CS 536 Announcements for Wednesday, January 31, 2024

Course websites:
 pages.cs.wisc.edu/~hasti/cs536
 www.piazza.com/wisc/spring2024/compsci536

Programming Assignment 1
• test code due Sunday, Feb. 4 by 11:59 pm
• other files due Thursday, Feb. 8 by 11:59 pm

Last Time
• start scanning
• finite state machines
 • formalizing finite state machines
 • coding finite state machines
 • deterministic vs non-deterministic FSMs

Today
• non-deterministic FSMs
• equivalence of NFAs and DFAs
• regular languages
• regular expressions

Next Time
• regular expressions → DFAs
• language recognition → tokenizers
• scanner generators
• JLex

Recall
• scanner : converts a sequence of characters to a sequence of tokens
• scanner implemented using FSMs
• FSMs can be DFA or NFA

Creating a scanner

\[
\text{scanner} = \text{token to regex} + \text{regex to NFA} + \text{NFA to DFA} + \text{DFA to code}
\]
NFAs, formally

finite state machine \(M = (Q, \Sigma, \delta, q, F) \)

- \(Q \) = finite set of states
- \(\Sigma \) = alphabet (symbol-characters)
- \(\delta \) = transition function: \(\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q) \)
- \(q \) = start state, \(q \in Q \)
- \(F \subseteq Q \) = final states

\(L(M) = \) the **language** of FSM \(M \) = set of all strings \(M \) accepts

Example:

\[
\begin{array}{c|cc|cc}
\text{S}_1 & \varepsilon & 3 & \varepsilon & 3, 3 \\
\text{S}_2 & 3 & 3 & \varepsilon & 3 \\
\end{array}
\]

"Running" an NFA

To check if a string is in \(L(M) \) of NFA \(M \), simulate set of choices it could make.

Input: 111

The string is in \(L(M) \) iff there is at least one sequence of transitions that
- consumes all input (without getting stuck) and
- ends in one of the **final** states
NFA and DFA are equivalent

Two automata M and M^* are equivalent iff $L(M) = L(M^*)$

Lemmas to be proven:

Lemma 1: Given a **DFA** M, one can construct an **NFA** M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Lemma 2: Given an **NFA** M, one can construct a **DFA** M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Proving Lemma 2

Lemma 2: Given an **NFA** M, one can construct a **DFA** M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Part 1: Given an **NFA** M **without** ε-transitions, one can construct a **DFA** M^* that recognizes the same language as M

Part 2: Given an **NFA** M **with** ε-transitions, one can construct a **NFA** M^* **without** ε-transitions that recognizes the same language as M
NFA without ε-transitions to DFA

Observation: we can only be in finitely many subsets of states at any one time

Idea: to do NFA $M \rightarrow$ DFA M^*, use a single state in M^* to simulate sets of states in M

Suppose M has $|Q|$ states. Then M^* can have only up to $2^{|Q|}$ states.

Why?

Example:
NFA without ε-transitions to DFA

Given NFA M:

Build new DFA M^*

To build DFA: Add an edge in M^* from state S^* on character c to state T^* if T^* represents the set of all states that a state in S^* could possibly transition to on input c.

ε-transitions

Example: x^n, where n is even or divisible by 3

Any state in M^* whose subset contains a final state of M is a final state in M^*. Useful for taking union of 2 FSMs.
Eliminating ε-transitions

Goal: given NFA M with ε-transitions, construct an ε-free NFA M^* that is equivalent to M

Definition: epsilon closure

$\text{eclose}(S) =$ set of all states reachable from S using 0 or more epsilon transitions

<table>
<thead>
<tr>
<th>State</th>
<th>eclose</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$\varepsilon P, Q, R$</td>
</tr>
<tr>
<td>Q</td>
<td>εQ</td>
</tr>
<tr>
<td>R</td>
<td>εR</td>
</tr>
<tr>
<td>Q_1</td>
<td>εQ_1</td>
</tr>
<tr>
<td>R_1</td>
<td>εR_1</td>
</tr>
<tr>
<td>R_2</td>
<td>εR_2</td>
</tr>
</tbody>
</table>

1) Make S an accepting state in M^* iff $\text{eclose}(S)$ contains an accepting state of M not ε

2) For each edge $S \xrightarrow{a} T$ in M
 - add edge to M^*
 - $S^* \xrightarrow{a} T^*$
 - for each S^* s.t. $S \in \text{eclose}(S^*)$
 - $&$ for each T^* s.t. $T \in \text{eclose}(T)$

3) Delete all edges labeled with ε
Summary of FSMs

DFA s and NFAs are equivalent
- an NFA can be converted into a DFA, which can be implemented via the table-driven approach

ɛ-transitions do not add expressiveness to NFAs
- algorithm to remove ɛ-transitions

Regular Languages and Regular Expressions

Regular language
Any language recognized by an FSM is a regular language
Examples:
- single-line comments beginning with //
- hexadecimal integer literals in Java
- C/C++ identifiers
- {ɛ, ab, abab, ababab, abababab, ...}

Regular expression
= a pattern that defines a regular language

regular language: (potentially infinite) set of strings
regular expression: represents a (potentially infinite) set of strings by a single pattern
Example: {ɛ, ab, abab, ababab, abababab, ...} \(\leftrightarrow\) (ab)*

Why do we need them?
- Each token in a programming language can be defined by a regular language
- Scanner-generator input = one regular expression for each token to be recognized by the scanner

Formal definition
A regular expression over an alphabet \(\Sigma\) is any of the following:
- \(\emptyset\) (the empty regular expression)
- \(\varepsilon\)
- \(a\) (for any \(a \in \Sigma\))

Moreover, if \(R_1\) and \(R_2\) are regular expressions over \(\Sigma\), then so are: \(R_1 \mid R_2\), \(R_1 \cdot R_2\), \(R_1^*\)
Regular expressions (as an expression language)

regular expression = pattern describing a set of strings

operands: single characters, epsilon ε

operators:
- alternation ("or"): $a | b$
- concatenation ("followed by"): $a . b$ or ab
- iteration ("Kleene star"): a^*

Conventions
- aa is $a . a$
- a^+ is aa^*
- letter is $a | b | c | d | ... | y | z | A | B | ... | Z$
- digit is $0 | 1 | 2 | ... | 9$
- not(x) is all characters except x
- parentheses for grouping and overriding precedence, e.g., $(ab)^*$

Example: single-line comments beginning with //

```
// not\n\n```

**Example**: hexadecimal integer literals in Java
- must start 0x or 0X
- followed by at least one hexadecimal digit (hexdigit)
  - hexdigit = $0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F$
- optionally can add long specifier (l or L) at end

```
0(x|X)hexdigit+ (E|L)\n```

Example: C/C++ identifiers (with one added restriction)
- sequence of letters/digits/underscores
- cannot begin with a digit
- cannot end with an underscore