
Interprocedural Dataflow Analysis, Part II

CS701

Thomas Reps
[Based on notes taken by Cheng Su on October 20, 2015]

Abstract

This lecture continues the presentation of interprocedural dataflow analysis, describing the
“functional approach” defined by Sharir and Pnueli [2]. We define the interface for their in-
terprocedural dataflow-analysis framework, and show how the interface can be instantiated for
so-called “gen/kill problems.” We also begin to describe a second instantiation of the frame-
work for so-called “interprocedural, finite, distributive, subset (IFDS) problems” [1], which can
be analyzed via context-free-language reachability (CFL-reachability). In this lecture, we show
how to use relations to represent distributive functions over a finite subset, which is the first
step in reducing IFDS problems to CFL-reachability.

1 Review

Last lecture, we explained the path-problem framework as follows:

EAS[s, n] =

> if n = s⊕
〈m,n〉∈Edges

M#(〈m,n〉)(EAS[s,m]) otherwise (1)

We pointed out that Eqn. (1) is not in exactly the right form for a path problem because it uses
function application (i.e., M#(〈m,n〉)(·)) rather than the extend operation (i.e., (·)

⊗
M#(〈m,n〉)).

We fixed this anomaly, and generalized Eqn. (1) to a functional view of dataflow analysis by
recasting Eqn. (1) using the following formulation:

EFAS[s, n] =

Id if n = s⊕
〈m,n〉∈Edges

EFAS[s,m]
⊗
M#(〈m,n〉) otherwise (2)

We pointed out that Eqn. (2) is similar to the intraprocedural-propagation equation in Sharir and
Pnueli’s “functional approach” to intraprocedural dataflow analysis [2]. To support cross-procedure
propagation of information, one more case needs to be considered, for procedure call. The equations
in [2] are defined as follows:

φe,e = Id (3)

φe,n =
⊕

〈m,n〉∈Edges

fm,n ◦ φe,m if n /∈ Ret (4)

φe,r = φe′,x′ ◦ φe,c ((c, r) ∈ CallRetPair) (5)

In Eqn. (3), e denotes an entry node of the interprocedural control flow graph. φe,e denotes
the dataflow information propagated from the entry node to itself. In Eqn. (4), we calculate the

1

e x

c r

e’ x’
Φe’,x’

Φe,c Φe,r

Figure 1: Illustration of the interprocedural equation from Phase I.

information for all the nodes except for return nodes. In Eqn. (5), c is the node to call procedure P .
P has entry node e′, and return node x′. r is the node after c. Eqn. (5) handles cross-propagation
of information.

2 The Sharir and Pnueli Algorithm: Phase I

Sharir and Pnueli introduce the concept of interprocedural valid paths (IVP) for describing inter-
procedural information propagation. IVP can be viewed as the paths to satisfy a certain condition
specified by a context-free language. Phase I calculates dataflow information based on the paths
that satisfy the following context-free grammar:

matched ::= ε

| matched e

| matched (i matched)i for i ∈ CallSites (6)

For every call site i in every procedure p, we tag the call edge with “(i”, and the return edge with
“)i”. The grammar above describes the paths whose calling stack returns to exactly the same level
as it started, and never becomes shorter than the stack that we had when the path commenced.

To propagate dataflow information across procedures, Sharir and Pnueli gave Eqn. (5); however,
it is a bit more precise—and better illustrates what is going on—to state it as follows:

φe,r = CallOutx′,r ◦ φe′,x′ ◦ CallInc,e′ ◦ φe,c. (7)

(Sharir and Pnueli make the assumption that the dataflow transformers for CallIn and CallOut
edges are all Id.) It is also instructive to re-express Eqn. (7) with the extend operation:

φe,r = φe,c⊗CallInc,e′ ⊗φe′,x′ ⊗CallOutx′,r (8)

As shown in Fig. 1, to obtain the information φe,r, we propagate information from entry node e to
call site c in the caller, then from c to entry node e′ of the callee, then from e′ to return node x′ of

2

P

e x

c1
c2

r1

r2

e’ x’

Figure 2: Propagation during Phase I when there are multiple calls to the same procedure.

the callee, and finally from x′ to r. Note the similarity of Eqn. (8) to the form of grammar rule (6):

φe,r︸︷︷︸
matched

= φe,c︸︷︷︸
matched

⊗ CallInc,e′︸ ︷︷ ︸
(i

⊗ φe′,x′︸ ︷︷ ︸
matched

⊗ CallOutx′,r︸ ︷︷ ︸
)i

.

The situation where there are multiple calls to the same procedure is shown in Figure 2. (Phase
I handles it automatically.)

Discussion. Fig. 2 can also be viewed as showing how interprocedural analysis is “reduced”
to an intraprocedural-analysis problem of analyzing separate procedures, once summary functions
are introduced at call sites—such as call sites 〈c1, r1〉 and 〈c2, r2〉 in procedure P , as shown in
Fig. 2. However, when a program has recursive procedures, the problem of finding the appropriate
summary functions itself requires solving a dataflow-analysis problem. In a sense, the Sharir/Pnueli
algorithm interleaves these two dataflow-analysis problems in a single analysis problem.

Recall the declarative specification of path problems, and what we have said previously about
how the value defined by the declarative specification relates to the value obtained by solving the
equational formulation—namely, they coincide as long as ⊗ distributes over ⊕. In this case, as long
as ⊗ distributes over ⊕, the φ functions obtained by solving Eqns. (3), (4), and (5) correspond to
the ψ functions specified by the following declaratively specified path problem, which is defined in
terms of paths that respect the language L(matched).

ψe,n =
⊕

p∈matched(e,n)

apfp,

where for p = e1, e2, · · · , ek,

apfp = M#(e1)⊗M#(e2)⊗ · · ·⊗M#(ek).

3

e x

e1

c1

e2

c2

e3

c3

⊕

Φe1,c1 Φe2,c2 Φe3,c3

val#[e]

x1 x2 x3

r2 r3r1

val#[c1] val#[c2]
val#[c3]

Figure 3: Propagation during Phase II when there are multiple calls to the same procedure.

3 The Sharir and Pnueli Algorithm: Phase II

Sharir and Pnueli describe their algorithm as a two-phase algorithm; however, I prefer to break up
their second phase into two separate phases. Thus, part of Sharir and Pnueli’s Phase II will be
described as “Phase III” (see §4).

In both Phase II and Phase III, we need to handle interprocedural valid paths that end with the
stack containing a sequence of called procedures that have not yet returned. Also, we are mainly
interested in paths that begin at emain, the entry node of the main procedure. The context-free
grammar that we need to describe such paths is as follows:

unbalLeft ::= ε

| unbalLeft matched (i for i ∈ CallSites

| unbalLeft matched

Suppose that we want to calculate the dataflow information that should hold along all paths
from entry node emain to n, where n is a node in some procedure p (and p is not necessarily
procedure main). Suppose that e is the entry node of p. In Phase III, we will use the fact that
if we have the dataflow information Val#[e] for e, then we can obtain Val#[n] merely by applying
φe,n:

Val#[n] = φe,n(Val#[e]).

This observation leaves us with the question, “How can we obtain Val#[e] (for each of the entry
nodes in the program?” This problem can itself be formulated as a system of dataflow equations.
The propagation of dataflow information from entry node emain to entry node e can be expressed
by the following system of equations:

Val#[emain] = >
Val#[e] =

⊕
〈ci,e〉∈CallIn

φej ,ci(Val#[ej]) (9)

4

e x

n

val#[e]

Φe,n

val#[n]

Figure 4: Intraprocedural propagation during Phase III.

where ej is the entry node of the procedure that contains ci, and CallIn is the set of all edges from
a call node to an entry node. Note that the functions of the form φej ,ci were all calculated during
Phase I, so all the necessary information is available at the start of Phase. A graphical depiction
of these equations is shown in Fig. 3.

In the discussion of Phase I, we noted a similarity between Eqn. (8) and the form of grammar
rule (6). For Phase II, there is an analogous similarity between Eqn. (9) and the second grammar
rule that defines L(unbalLeft):

unbalLeft ::= unbalLeft matched (i.

The similarity is concealed because (i) Sharir and Pnueli make the assumption that the dataflow
transformers for CallIn edges are all Id, and (ii) the values propagated during Phase II are abstrac-
tions of sets of concrete states—not abstractions of transition relations—hence, the equations use
function application rather than ◦ or ⊗. Thus, it is a bit more precise—and better illustrates what
is going on—to state Eqn. (9) as follows:

Val#[e]︸ ︷︷ ︸
unbalLeft

=
⊕

〈ci,e〉∈CallIn

CallInci,e︸ ︷︷ ︸
(i

(φej ,ci︸ ︷︷ ︸
matched

(Val#[ej]︸ ︷︷ ︸
unbalLeft

)), (10)

where ej is the entry node of the procedure that contains ci. (The symbols on the right-hand side
of the grammar rule appear in reverse order on the right-hand side of Eqn. (10) because functions
that are called later as one traverses a path appear earlier in a chain of function applications.)

4 The Sharir and Pnueli Algorithm: Phase III

In Phase II, we calculated the information from emain to e for each entry node e of the program.
Now we show how to calculate the information from e to n. n is a node in the (intraprocedural)
CFG for which e is the entry node. We merely use the result from Phase I, as shown in following
equation:

Val#[n] = φe,n(Val#[e])) (11)

This equation is depicted graphically in Fig. 4.
The combination of Phases I, II, and III provides an algorithm for solving an interprocedural

dataflow-analysis problem.

Discussion. It can be shown that as long as ⊗ distributes over ⊕, the values {Val#[n] | n ∈
Nodes} obtained by solving the equations of Phases I, II, and III correspond exactly to the values
{Val#[n] | n ∈ Nodes} defined via the following declaratively specified path problem, which is

5

defined in terms of paths that respect the language L(unbalLeft):

DVal#[n] =
⊕

p∈unbalLeft(e,n)

apfp(>),

where for p = e1, e2, · · · , ek,

apfp = M#(e1)⊗M#(e2)⊗ · · ·⊗M#(ek).

5 The Interface(s) for the Sharir/Pnueli Dataflow-Analysis Framework

There are two different interfaces that one needs to supply to be able to use the Sharir/Pnueli
framework:
Phase I: Id,

⊗
,
⊕
,M#,=,v.

Phases II and III: >,⊕AStore, function application,=,⊆.
One family of dataflow-analysis problems for which we can satisfy our obligations is the family of

gen/kill problems. Recall that each gen/kill abstract transformer has the form λS.(S−Killp)∪Genp,
where Killp and Genp are set-valued constants associated with some program point p. Each such
function can be represented using two sets: (Killp,Genp). For the Phase I interface, we have

Id : (φ, φ)
⊕ : (k1 ∩ k2, g1 ∪ g2)
⊗ : (k1 ∪ k2, (g1 − k2) ∪ g2)

For the interface for Phases II and III, we have

> : U
⊕AStore : ∪

function application : (λS.(S −Killp) ∪Genp)(T) = (T −Killp) ∪Genp)

where U is the universe of elements that can go into Kill and Gen sets.

6 Relations to Represent Distributive Functions

We now begin to describe a second instantiation of the Sharir and Pnueli framework for so-called
“interprocedural, finite, distributive, subset (IFDS) problems” [1].

Suppose that we have a function f : 2D → 2D that distributes over union—i.e., f(S1 ∪ S2) =
f(S1) ∪ f(S2). We can construct a relation R ⊆ (D ∪ {Λ})× (D ∪ {Λ}) to represent f as follows:

Rf = {(Λ,Λ)} ∪ {(Λ, y) | y ∈ f(∅)} ∪ {(x, y) | y ∈ f({x}) ∧ y /∈ f(∅)} (12)

In essence, Rf tracks f ’s behavior “pointwise” (i.e., on the singleton sets), with the special symbol
Λ representing f ’s behavior on the empty set.
Remark. The construction is sensible because distributivity means that f ’s behavior on some set
S depends only on its behavior on subsets of S. We can keep breaking the subsets into smaller
subsets until we are left with the singleton sets and the empty set. 2

All gen/kill functions distribute over ∪, so let us consider a gen/kill problem as an example.
Suppose that the function is

f
def
= λS.(S − {d4}) ∪ {d1, d2}. (13)

The relation Rf that represents f is shown in Fig. 5. The graph of Rf illustrates a characteristic
of all gen/kill functions:
• The pre-state Λ is connected to the post-state Λ.

6

d1 d1

d2 d2

d3

d4

d3

d4

ΛΛ

Figure 5: Representation relation for a gen-kill function.

• There are edges from the pre-state Λ to zero or more nodes {di | di 6= Λ}.
• For all di 6= Λ, either there is a gap from the pre-state di node to the post-state di node, or

there is an edge from the pre-state di node to the post-state di node.
• There are no other kinds of edges.

In other words, if the representation relation Rf for a function f has been constructed according
to Eqn. (12), you can immediate tell whether f is a gen/kill function by looking at the graph of
Rf . In particular, if there is an edge from a pre-state node di 6= Λ to a post-state node dj 6= Λ such
that i 6= j, then f is not a gen/kill function.

One should note that the mapping from (syntactic) definitions of functions to representation
relations is many-one. For instance, the representation relation shown in Fig. 5 could also be
interpreted as the representation relation Rg for the function

g
def
= λS.(S − {d1, d2, d4}) ∪ {d1, d2}.

That is, the representation relation shown in Fig. 5 is both Rg and Rf for the function f defined
in Eqn. (13). However, even though f and g are defined in terms of different kill sets, f and g both
compute the same mathematical function. Two functions F1 and F2 are said to be extensionally
equal iff, for all x, F1(x) = F2(x). Thus, although the definitions of f and g are syntactically
different, f and g are extensionally equal. In general, a given representation relation is a canonical
form for the set of distributive functions over a finite set that are extensionally equal.

References

[1] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reachability. In
Princ. of Prog. Lang., pages 49–61, 1995.

[2] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In Program Flow
Analysis: Theory and Applications. Prentice-Hall, 1981.

7

