
[537] NFS
Chapters 47
Tyler Harter

11/19/14

File-System Case Studies
Local
 - FFS: Fast File System
 - LFS: Log-Structured File System
!

Network
 - NFS: Network File System
 - AFS: Andrew File System

File-System Case Studies
Local
 - FFS: Fast File System
 - LFS: Log-Structured File System
!

Network
 - NFS: Network File System [today]
 - AFS: Andrew File System

Communication Review

Challenges
Communication implies multiple components.
!

Need to deal with partial failure.
!

No global view!
 - are router buffers full?
 - why didn’t ACK come back?

Communication Abstractions
Raw messages
!

Reliable messages
!

PL: RPC call
!

OS: global FS

Raw Messages: UDP
Read/write over sockets.
!
IP addr + port identify endpoints.
!
Messages are unreliable.

Communication Abstractions
Raw messages
!

Reliable messages
!

PL: RPC call
!

OS: global FS

Reliable Messages: TCP
Timeout/retry.

Retry
Receiver sends ACK message back.
!

Upon no ACK, sender retries.
!

How long to wait? Use adaptive approach.

Reliable Messages: TCP
Timeout/retry.
!
Buffer messages to preserve ordering.

Buffering
us

er
ke

rn
el

Network

A B

Buffering
us

er
ke

rn
el

Network

A B

1

Buffering
us

er
ke

rn
el

Network

A B

Buffering
us

er
ke

rn
el

Network

A B

2

Buffering
us

er
ke

rn
el

Network

A B

Buffering
us

er
ke

rn
el

Network

A B

3

Buffering
us

er
ke

rn
el

Network

A B

Buffering
us

er
ke

rn
el

Network

A B

2

Buffering
us

er
ke

rn
el

Network

A B

2

Buffering
us

er
ke

rn
el

Network

A B

21

Buffering
us

er
ke

rn
el

Network

A B

2

1

Buffering
us

er
ke

rn
el

Network

A B

2

Buffering
us

er
ke

rn
el

Network

A B

2

Buffering
us

er
ke

rn
el

Network

A B

Buffering
us

er
ke

rn
el

Network

A B

3

Buffering
us

er
ke

rn
el

Network

A B

3

Buffering
us

er
ke

rn
el

Network

A B

Reliable Messages: TCP
Timeout/retry.
!
Buffer messages to preserve ordering.
!
Suppress duplicates.

Sender
[send message]

!
!

[timout]

Receiver
!
!
!
!
!

Sender
[send message]

!
!

[timout]

Receiver
!

[recv message]
[send ack]

C
as

e
1

C
as

e
2

How can sender
tell difference?
!
Retries may cause
duplicates.

Suppressing Duplicates
TCP gives each message a seq num.
!
TCP remember all messages before N have been received.
!
Suppose message K is received. Suppress if:
 - K < N
 - Msg K is already buffered

Communication Abstractions
Raw messages
!

Reliable messages
!

PL: RPC call
!

OS: global FS

Remote Procedure Calls
Strategy: create wrappers so calling a function on
another machine feels just like calling a local
function.

RPC
int main(…) {
!
}

Machine A
int foo(char *msg) {
 …
}

Machine B

RPC
int main(…) {
 int x = foo();
}

Machine A
int foo(char *msg) {
 …
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}

Machine A
int foo(char *msg) {
 …
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

Actual calls.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

What it feels like for programmer.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

Wrappers.

client
wrapper

server
wrapper

Tricky Issues
Pointers.
!

Build over TCP or UDP?

Communication Abstractions
Raw messages
!

Reliable messages
!

PL: RPC call
!

OS: global FS

Network File System

Primary Goal
Local FS: processes on same machine access
shared files.
!

Network FS: processes on different machines
access shared files in same way.

Subgoals
Fast+simple crash recovery
 - both clients and file server may crash
!

Transparent access
 - can’t tell it’s over the network
 - normal UNIX semantics
!

Reasonable performance

Overview
Architecture
!

Network API
!

Write Buffering
!

Cache

NFS Architecture

File!
Server

Client

Client

Client

Client

Building Block 1: Local FS

File!
Server

Client

Client

Client

Client Local FS

Building Block 2: RPC

File!
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC
Local FS

Main Design Decisions
What functions to expose via RPC?
!

Think of NFS as more of a protocol than a
particular file system.
!

Many companies have implemented NFS:
Oracle/Sun, NetApp, EMC, IBM, etc

Today’s Lecture
We’re looking at NFSv2.
!

There is now an NFSv4 with many changes.
!

Why look at an older protocol?
To compare and contrast NFS with AFS.

General Strategy: Export FS

Local FSLocal FS

Client Server

General Strategy: Export FS

Local FSLocal FS

Client Server

read

General Strategy: Export FS

Local FSLocal FS

Client Server

read

General Strategy: Export FS

Local FSLocal FS

Client Server

General Strategy: Export FS

Local FSLocal FS

Client Server

NFS

mount

/dev/sda1 on /
/dev/sdb1 on /backups
AFS on /home/tyler

/

backups home

bak1 bak2 bak3

etc bin

tyler

.bashrc

/dev/sda1 on /
/dev/sdb1 on /backups
AFS on /home/tyler

/

backups home

bak1 bak2 bak3

etc bin

tyler

.bashrc

mount harter@galap-1:… /home/tyler/537

/dev/sda1 on /
/dev/sdb1 on /backups
AFS on /home/tyler
harter@galap-1:… on /home/tyler/537

/

backups home

bak1 bak2 bak3

etc bin

tyler

537

p1 p2

.bashrc

General Strategy: Export FS

Local FSLocal FS

Client Server

NFS

mount

General Strategy: Export FS

Local FSLocal FS

Client Server

NFS

General Strategy: Export FS

Local FSLocal FS

Client Server

NFS
read

General Strategy: Export FS

Local FSLocal FS

Client Server

NFS
read

Overview
Architecture
!

Network API
!

Write Buffering
!

Cache

Strategy 1
Wrap regular UNIX system calls using RPC.
!

open() on client calls open() on server.
open() on server returns fd back to client.
!

read(fd) on client calls read(fd) on server.
read(fd) on server returns data back to client.

File Descriptors

Local FSLocal FS

Client Server

NFS

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds
open() = 2

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds
read(2)

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds
read(2)

Strategy 1 Problems
What about crashes?
!

int fd = open(“foo”, O_RDONLY);
read(fd, buf, MAX);
read(fd, buf, MAX);
…
read(fd, buf, MAX);
!

Imagine server crashes and reboots during reads…

crash!

Strategy 1 Problems
What about crashes?
!

int fd = open(“foo”, O_RDONLY);
read(fd, buf, MAX);
read(fd, buf, MAX);
…
read(fd, buf, MAX);
!

Imagine server crashes and reboots during reads…

nice if this just looks
like a slow read

Subgoals
Fast+simple crash recovery
 - both clients and file server may crash
!

Transparent access
 - can’t tell it’s over the network
 - normal UNIX semantics
!

Reasonable performance

Potential Solutions
1. Run some crash recovery protocol upon reboot.
 - complex
!

2. Persist fds on server disk.
 - slow
 - what if client crashes instead?
!

Subgoals
Fast+simple crash recovery
 - both clients and file server may crash
!

Transparent access
 - can’t tell it’s over the network
 - normal UNIX semantics
!

Reasonable performance

Strategy 2: put all info in requests
Use “stateless” protocol!
 - server maintains no state about clients
 - server still keeps other state, of course

Eliminate File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

Eliminate File Descriptors

Local FSLocal FS

Client Server

NFS

Strategy 2: put all info in requests
Use “stateless” protocol!
 - server maintains no state about clients
 - server still keeps other state, of course
!
Need API change. One possibility:
pread(char *path, buf, size, offset);
pwrite(char *path, buf, size, offset);
!
Specify path and offset each time. Server need not
remember. Pros/cons?

Strategy 2: put all info in requests
Use “stateless” protocol!
 - server maintains no state about clients
 - server still keeps other state, of course
!
Need API change. One possibility:
pread(char *path, buf, size, offset);
pwrite(char *path, buf, size, offset);
!
Specify path and offset each time. Server need not
remember. Pros/cons? Too many path lookups.

Strategy 3: inode requests
!
pread(char *path, buf, size, offset);
pwrite(char *path, buf, size, offset);

Strategy 3: inode requests
inode = open(char *path);
pread(inode, buf, size, offset);
pwrite(inode, buf, size, offset);

Strategy 3: inode requests
inode = open(char *path);
pread(inode, buf, size, offset);
pwrite(inode, buf, size, offset);
!
This is pretty good! Any correctness problems?

Strategy 3: inode requests
inode = open(char *path);
pread(inode, buf, size, offset);
pwrite(inode, buf, size, offset);
!
This is pretty good! Any correctness problems?!
!
What if file is deleted, and inode is reused?

Strategy 4: file handles
fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);
!
File Handle = <volume ID, inode #, generation #>

Aside: Append
fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);
append(fh, buf, size);
!
Would append() be a good idea?!
!
Problem: if our RPC library retries if no ACK or return, what!
happens when append is retried?

Aside: Append
fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);
append(fh, buf, size);
!
Would append() be a good idea?!
!
Problem: if our RPC library retries if no ACK or return, what!
happens when append is retried? Solutions?

TCP Remembers Messages
Sender

[send message]
!
!
!
!

[timout]
[send message]

!
!

[recv ack]

Receiver
!

[recv message]
[send ack]

!
!
!
!

[ignore message]
[send ack]

TCP suppresses this

Replica Suppression is Stateful
TCP is stateful. If server crashes, it forgets what
RPC’s have been executed!

Replica Suppression is Stateful
TCP is stateful. If server crashes, it forgets what
RPC’s have been executed!
!

Solution: design API so that there is no harm is
executing a call more than once.
!

An API call that has this is “idempotent”. If f() is
idempotent, then:
f() has the same effect as f(); f(); … f(); f()

pwrite is idempotent

AAAA
AAAA

file

pwrite ABBA
AAAA

file

pwrite is idempotent

AAAA
AAAA

file

pwrite ABBA
AAAA

file

pwrite ABBA
AAAA

file

pwrite is idempotent

AAAA
AAAA

file

pwrite ABBA
AAAA

file

pwrite ABBA
AAAA

file

pwrite ABBA
AAAA

file

append is NOT idempotent

A
file

pwrite
AB

file

append is NOT idempotent

A
file

pwrite
AB

file

pwrite
ABB

file

append is NOT idempotent

A
file

pwrite
AB

file

pwrite
ABB

file

pwrite
ABBB

file

Idempotence
Idempotent
 - any sort of read
 - pwrite
!
Not idempotent
 - append
!
What about these?
 - mkdir
 - creat

Strategy 4: file handles
fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);
append(fh, buf, size);
!
File Handle = <volume ID, inode #, generation #>

Strategy 4: file handles
fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);
append(fh, buf, size);
!
File Handle = <volume ID, inode #, generation #>

Subgoals
Fast+simple crash recovery
 - both clients and file server may crash
!

Transparent access
 - can’t tell it’s over the network
 - normal UNIX semantics
!

Reasonable performance

Strategy 5: client logic
Build normal UNIX API on client side on top of the
idempotent, RPC-based API we have described.!
!
Client open() creates a local fd object. It contains:!
 - file handle!
 - offset

File Descriptors

Local FSLocal FS

Client Server

NFS

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

File Descriptors

read(5, 1024) fh=<…>
off=123

pread(fh, 123, 1024) local
FS

fd 5
local

RPC

local

Overview
Architecture
!

Network API
!

Write Buffering
!

Cache

Write Buffers

Local FS

Client Server

NFS

Write Buffers

Local FS

Client Server

NFS
write bufferwrite buffer

Write Buffers

Local FS

Client Server

NFS

write

write bufferwrite buffer

Write Buffers

Local FS

Client Server

NFS

write

write bufferwrite buffer

what if server crashes?

Server Write Buffer Lost
client:

server mem:

server disk:

Server Write Buffer Lost
client:
!
 write A to 0
 write B to 1
 write C to 2

server mem: A B C

server disk:

Server Write Buffer Lost
client:
!
 write A to 0
 write B to 1
 write C to 2

server mem: A B C

server disk: A B C

Server Write Buffer Lost
client:
!
 write A to 0
 write B to 1
 write C to 2
!
 write X to 0

server mem: X B C

server disk: A B C

Server Write Buffer Lost
client:
!
 write A to 0
 write B to 1
 write C to 2
!
 write X to 0

server mem: X B C

server disk: X B C

Server Write Buffer Lost
client:
!
 write A to 0
 write B to 1
 write C to 2
!
 write X to 0
 write Y to 1

server mem: X Y C

server disk: X B C

Server Write Buffer Lost
client:
!
 write A to 0
 write B to 1
 write C to 2
!
 write X to 0
 write Y to 1

server mem:

server disk: X B C

crash!

Server Write Buffer Lost
client:
!
 write A to 0
 write B to 1
 write C to 2
!
 write X to 0
 write Y to 1

server mem:

server disk: X B C

Server Write Buffer Lost
client:
!
 write A to 0
 write B to 1
 write C to 2
!
 write X to 0
 write Y to 1
 write Z to 2

server mem: Z

server disk: X B C

Server Write Buffer Lost
client:
!
 write A to 0
 write B to 1
 write C to 2
!
 write X to 0
 write Y to 1
 write Z to 2

server mem: Z

server disk: X B Z

Server Write Buffer Lost
client:
!
 write A to 0
 write B to 1
 write C to 2
!
 write X to 0
 write Y to 1
 write Z to 2

server mem: Z

server disk: X B Z

no write failed, but
disk state is weird

Write Buffers

Local FS

Client Server

NFS

write

write bufferwrite buffer

what if server crashes?

Write Buffers

Local FS

Client Server

NFS

write

write buffer

1. don’t use server write buffer

Write Buffers

Local FS

Client Server

NFS

write

write buffer

2. use persistent write buffer

write buffer

battery
backed

Overview
Architecture
!

Network API
!

Write Buffering
!

Cache

Cache
We can cache data in three places:
 - server memory
 - client disk
 - client memory
!

How to make sure all versions are in sync?

Cache

Local FS

Client Server

NFS
cache: Acache:

Client

NFS
cache:

Cache

Local FS

Client Server

NFS
cache: Acache: A read

Client

NFS
cache:

Cache

Local FS

Client Server

NFS
cache: Acache: A

Client

NFS
cache: Aread

Cache

Local FS

Client Server

NFS
cache: Acache: A

Client

NFS
cache: A

Cache

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

write!

Cache

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

Cache

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

“Update Visibility” problem: server doesn’t have latest.

Cache

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

Cache

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: A

flush

Cache

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: A

Cache

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: A

“Stale Cache” problem: client doesn’t have latest.

Cache

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: B

read

Problem 1: Update Visibility
A client may buffer a write.
!

How can server and other clients see it?
!

NFS solution: flush on fd close
(not quite like UNIX)

Problem 2: Stale Cache
A client may have a cached copy that is obsolete.
!
How can we get the latest?

Problem 2: Stale Cache
A client may have a cached copy that is obsolete.
!
How can we get the latest?
!
If we weren’t trying to be stateless, server could push
out update.

Problem 2: Stale Cache
A client may have a cached copy that is obsolete.
!
How can we get the latest?
!
If we weren’t trying to be stateless, server could push
out update.
!
NFS solution: clients recheck if cache is current
before using it.

Stale Cache Solution
Cache metadata records when data was fetched.
!
Before it is used, client does a STAT request to server.
 - get’s last modified timestamp
 - compare to cache
 - refetch if necessary

Measure then Build
NFS developers found stat accounted for 90% of
server requests.
!

Why? Because clients frequently recheck cache.

Reducing Stat Calls
Solution: cache results of stat calls.
!

Why is this a terrible solution?

Reducing Stat Calls
Solution: cache results of stat calls.
!

Why is this a terrible solution?
!

Also make the stat cache entries expire after a
given time (say 3 seconds).
!

Why is this better than putting expirations on the
regular cache?

Summary
Robust APIs are often:
 - stateless: servers don’t remember clients
 - idempotent: doing things twice never hurts
!

Supporting existing specs is a lot harder than
building from scratch!
!

Caching and write buffering is harder in distributed
systems, especially with crashes.

Announcements
Wednesday lecture!
 - cancelled
!
Office hours
 - today at noon to 1pm, in lab
!
Happy Thanksgiving!

