
Formulating the Collecting Semantics and Abstract Semantics

as Path Problems

CS701

Thomas Reps
[Based on notes taken by Morgan Zhang on October 13, 2015]

Abstract

This lecture discusses standard semantics, collecting semantics, and abstract semantics for a
flowchart language and the control flow graphs (CFGs) that represent programs in the language.

1 Two Formulations of Path Problems

We start our discussion by reviewing the two formulations of the Single Source Shortest Dis-
tance (SSSD) problem.1 Similar path problems, each with a pair of formulations, will be used
shortly to define the standard semantics, collecting semantics, and abstract semantics of a flowchart
language—and in particular, the semantics of the control flow graphs (CFGs) that represent pro-
grams in the language.

1.1 Declarative Formulation

Let p = e1, e2, . . . , ek be a path from s to n, and let l(ei) be the length of the edge ei. Then the
length of p, denoted by len(p), is defined as

len(p)
def
= l(e1) + l(e2) + . . .+ l(ek),

and the set of SSSD values is defined as follows:

SSSD[s, n]
def
= Min

p∈Paths(s,n)
len(p). (1)

The SSSD problem is an example of a path problem. In general, a path problem is formulated
in terms of two binary operators, extend (denoted by ⊗), which is used to define the cost of a
path (also known as the length or weight of the path), and combine (denoted by ⊕), which is
used to combine information at a node from two or more incoming paths. In the case of the SSSD
problem, ⊗ is +, and ⊕ is min.2 In general, a path problem Q is defined in terms of a weight domain
(W,⊗,⊕) and a graph G = (Nodes,Edges, s), where s denotes the start node, along with a function
weight : Edges→ W that assigns a weight from W to each edge in G. Then the path-weight for a
path p = e1, e2, . . . , ek in G is defined as follows:

pathWeight(p)
def
= weight(e1)⊗weight(e2)⊗ . . .⊗weight(ek).

Finally, we define the Q value for n (with respect to start node s) as follows:

Q[s, n]
def
=

⊕
p∈Paths(s,n)

pathWeight(p). (2)

1See also the notes from the previous lecture.
2More precisely, ⊗ is an infix operator for the function λx.λy.(x+ y), and ⊕ is an infix operator for the function

λx.λy.min(x, y).

1



1.2 Equational Formulation

The equational formulation of a path problem adopts the local viewpoint depicted below

m1

m2

.

.

.

m
k

s
n

ESSSD[s, m1]

ESSSD[s, m2]

ESSSD[s, m
k
]

l(m1, n)

l(m2, n)

l(m
k
, n)

and sets up the following collection of equations:

ESSSD[s, n] =

0 if n = s

Min
〈m,n〉∈Edges

ESSSD[s,m] + l(m,n) otherwise
(3)

Theorem 1.1 For all n, ESSSD[s, n] = SSSD[s, n]. 2

This theorem can either be proved directly (hint: use induction on the length of paths considered
in computing Paths(s, n) in in Eqn. (1)), or as an instance of a more general theorem about path
problems. The equational version of a path problem Q, which we will denote by EQ, is the analog
of Eqn. (3); it is defined using the following set of equations:

EQ[s, n] =


0 if n = s⊕
〈m,n〉∈Edges

EQ[s,m] + weight(m,n) otherwise (4)

Note that the weight domain W is typically a partially ordered set. When the orientation of W
is the one typically used in the abstract-interpretation community, we seek the least solution to
Eqn. (4). When the orientation of W is the one typically used in the dataflow-analysis community,
we seek the greatest solution to Eqn. (4). However, by duality, the orientation does not matter for
the purpose of stating the following theorem:

Theorem 1.2 If ⊗ distributes over ⊕, then for all n, EQ[s, n] = Q[s, n]. 2

Again, the theorem can be proved using induction on the length of paths considered in com-
puting Paths(s, n) in Eqn. (2).

2 Standard and Collecting Semantics

We will consider the CFG example from the previous lecture (see Fig. 1). We first define some
notation that we will be using in subsequent sections.

Store
def
= (Var→ (Z ∪ {?}))⊥

The function M assigns a Store-transformation function to each edge in G:

M : Edges→ (Store→ Store)

M(〈m,n〉) def
=


λσ.σ[x← E[[e]]σ] if m’s label is x:=e

λσ.B[[b]]σ?s : ⊥ if m’s label is “if b” and 〈m,n〉 is the True branch

λσ.B[[b]]σ?⊥ : s if m’s label is “if b” and 〈m,n〉 is the False branch

2



1: start

2: a=1

3: b=1

4: a<3

5: a=a+b

6: c=a+b 7: exit

λσ.(???)

λσ.σ[a←1]

λσ.σ(a)<3?σ:⊥

λσ.σ[b←1]

λσ.σ(a)>=3?σ:⊥

λσ.σ[c ← σ(a)+σ(b)]

T

F

Figure 1: Example control-flow graph.

2.1 Standard Semantics

Let p = e1, e2, . . . , ek be a path from s to n; then p’s path transfer function is

pfp = M(ek) ◦ . . . ◦M(e2) ◦M(e1) = M(e1)⊗M(e2)⊗ . . .⊗M(ek),

where ⊗ is the reverse of function composition.

2.2 Collecting Semantics

2.2.1 Declarative Formulation

Given an initial Store and a path p to node n, the standard semantics produces a Store at n,
but abstract interpretation is concerned with determining information about sets of Stores. To
formalize such sets, we define the collecting semantics. The collecting semantics at node n, which
we will denote by CS[s, n], is defined to be the set of all Stores that can possibly arise at n during
some execution of the program (starting from start node s).

CS[s, n] = {pfp(σ) | p ∈ Paths(s, n), σ ∈ Store}. (5)

Note that the condition “σ ∈ Store” means that any Store can be fed in at the beginning of
execution.

The collecting semantics deliberately loses information about
• whether two Stores, σ1, σ2 ∈ CS[s, n], can both arise during the execution of the program on

some initial store σ0 ∈ Store
• the order in which two Stores, σ1, σ2 ∈ CS[s, n] arise at n, if σ1 and σ2 can both arise during

the execution of the program on some initial store σ0 ∈ Store.
Eqn. (5) is a start; however, we have not succeeded in formulating the collecting semantics as

a path problem in the sense of §1: Eqn. (5) uses set comprehension rather than “combine-over-all-

3



paths.” Instead of Eqn. (5), we want to express CS so that it has the following form:

CS[s, n] =
⊕

p∈Paths(s,n)

F (p), (6)

where F is some function on path p that uses ⊗.
Let us define some notation similar to that used for defining the standard semantics. SM is M

lifted to sets.
SM : Edges→ (P(Store)→ P(Store)),

where P(Store) denotes the powerset of Store. The function SM assigns to each edge in G a function
that transforms a set of Stores to a set of Stores:

SM(〈m,n〉) def
= λS.({M(〈m,n〉)(σ) | σ ∈ S} − {⊥})

(We subtract out {⊥} in the right-hand side expression because ⊥ is not a proper Store.) Then p’s
setwise path transfer function is

spfp
def
= SM(ek) ◦ . . . ◦ SM(e2) ◦ SM(e1) = SM(e1)⊗SM(e2)⊗ . . .⊗SM(ek),

where ◦ denotes function composition, and ⊗ is the reversal of ◦. Combine (⊕) is just ∪. Then we
define the setwise collecting semantics as follows:

SCS[s, n]
def
=

⋃
p∈Paths(s,n)

spfp(Store). (7)

In contrast to Eqn. (5), Eqn. (7) has the form that we desire (cf. Eqn. (6)).

2.2.2 Equational Formulation

We now turn to an equational formulation of the collecting semantics, which we will denote by
ECS[s, n]. ECS : Nodes→ P(Store), where

ECS[s, n]
def
=


Store if n = s⋃
〈m,n〉∈Edges

SM(〈m,n〉)(ECS[s,m]) otherwise (8)

The result of computing ECS is shown in Fig. 2. Let’s work through one entry of the table from
Fig. 2. Suppose that we are computing ECS for node 4 at iteration 5:

ECS(4) = SM(〈3, 4〉)(ECS(3)) ∪ SM(〈5, 4〉)(ECS(5))

From the previous iteration, we know that ECS(3) = {(1??)} and ECS(5) = {(11?)}.
Then

SM(〈3, 4〉)(ECS(3)) = SM(〈3, 4〉)({1??}) = {M(〈3, 4〉)(σ) | σ ∈ {(1??)}} − {⊥}
= {M(〈3, 4〉)((1??))} = {λs.s[b← 1]((1??))}
= {(11?)}

Similarly, we have SM(〈5, 4〉)(ECS(5)) = {(21?)}. Thus, at iteration 5, we obtain ECS(4) =
{(11?)} ∪ {(21?)} = {(11?)(21?)}.

4



node

iteration
1 2 3 4 5 6 7

0 ∅ ∅ ∅ ∅ ∅ ∅ ∅

1 Store {(???)} ∅ ∅ ∅ ∅ ∅

2 Store {(???)} {(1??)} ∅ ∅ ∅ ∅

3 Store {(???)} {(1??)} {(11?)} ∅ ∅ ∅

4 Store {(???)} {(1??)} {(11?)} {(11?)} ∅ ∅

5 Store {(???)} {(1??)}
(11? )

(21? )
{(11?)} ∅ ∅

6 Store {(???)} {(1??)}
(11? )

(21? )

(11? )

(21? )
∅ ∅

7 Store {(???)} {(1??)}

(11? )

(21? )

(31? )

(11? )

(21? )
∅ ∅

8 Store {(???)} {(1??)}

(11? )

(21? )

(31? )

(11? )

(21? )
{(31?)} ∅

9 Store {(???)} {(1??)}

(11? )

(21? )

(31? )

(11? )

(21? )
{(31?)} {(314)}

10 Store {(???)} {(1??)}

(11? )

(21? )

(31? )

(11? )

(21? )
{(31?)} {(314)}

means that the indicated variable has a constant value at a node in the CFG. For example, 

variable b has the constant value 1 at node 4. (Note that we also treat ? as a constant.)

Figure 2: Table of the values that arise when Eqn. (8), instantiated for the CFG shown in Fig. 1,
is solved by the method of successive approximations.

3 Abstract Semantics (where # comes in)

So far we have been defining variants of a program’s concrete semantics. We are now going to define
the program’s abstract semantics. We again start by introducing appropriate notation. The items
of notation defined below correspond to those used for discussing the program’s concrete semantics.

The function M ] assigns to each edge in G a function that transforms an AStore to an AStore:

M ] : Edges→ (AStore→ AStore).

AStore stands for “abstract Store.” An abstract store in AStore denotes a set of concrete stores.
In many problems, AStore has the following type, for an appropriate space of abstract values Val].

AStore : Var→ Val].

Each v] ∈ Val] represents a set of concrete values.
We assume that we have in hand sound abstract-interpretation functions for our language’s

Boolean expressions (denoted by B][[·]]) and arithmetic expressions (denoted by E][[·]]). (One way

5



to obtain such functions is by the method of syntax-directed described in §2.5.1 of the Oct. 6, 2015
lecture.) If node m’s label is x:=e, we define M ](〈m,n〉) as follows:

M ](〈m,n〉) = λa.

{
⊥ if a = ⊥
a[x← E][[e]](a)] otherwise

If m’s label is “if b” and edge 〈m,n〉 is the True branch, we define M ](〈m,n〉) as follows:

M ](〈m,n〉) = λa.


⊥ if a=⊥
a if B][[b]](a) = True

⊥ if B][[b]](a) = False

a if B][[b]](a) = > (don’t know T or F; prepare both ways )

If m’s label is “if b” and edge 〈m,n〉 is the False branch, M ](〈m,n〉) is defined similarly.

3.1 Declarative Formulation

The abstract path transfer function for a path p = e1, e2, . . . , ek is defined as follows:

apfp
def
= M ](ek) ◦ . . . ◦M ](e2) ◦M ](e1) = M ](e1)⊗M ](e2)⊗ . . .⊗M ](ek),

where ⊗ is the reverse of function composition. The abstract path semantics, denoted by APS[s, n],
is defined as follows:

APS[s, n]
def
=

⊕
p∈Paths(s,n)

apfp(AStore)

where
⊕

is the combine operator of the abstract domain.

3.2 Equational Formulation

Finally, we define the equational abstract semantics, denoted by EAS[s, n], as follows:

EAS[s, n]
def
=


> if n = s⊕
〈m,n〉∈Edges

M ](〈m,n〉)(EAS[s,m]) otherwise (9)

where > is the value of AStore that represents all stores in Store.
The result of computing EAS for the CFG from Fig. 1, together with the previous ECS values

from Fig. 2, is shown in Fig. 3.

References

6



node

iteration
1 2 3 4 5 6 7

0 ∅ ⊥ ∅ ⊥ ∅ ⊥ ∅ ⊥ ∅ ⊥ ∅ ⊥ ∅ ⊥

1 Store [⊤⊤⊤] {(???)} [???] ∅ ⊥ ∅ ⊥ ∅ ⊥ ∅ ⊥ ∅ ⊥

2 Store [⊤⊤⊤] {(???)} [???] {(1??)} [1??] ∅ ⊥ ∅ ⊥ ∅ ⊥ ∅ ⊥

3 Store [⊤⊤⊤] {(???)} [???] {(1??)} [1??] {(11?)} [11?] ∅ ⊥ ∅ ⊥ ∅ ⊥

4 Store [⊤⊤⊤] {(???)} [???] {(1??)} [1??] {(11?)} [11?] {(11?)} [11?] ∅ ⊥ ∅ ⊥

5 Store [⊤⊤⊤] {(???)} [???] {(1??)} [1??]
(11? )

(21? ) [⊤1?] {(11?)} [11?] ∅ ⊥ ∅ ⊥

6 Store [⊤⊤⊤] {(???)} [???] {(1??)} [1??]
(11? )

(21? ) [⊤1?]
(11? )

(21? )
[⊤1?] ∅ ⊥ ∅ ⊥

7 Store [⊤⊤⊤] {(???)} [???] {(1??)} [1??]

(11? )

(21? )

(31? )
[⊤1?]

(11? )

(21? )
[⊤1?] ∅ ⊥ ∅ ⊥

8 Store [⊤⊤⊤] {(???)} [???] {(1??)} [1??]

(11? )

(21? )

(31? )
[⊤1?]

(11? )

(21? )
[⊤1?] {(31?)} [⊤1?] ∅ ⊥

9 Store [⊤⊤⊤] {(???)} [???] {(1??)} [1??]

(11? )

(21? )

(31? )
[⊤1?]

(11? )

(21? )
[⊤1?] {(31?)} [⊤1?] {(314)} [⊤1⊤]

10 Store [⊤⊤⊤] {(???)} [???] {(1??)} [1??]

(11? )

(21? )

(31? )
[⊤1?]

(11? )

(21? )
[⊤1?] {(31?)} [⊤1?] {(314)} [⊤1⊤]

shows places where we obtain worse information than what the collecting semantics indicates. The loss of 

information at one point can cause other information to be lost (e.g., variable c at point 7, due to imprecise 

information for variable a at point 6).

Figure 3: Table of the values that arise when Eqn. (9), instantiated for the CFG shown in Fig. 1,
is solved by the method of successive approximations (together with the ECS values from Fig. 2):

7


