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Abstract

This lecture discusses interprocedural dataflow analysis. We describe the “functional ap-
proach” to interprocedural dataflow analysis pioneered by Sharir and Pnueli [6], and show some
connections to the kind of path problems discussed in the previous two lectures. We will also look
at the family of so-called “gen/kill problems” because they are the simplest class of problems
that helps to provide some insight on some of the issues that arise in Sharir/Pnueli algorithm.

1 Pointer Analysis
In terms of connecting pieces end-to-end so that one can write a sound analyzer for a compiler
or a bug-finding tool, we are omitting—for now—a key step, which is what to do about pointers.
The reason for doing so is that pointer-analysis algorithms generally make use of techniques other
than the path problems that I have been discussing. The method(s) for interprocedural dataflow
analysis that I will present are related to path problems, and I don’t want to lose the context that
we have built up. However, I do want to give you an idea of the kind of information that pointer
analysis supplies.
Statement Normalization. A program can contain pointer-manipulation statements like the
following ones:

x = *p;
*q = y;

What do we do about these pointer dereferences? First, the program is normalized into a form in
which all assignment statements are broken down into uses of four kinds of statements:

p = &x;
p = q;
x = *p;

*q = y;

Note that if we have a statement that is not of this form, such as,

x = ***q;

the analyzer will introduce temporary variables to hold on to the results of successive pointer-
dereference operations, e.g.,

t1 = *q;
t2 = *t1;
x = *t2;
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malloc$a

Figure 1: Depiction of a concrete heap and how its elements relate to the summary node &malloc$a
that would be introduced to represent all the storage locations allocated by a statement such as
“a: p = malloc(...).” The cloud stands for a snapshot of the concrete heap nodes—allocated at
statement a and elsewhere. The shaded boxes represent the storage locations that were allocated at
statement a. The white boxes represent storage locations that were allocated at statements other
than a (which would be represented by other summary locations.

Use of Points-To Information. Pointer analysis gives us information in the form of p points
to some set of variables, such as p 7→ {y, z}. The points-to information p 7→ {y, z} means “p might
point to y or p might point to z.” In general, we can have zero or more elements in the set; sometimes
we can have thousands of elements in the set (which is often due to a cascade of imprecision during
pointer analysis). A pointer-analysis algorithm can be either flow-sensitive or flow-insensitive. A
flow-sensitive algorithm provides points-to information that is specific to each point in the program.
A flow-insensitive algorithm is less precise: the flow of control in the program is ignored, and all
points-to information recovered is treated as holding for each point in the program.1

When the client of point-to analysis is yet another phase of dataflow analysis, the point-to
information is typically used to (implicitly or explicitly) to treat a pointer-manipulation statement
like x = ∗p as a non-deterministic choice among a collection of assignment statements. For instance,
when the points-to information for p is p 7→ {y, z}, x = ∗p is transformed to

if (*)
x = y;

else
x = z;

where “*” denotes an unknown Boolean value. If there are more elements in the points-to set,
x = ∗p would be transformed into a k-way non-deterministic choice.
Handling Heap-Allocated Storage. Another thing we need to know about points-to-analysis
problems is what the analyzer does about an allocation statement, such as

1If the use of a flow-insensitive point-to algorithm sounds like a strange thing to do, think of it as being in the
same spirit of type information. When we say that a variable has type τ , it must have “τ -like behavior” throughout
the program. Similarly, when client code uses points-to facts obtained with a flow-insensitive algorithm, it must
operate under the constraint that, e.g., p 7→ {y, z} holds throughout the program.
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Figure 2: Equational abstract semantics.

a: p = malloc(...)

The analyzer converts this statement into the assignment of the address of a fictitious variable
&malloc$a:

a: p = &malloc$a;

Here the letter a in &malloc$a matches the original label a of the statement. This fictitious variable
summarizes all storage locations allocated at program point p. In Fig. 1, the cloud stands for a
snapshot of the concrete heap nodes—allocated at statement a and elsewhere. The shaded boxes
represent the storage locations that were allocated at statement a. The white boxes represent
storage locations that were allocated at statements other than a (which would be represented by
other summary locations.

This method is basically a simple way of finitizing the a priori unbounded amount of storage
that might be allocated at statement a by mapping it to some bounded-size set of descriptors.
2 Path Problems
2.1 An Anomaly
Last lecture, there was a small anomaly in our use of the path-problem framework that I introduced
and discussed in previous lectures. The goal that I had articulated was to work through a sequence
of problems so that we had a unified picture of dataflow-analysis problems as path problems. We
started out with the single-source shortest distance problem (SSSD), in terms of the operators +
and min. I then introduced more abstract—but unbiased—terminology; I expressed everything
in terms of two binary operators, extend (⊗) and combine (⊕). However, there was one place
where I did not quite manage to pull off the promised grand unification: when we finally got
to intraprocedural (single-procedure) dataflow analysis, the equational view was expressed as the
following equation (see Fig. 2):

EAS[s, n] def=


> if n = s⊕
〈m,n〉∈Edges

M ](〈m,n〉)(EAS[s,m]) otherwise (1)

where s is the start node, and > is the value of AStore that represents all stores in Store.
Note that Eqn. (1) is almost of the desired form, but not quite: in particular, the second line of

Eqn. (1) uses function application (i.e., M ](〈m,n〉)(EAS[s,m])) rather than the extend operation.
The reason I say that we almost have the desired form because extend is the reversal of function
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Figure 3:

composition, and function application is closely related to function composition.2 One of the things
we will do today is to fix this minor glitch.
2.2 Declarative View
Before changing the equational view, let us go back and review the declarative view for a moment.
The abstract path semantics, denoted by APS[s, n], is defined as follows:

APS[s, n] def=
⊕

p∈Paths(s,n)
apfp(>), (2)

where the abstract path transfer function for path p = e1, e2, . . . , ek is defined as

apfp
def= M ](e1)⊗M ](e2)⊗ . . .⊗M ](ek),

and
⊕

is the combine operator of the abstract domain. Recall what is going on here: apfp(>) is
the path function associated with path p from start node s to n, applied to the abstract store that
represents all possible stores that can be supplied as the initial store at s (i.e., >).

Eqn. (2) handles the case of single-procedure dataflow analysis, and the question is how it should
be generalized for the multiple-procedure case. Part of the machinery that we need for handling the
multiple-procedure case is exactly the fix to the glitch identified in §2.1—so back to the equational
view!
2.3 Equational View
Let us now return to the equational view (Eqn. (1)), and fix the glitch pointed out in §2.1. The fix
is to lift Eqn. (1) from values to functions, as follows:

EFAS[s, n] = Id
EFAS[s, n] =

⊕
〈m,n〉∈EdgesM

]
(m,n) ◦ EFAS(m), (3)

2The extend operation, which is the reversal of function composition, is just a slight variant of notation with which
you are already familiar—namely, think of extend as the UNIX pipe operator! As we go along a path, we have a
collection of operators that we successively pipe into each other:

weight(e1)⊗weight(e2)⊗ . . .⊗weight(ek) = weight(e1) | weight(e2) | . . . | weight(ek).
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Figure 4: Interprocedural control-flow graph (ICFG).
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EFAS[e,e] = Id
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Figure 5: Depiction of the two cases in Eqn. (1).

Eqn. (3) will be explained in more detail below.
For the single-procedure case, a CFG looks like the graph depicted in Fig. 3. I’ll use e to denote

what we have been calling the start node. (In the multiple-procedure case, each procedure’s CFG
will have an entry node, whence the use of “e”.) We use x to represent the CFG’s exit node. In the
graphical notation used in Fig. 3, a squiggly line from e to x will denote a path—or sometimes a
set of paths—that start at 3 and proceed through the procedure to x.

The graph shown in Fig. 4 depicts the simplest multiple-procedure case: a caller calling a single
callee. We call such a graph an interprocedural control-flow graph, or ICFG. We split each call site
in the caller into two separate and distinct nodes: call-node c represents the call; return-node r
represents where control returns to in the caller after the callee finishes execution. e′ is the entry
node of the callee and x′ is the exit node of the callee.

Node r represents an artificial “landing pad” for transferring control back to the caller. At the
machine-code level, the callee returns control to the instruction that follows the call instruction in
the caller. Our diagrams are an idealized model; the node that represents the first real action in
the caller after control returns from the call will be modeled by the successor of r (i.e., node z in
Fig. 4).

The edge (c, e′) is called a linkage-in edge; the edge (x′, r) is called a linkage-out edge.
Eqn. (3) can be understood using two pictures, as shown in Fig. 5. Fig. 5(a) looks similar
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to the picture used in the Oct. 13, 2015 lecture to illustrate the equational formulation of the
SSSD problem. In Fig. 5(a), we have k predecessors of node n, m1, . . . ,mk, and the edges from
each mi to n is labeled with a transformer function M ](mi, n). Each (solid black) double-edged
arrow represents an EFAS value, which itself is a transformer function. This information is used
in Eqn. (3) to create the function that represents the transformation from e to n by composing
appropriate pairs of M ] and EFAS functions and combining the results:

EFAS[s, n] =
⊕

〈m,n〉∈Edges
M ]

(m,n) ◦ EFAS(m).

The result is represented in Fig. 5(a) by the (dashed red) double-edged arrow from e to n.
Fig. 5(b) shows how the process of creating EFAS values (i.e., double-ruled lines) gets started,

namely, we start with a single double-ruled line from e to e, which represents the 0-length path from
e to itself. The transformation associated with this path is the identity transformation, denoted by
Id.

Note how this approach is a different method for intraprocedural dataflow analysis. Earlier, we
performed a successive-approximation method on dataflow values; in contrast, Eqn. (3) and Fig. 5
perform a successive-approximation method on dataflow transformers.

Finally, because compose is the reverse of extend, we can rewrite Eqn. (3) as follows, using the
extend operator:

EFAS[s, n] = Id
EFAS[s, n] =

⊕
〈m,n〉∈Edges EFAS(m)⊗M ]

(m,n).
(4)

Note how Eqn. (4) fixes up the anomaly discussed in §2.1; Eqn. (4) is now of the desired form
for a path problem!

It must be pointed out that there is just a small amount of sleight-of-hand here. In Eqn. (1),
the combine operation (⊕) is a binary operation on dataflow values, whereas in Eqns. (3) and (4) ⊕
is now a binary operation on dataflow transformers (i.e., functions from dataflow values to dataflow
values).

What do we mean by a “combine operation on functions?” Basically, the function f1⊕ f2
constructed by combining two functions f1 and f2 maps a value in the domain-space into two
values in the range-space, and takes the combine of those values in the range-space:

(f1⊕ f2)(v) = f1(v)⊕ f2(v).

For instance, suppose that f1 and f2 operate on sets:

f1
def= λS.S ∪ {a, b}

and
f2

def= λS.S ∪ {b, c}.

Then, assuming that the combine operation on values is set-union, we have

(f1⊕ f2)(S) = f1(S)⊕ f2(S) = S ∪ {a, b, c}.

3 Gen/Kill Problems
First of all, it probably would have been better if this class of dataflow-analysis problems were called
kill/gen problems, rather than gen/kill problems. As we will see, the order in which operations occur
in the dataflow transformers is that a “kill” operation comes first, followed by a “gen” operation. No
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a: x = 3

{〈x:b〉, 〈x:c〉, …}

b: x = 5

c: x = 7

y = x

⋮

⋮

{〈x:a〉, …}

{〈x:b〉, …}

Figure 6: An example to illustrate the reaching-definitions problem.

matter—it is conventional to call them gen/kill problems. Many simple dataflow-analysis problems
are expressible by gen/kill functions, which is where this family of problems gets their name. To
be concrete, we will illustrate one problem that is useful for static taint analysis, namely, the
reaching-definitions problem.

Consider the example shown in Fig. 6. There are several statements that assign to variable
x—those at labels a, b, and c. There is also a use of x in the statement y = x shown at the bottom.
Our goal is to gather up information so that what we know at a node n reflects what may hold
just before n executes. In this case, we want to know the answer to the question, “For each node
n, what are the program points that might have assigned into x the value that x holds just before
n executes?” (Actually, we want to know the answer to this question for each of the program
variables in scope at each node n.)

Here is how we can formalize this problem as a gen/kill problem. In the dataflow transformer
for program-point p, the input set S is transformed by (i) subtract some set Killp from S, and (ii)
union the result of (i) with some other set Genp. In other words, each dataflow transformer has
the form

λS.(S −Killp) ∪Genp,

where Killp and Genp are constant sets associated with program-point p. With different points we
can have different functions. The universe of gen/kill functions is

F
def= {λS.(S −K) ∪G | K ⊆ A,G ⊆ A},

where A is some universe of dataflow facts. Note that A typically depends on the program being
analyzed, so it would be more precise to refer to Aprog rather than A. We will leave off the subscript
prog, except for emphasis.

In the case of reaching-definitions, Aprog is defined as follows:3

Aprog
def= {〈v : l〉 | variable v is assigned to at l}.

3When there are fictitious variables of the form &malloc$a introduced for the purpose of points-to analysis in the
presence of heap-allocated storage, we need to say Aprog

def= {〈v : l〉 | variable v may be assigned to at l}.
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Note that in the absence of heap-allocated storage,

|Aprog| ≈ number of nodes in the CFG.

Returning to Fig. 6, at node b, the kill set Killb is

Kb
def= {〈x : l〉|x is assigned to at l};

the gen set Genb is {〈x : b〉}; and the dataflow transformer at b is λS.(S −Killb)∪Genb. Note that
Killb actually removes 〈x : b〉 from S; however, that is OK because Genb unions {〈x : b〉} into the
answer set.

In terms of a representation scheme for gen/kill functions, a gen/kill function λS.(S −K) ∪G
can be represented by a pair of sets 〈K,G〉. In §3.1 and §3.2, we show how to perform combine and
extend using such function representations.
3.1 Combine

Suppose that we have two functions f1
def= λS.(S−K1)∪G1 and f2

def= λT.(T −K2)∪G2, represented
by the pairs of sets 〈K1, G1〉 and 〈K2, G2〉, respectively. Then we want to determine the appropriate
function of K1, G1, K2, and G2 that should be performed to create the representation of the function

f3 = (λS.(S −K1) ∪G1)⊕(λS.(S −K2) ∪G2).

The picture looks like the following:

e

⊕
n

f1 f2

After entering a procedure at e and reaching node n, what can we guarantee has been killed? Only
items that have been killed along both paths! Consequently, the kill set for f3 is K1∩K2. Similarly,
the gen set for f3 consists of items that have been gen’d along either path, so the gen set for f3 is
G1 ∪G2.

Thus, when each gen/kill function λS.(S −K) ∪ G is represented by a pair of sets 〈K,G〉, we
can perform combine as follows:

〈K1, G1〉⊕〈K2, G2〉 = 〈K1 ∩K2, G1 ∪G2〉.

3.2 Extend
Suppose that we again have two functions f1 = λS.(S − K1) ∪ G1 and f2 = λT.(T − K2) ∪ G2,
represented by the pairs of sets 〈K1, G1〉 and 〈K2, G2〉, respectively. We now want to determine the
appropriate function of K1, G1, K2, and G2 that should be performed to create the representation
of the function

f4 = λS.(S −K1) ∪G1⊗λT.(T −K2) ∪G2. (5)
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First, we know that extend should be compose in reverse, so we start by writing Eqn. (5) as a
composition.

f4 = (λT.(T −K2) ∪G2) ◦ (λS.(S −K1) ∪G1)
= λU.(λT.(T −K2) ∪G2)((λS.(S −K1) ∪G1)(U))
= λU.(λT.(T −K2) ∪G2)((U −K1) ∪G1)
= λU.(((U −K1) ∪G1)−K2) ∪G2

= λU.((U −K1)−K2) ∪ (G1 −K2) ∪G2

= λU.((U − (K1 ∪K2)) ∪ ((G1 −K2) ∪G2)

Consequently, when each gen/kill function λS.(S −K) ∪G is represented by a pair of sets 〈K,G〉,
we can perform extend as follows:

〈K1, G1〉⊗〈K2, G2〉 = 〈K1 ∪K2, (G1 −K2) ∪G2〉.

4 The Functional Approach to Interprocedural Dataflow Analysis
The equations for EFAS given in Eqn. (3) are similar to the Sharir/Pnueli equations [6], but only
for the intraprocedural-analysis part; we have not yet seen the interprocedural-analysis part.

Let’s consider the diagram below.

e x

c1 r1 c2 r2

e′ x′

( ) [ ]

Sharir and Pnueli have the notion of IVP (which stands for “Interprocedurally Valid Paths”). One
way to understand IVP is that it just involves a filtering mechanism on paths, based on a simple
context-free language. The way to think about it is that for every call site, we introduce a pair of
matched parentheses. In our diagram, the open parenthesis is placed on the linkage-in edge, and
the matching closed parenthesis is placed on the matching linkage-out edge. The idea is that if
we follow a call (path in red), and we go into a called procedure via a linkage-in edge labeled “(,”
then we had better go back to the caller along the linkage-out edge labeled “).” You would never
see a correctly executing procedure that follows a path like the red path in the diagram that has a
mismatched set of parenthesis, namely, “. . . ( . . . ].”

The use of the parenthesis labels can be viewed as a policy language. More precisely, given a
language L whose alphabet consists of the labels on the edges of the graph, when we define the
path problem. We can only include the paths for which the word spelled out as we go along the
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path belongs to language L. A path between two nodes does not count for anything if the path’s
word is not in L.

Going back to the declarative view of dataflow analysis that was given in Eqn. (2), namely,

APS[s, n] def=
⊕

p∈Paths(s,n)
apfp(>),

to specify the desired set of paths in the ICFG for interprocedural dataflow analysis, we merely add
the path-language restriction “p ∈ unbalLeft(s, n)” to the index on the

⊕
operator

APS[s, n] def=
⊕

p∈unbalLeft(s,n)
apfp(>).

We now describe the language unbalLeft of unbalanced-left paths. To do so, we will need an
auxiliary language of matched paths defined by the following context-free grammar:

matched ::= ε

| matched e

| matched (i matched )i for i ∈ CallSites

We now define unbalLeft by the following grammar:4

unbalLeft ::= ε

| unbalLeft matched (i for i ∈ CallSites
| unbalLeft matched

5 The Sharir/Pnueli Equations in Pictures
The three pictures that follow depict the three cases in the Sharir/Pnueli equations. The first two,
Eqns. (6) and (7), are essentially those for EFAS; the third handles cross-procedure propagation of
dataflow information.

1.
φe,e = Id (6)

e x

Id

2.
φe,n =

⊕
〈m,n〉∈Edges

fm,n ◦ φe,m if n /∈ Ret (7)

Alternatively, Eqn. (7) can be stated in terms of extend:

φe,n =
⊕

〈m,n〉∈Edges
φe,m⊗ fm,n if n /∈ Ret (8)

4It is possible to write other grammars for the languages L(matched) and L(unbalLeft). However, as we will see
shortly, the ones given above have the advantage that they reflect the structure of the Sharir/Pnueli equations (and
hence the structure of the Sharir/Pnueli algorithm for interprocedural dataflow analysis).
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3. The third case handles cross-procedure propagation of summary functions of the form φe′,x′ .
Note that such a φ function summarizes the net effect of all matched-parenthesis paths from
entry node e′ to exit node x′. Sharir and Pnueli give an equation that—when re-expressed to
use extend rather than function composition—looks like

φe,r = φe,c⊗φe′,x′ . (9)

Eqn. (9) looks a bit odd because Sharir and Pnueli make the assumption that the action
on every linkage-in edge and every linkage-out edge is Id. Thus, when accompanied by the
diagram below, the equation might be more clearly expressed with two redundant occurrences
of Id.

φe,r = φe,c⊗ Id⊗φe′,x′ ⊗ Id, (10)
e x

c r

e′ x′

φe,c

Id

φe′,x′

Id

To allow the actions on linkage-in and linkage-out edges to be other than Id, we would use
the following equation:

φe,r = φe,c⊗CallInc,e′ ⊗φe′,x′ ⊗CallOutx′,r. (11)

It is instructive to go back to the grammar for the language L(matched) of matched parentheses
and see how the structure of Eqns. (6), (8), and (11) matches the structure of the different grammar
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rules exactly
matched ::= ε (cf. Eqn. (6))

| matched e (cf. Eqn. (8))
| matched (i matched )i (cf. Eqn. (11))

Supporting Local Variables. Although we will not cover it here, for an analysis that tracks
information about local variables, and for a programming language that supports recursion, the
action on the linkage-in edge is to forget information about caller locals, and at the exit node a two-
argument merge function [3] is applied that uses (i) information from φe′,x′ to forget information
about callee locals and (ii) information from φe,c to restore information about caller locals.

e x

c r

e′ x′

M

φe,c

Forget caller locals

φe′,x′

Restore caller

locals

Forget callee locals

The equation that would be used in place of Eqn. (9) (or Eqn. (11)) is as follows:

φe,r = M(φe,c, φe′,x′).

Other work that uses merge functions includes [5, 4]. The idea of “peeking back at the call-site” has
been imported into automata theory in the work on visibly pushdown automata [1] and nested-word
automata [2].
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