Week 2(W) Page 1

CS 536 Announcements for Wednesday, January 31, 2024

Course websites:
 pages.cs.wisc.edu/~hasti/cs536
 www.piazza.com/wisc/spring2024/compsci536

Programming Assignment 1
 • test code due Sunday, Feb. 4 by 11:59 pm
 • other files due Thursday, Feb. 8 by 11:59 pm

Last Time
 • start scanning
 • finite state machines
 • formalizing finite state machines
 • coding finite state machines
 • deterministic vs non-deterministic FSMs

Today
 • non-deterministic FSMs
 • equivalence of NFAs and DFAs
 • regular languages
 • regular expressions

Next Time
 • regular expressions \(\rightarrow\) DFAs
 • language recognition \(\rightarrow\) tokenizers
 • scanner generators
 • JLex

Recall
 • scanner: converts a sequence of characters to a sequence of tokens
 • scanner implemented using FSMs
 • FSMs can be DFA or NFA

Creating a scanner

\[
\text{scanner} = \text{token to regex} + \text{regex to NFA} + \text{NFA to DFA} + \text{DFA to code}
\]

scanner generator
NFAs, formally
finite state machine $M = (Q, \Sigma, \delta, q, F)$

$L(M) =$ the language of FSM $M =$ set of all strings M accepts
Example:

"Running" an NFA
To check if a string is in $L(M)$ of NFA M, simulate set of choices it could make.

The string is in $L(M)$ iff there is at least one sequence of transitions that
- consumes all input (without getting stuck) and
- ends in one of the final states
NFA and DFA are equivalent

Two automata M and M^* are equivalent iff $L(M) = L(M^*)$

Lemmas to be proven:

Lemma 1: Given a DFA M, one can construct an NFA M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Lemma 2: Given an NFA M, one can construct a DFA M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Proving Lemma 2

Lemma 2: Given an NFA M, one can construct a DFA M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Part 1: Given an NFA M without ε-transitions, one can construct a DFA M^* that recognizes the same language as M

Part 2: Given an NFA M with ε-transitions, one can construct a NFA M^* without ε-transitions that recognizes the same language as M
NFA without \(\epsilon \)-transitions to DFA

Observation: we can only be in finitely many subsets of states at any one time

Idea: to do NFA \(M \rightarrow \) DFA \(M^* \), use a single state in \(M^* \) to simulate sets of states in \(M \)

Suppose \(M \) has \(|Q| \) states. Then \(M^* \) can have only up to states.

Why?

Example
NFA without ε-transitions to DFA

Given NFA M:

Build new DFA M^*

To build DFA: Add an edge in M^* from state S^* on character c to state T^* if T^* represents the set of all states that a state in S^* could possibly transition to on input c.

ε-transitions

Example: x^n, where n is even or divisible by 3
Eliminating ε-transitions

Goal: given NFA M with ε-transitions, construct an ε-free NFA M^* that is equivalent to M

Definition: *epsilon closure*

$\text{eclose}(S) =$ set of all states reachable from S using 0 or more epsilon transitions
Summary of FSMs

DFAs and NFAs are equivalent
- an NFA can be converted into a DFA, which can be implemented via the table-driven approach

\(\epsilon\)-transitions do not add expressiveness to NFAs
- algorithm to remove \(\epsilon\)-transitions

Regular Languages and Regular Expressions

Regular language
Any language recognized by an FSM is a regular language
Examples:
- single-line comments beginning with //
- hexadecimal integer literals in Java
- C/C++ identifiers
- \{\(\epsilon\), ab, abab, ababab, abababab, \ldots\}

Regular expression
= a pattern that defines a regular language

- regular language: (potentially infinite) set of strings
- regular expression: represents a (potentially infinite) set of strings by a single pattern

Example: \{\(\epsilon\), ab, abab, ababab, abababab, \ldots\} \iff \text{(ab)}^*

Why do we need them?
- Each token in a programming language can be defined by a regular language
- Scanner-generator input = one regular expression for each token to be recognized by the scanner

Formal definition
A regular expression over an alphabet \(\Sigma\) is any of the following:
- \(\emptyset\) (the empty regular expression)
- \(\epsilon\)
- \(a\) (for any \(a \in \Sigma\))

Moreover, if \(R_1\) and \(R_2\) are regular expressions over \(\Sigma\), then so are: \(R_1 \mid R_2\), \(R_1 \cdot R_2\), \(R_1^*\)
Regular expressions (as an expression language)

regular expression = pattern describing a set of strings

operands: single characters, epsilon

operators:

alternation ("or"): a | b

concatenation ("followed by"): a.b ab

iteration ("Kleene star"): a*

Conventions

aa is a.a

a+ is aa*

letter is a|b|c|d|…|y|z|A|B|…|Z

digit is 0|1|2|…|9

not(x) is all characters except x

parentheses for grouping and overriding precedence, e.g., (ab)*

Example: single-line comments beginning with //

Example: hexadecimal integer literals in Java

• must start 0x or 0X

• followed by at least one hexadecimal digit (hexdigit)

 • hexdigit = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F

• optionally can add long specifier (l or L) at end

Example: C/C++ identifiers (with one added restriction)

• sequence of letters/digits/underscores

• cannot begin with a digit

• cannot end with an underscore