
Spanning Trees

Definition

For an undirected graph G with V nodes: If T is a subgraph of G and T
contains all nodes of G, is connected, and has exactly (V-1) edges, then
T is a spanning tree of G.

A

D B

C

E

A

D B

C

E

A

D B

C

E

Depth First Spanning Trees

DFT(v):

 mark v as visited

 for each unvisited successor u of v:

 DFT(u)

Breadth First Spanning Trees

BFT(v):
 q = new Queue()
 mark v as visited
 q.enqueue(v)
 while (!q.isEmpty()):
 c = q.dequeue()
 for each unvisited successor u of c:

 mark u as visited
 q.enqueue(u)

Minimum Spanning Trees

In a weighted graph:

 Minimum spanning trees are the spanning trees with the lowest

 sum of edge weights.

Prim’s Algorithm

For weighted, connected, and undirected graphs.

prim(v):
pq = new PriorityQueue()
mark v as visited
pq.insert(v.outgoingEdges)
while (!pq.isEmpty()):
 c = pq.removeMin()
 if (c.endNode is unvisited):
 mark c.endNode as visited
 add c to tree
 pq.insert(c.endNode.outgoingEdges to unvisited nodes)

A B C

D E F

G H I

1 2

3 1

1 6

3

4

5

3

2

4

Kruskal’s Algorithm

For weighted, connected, and undirected graphs.

kruskal(edgeList):
sort edgeList
init nodeSets with singleton sets
while (!edgeList.isEmpty()):
 c = edgeList.removeFirst()
 if (c.startNode and c.endNode in different nodeSets):
 add c to tree
 nodeSets.join(c.startNode, c.endNode)

A B C

D E F

G H I

1 2

3 1

1 6

3

4

5

3

2

4

Complexities

V: # nodes in graph

E: # edges in graph

Prim:

Kruskal:

	Slide 1: Spanning Trees
	Slide 2: Definition
	Slide 3: Depth First Spanning Trees
	Slide 4: Breadth First Spanning Trees
	Slide 5: Minimum Spanning Trees
	Slide 6: Prim’s Algorithm
	Slide 7: Kruskal’s Algorithm
	Slide 8: Complexities

