CS 536 Announcements for Monday, March 4, 2024

Last Time
- approaches to parsing
- bottom-up parsing
- CFG transformations
 - removing useless non-terminals
 - Chomsky normal form (CNF)
- CYK algorithm

Today
- wrap up CYK
- classes of grammars
- top-down parsing

Next Time
- building a predictive parser
- FIRST and FOLLOW sets

Parsing (big picture)

Context-free grammars (CFGs)
- language generation:
- language recognition:

Translation
- given $w \in L(G)$, create
- given $w \in L(G)$, create
CYK algorithm

Step 1: get grammar in Chomsky Normal Form

Step 2: build all possible parse trees bottom-up
- start with runs of 1 terminal
- connect 1-terminal runs into 2-terminal runs
- connect 1- and 2-terminal runs into 3-terminal runs
- connect 1- and 3- or 2- and 2-terminal runs into 4-runs
- ...
- if we can connect entire tree, rooted at start symbol, we’ve found a valid parse

Pros: able to parse an arbitrary CFG

Cons: $O(n^3)$ time complexity

For special classes of grammars, we can parse in $O(n)$ time

Classes of grammars

LL(1)

LALR(1)

Both are accepted by parser generators

LALR(1)
- parsed by bottom-up parsers
- harder to understand

LL(1)
- parsed by top-down parsers
Top-down parsers

- Start at start symbol
- Repeatedly "predict" what production to use

Predictive parser overview

Example

CFG: \[s \rightarrow (s) \mid \{s\} \mid \epsilon \]

Parse table:

\[
\begin{array}{cccc}
 & (&) & \{ & \} & \text{EOF} \\
 s & & & & & \\
\end{array}
\]

Input: \((\{ \}) \text{ EOF} \)
Predictive parser algorithm

stack.push(EOF)
stack.push(start nonterm)
T = scanner.getToken()

repeat

 if stack.top is terminal Y
 match Y with T
 pop Y from stack
 T = scanner.getToken()

 if stack.top is nonterminal x
 get table[x, current token T]
 pop x from stack
 push production's RHS (each symbol from R to L)

until one of the following:
 stack is empty
 stack.top is a terminal that does not match T
 stack.top is a nonterm and parse-table entry is empty

Example

CFG: s → (s) | { s } | ε

Parse table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>EOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input: (({ EOF
Consider

CFG: \[s \rightarrow (s) | \{s\} | () | \{\} | \epsilon \]

Parse table:

<table>
<thead>
<tr>
<th></th>
<th>()</th>
<th>{ }</th>
<th>}</th>
<th>EOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two issues
1) How do we know if the language is LL(1)?
2) How do we build the selector table?
Converting non-LL(1) grammars to LL(1) grammars

Necessary (but not sufficient conditions) for LL(1) parsing

- free of left recursion – no left-recursive rules
- left-factored – no rules with a common prefix, for any nonterminal

Left recursion

- A grammar \(G \) is recursive in nonterm \(X \) iff \(X \Rightarrow^{+} \alpha X \beta \)
- A grammar \(G \) is left recursive in nonterm \(X \) iff \(X \Rightarrow^{+} X \beta \)
- A grammar \(G \) is immediately left recursive in \(X \) iff \(X \Rightarrow X \beta \)

Why left-recursion is a problem

Consider: \(\text{xlist} \rightarrow \text{xlist ID | ID} \)
Removing left-recursion

We can remove immediate left recursion without "changing" the grammar:

Consider: \[A \rightarrow A \beta \]
\[\quad | \alpha \]

Solution: introduce new nonterminal \(A' \) and new productions:

More generally,

\[A \rightarrow \alpha_1 | \alpha_2 | \ldots | \alpha_n | A \beta_1 | A \beta_2 | \ldots | A \beta_p \]

transforms to
Grammars that are not left-factored

If a nonterminal has two productions whose right-hand sides have a common prefix, the grammar is not left-factored.

Example: \(s \rightarrow (s) | () \)

Given: \(A \rightarrow \alpha \beta_1 | \alpha \beta_2 \)
transform it to

More generally,
\[
A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \ldots | \alpha \beta_n | \delta_1 | \delta_2 | \ldots | \delta_p
\]
transforms to

Combined example

\[
exp \rightarrow (exp) \\
| \exp \exp \\
| ()
\]