ d s ] = exp [ λ t ] 1 u ( t ) = exp [ λ t ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1bWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaciyzaiaacIhacaGGWbWaamWaaeaadaWdraqaaiaadchadaqadaqaaiaadohaaiaawIcacaGLPaaacaWGKbGaam4CaaWcbaGaamiDaaqab0Gaey4kIipaaOGaay5waiaaw2faaiaacYcacaqGGaGaaeiiaiaadchadaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpcqaH7oaBaeaacaWG1bWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaciyzaiaacIhacaGGWbWaamWaaeaadaWdraqaaiabeU7aSjaadsgacaWGZbaaleaacaWG0baabeqdcqGHRiI8aaGccaGLBbGaayzxaaGaeyypa0JaciyzaiaacIhacaGGWbWaamWaaeaacqaH7oaBcaWG0baacaGLBbGaayzxaaaabaWaaSaaaeaacaaIXaaabaGaamyDamaabmaabaGaamiDaaGaayjkaiaawMcaaaaacqGH9aqpciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTiabeU7aSjaadshaaiaawUfacaGLDbaaaaaa@75F3@
    Next
    t u ( s ) g ( s ) d s + c = t exp [ λ t ] ( 0 ) d s + c = 0 + c MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qeaeaacaWG1bWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaam4zamaabmaabaGaam4CaaGaayjkaiaawMcaaiaadsgacaWGZbaaleaacaWG0baabeqdcqGHRiI8aOGaey4kaSIaam4yaiabg2da9maapebabaGaciyzaiaacIhacaGGWbWaamWaaeaacqaH7oaBcaWG0baacaGLBbGaayzxaaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaamizaiaadohaaSqaaiaadshaaeqaniabgUIiYdGccqGHRaWkcaWGJbGaeyypa0JaaGimaiabgUcaRiaadogaaaa@5892@
    and finally
    y ( t ) = c exp [ λ t ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaadogaciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTiabeU7aSjaadshaaiaawUfacaGLDbaaaaa@43C2@ and  y ( 0 ) = y 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiiaiaabMhadaqadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpcaWG5bWaaSbaaSqaaiaaicdaaeqaaaaa@3CB9@ so the final result is y ( t ) = y 0 exp [ λ t ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaadMhadaWgaaWcbaGaaGimaaqabaGcciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTiabeU7aSjaadshaaiaawUfacaGLDbaaaaa@44C8@