Dataflow Frequency Analysis
CS701

Thomas Reps
[Based on notes taken by Anshul Purohit on November 3, 2015]

Abstract

This lecture continues the presentation of how to perform Dataflow Frequency Analysis [5]
on the folded DAG structure generated via the Larus algorithm for collecting a whole-program
path. The frequency-analysis technique can be applied to the class of bi-distributive dataflow-
analysis problems. This lecture formalizes the technique of generating dataflow-frequency facts
by traversing the DAG representation of a grammar that represents a whole-program path
(without unfolding the DAG).

1 Whole Program Paths

The previous lecture explained Larus’s algorithm to collect a “whole-program path” (WPP) [2].
The algorithm uses the Sequitur algorithm [3] to build a somewhat degenerate context-free grammar
that accepts exactly one word, which corresponds to the path that was executed by an instrumented
program. The terminal symbols of the context-free grammar are the acyclic Ball-Larus path frag-
ments [1] of the program’s control flow graph. The whole-program path is returned in the form of
a dag, each of whose leaves is a path fragment.

Consider the control flow graph shown in Fig. 1(a) and the dag shown in Fig. 1(b), which is the
dag created for the purpose of path-fragment numbering by the Ball-Larus algorithm. There are
eight acyclic path fragments in the dag; we will refer to three of them, [5,1,2,4], [1,2,4], [1,3,4,5,6],
as “a,” “b,” and “c,” respectively. The Larus WPP algorithm returns a grammar whose one word

Figure 1: (a) Example control-flow graph. (b) dag created for the purpose of path-fragment
numbering by the Ball-Larus algorithm.

Figure 2: Example whole-program path.

\

s 1 2412 41 2 4124 124 124124 1 2 4134506

Figure 3: Expansion of the whole-program path from Fig. 2.

represents the trace of the program execution. For instance, consider the execution trace [3,1,2,4]
[1, 2,4]7 [1,3,4,5,6]. The WPP grammar for this trace is as follows:

S — aAAAbc
A — bb

This grammar can be represented as a dag (see Fig. 2). It is instructive to consider the tree obtained
by unfolding the dag (see Fig. 3).

2 Computing Dataflow-Fact Frequencies

The CFG in Fig. 1(a) is the CFG for a program that contains two definitions of variable X, at
nodes 2 and 3, respectively. We will use the example of computing dataflow-fact frequencies for the
most-recent definition-site of variable X. We will show how one can determine that (i) d1 reaches
node 2 seven times; (ii) d2 never reaches node 2; (iii) d1 never reaches node 5; and (iv) d2 reaches
node 5 once. The technique works for the class of bi-distributive dataflow-analysis problems [4].
This class of problem includes all gen/kill problems, as well as copy-constant propagation (which
is not a gen/kill problem).

There is a dataflow transformer corresponding to every edge. The transformer can be repre-
sented as either a graph or a matrix (see Fig. 4 and the matrices shown below). For a bidirectional
dataflow-analysis problem, the number of ones in each column of a dataflow-transformer matrix
must be at most 1.

For edges s —+ 1,1 — 2, 1 — 3,4 — 5, and 5 — 6, the transformer is merely the identity
matrix. Fig. 4 shows the edge transformers in graphical form for all of the edges. The transformers

A &—0 A A @&—0 A A @&—0 A

d1 e—e d1 d1 0\0 d1 d1 .\. d1

do e—e d2 do @ e do do @ ® do

All edges except
2-43-4 24 354

Figure 4: Dataflow transformers for propagating information about the most-recent definition-site
of variable X.

a b c
r A N A A r A A)
A ©® >e \A\;‘_ N):\): . r—r0——e—Hee—H—e
d1 o—e—e —H>e——e) P o—)o—)o\o—)o—)‘
do o—e—e —>o—e ° LRI o—>ee—e *—>—e
s 1 5o 4 1 2 4 4 1 3 4 5 6

Figure 5: Concatenation of the dataflow transformers for propagating information about the most-
recent definition-site of variable X.

can also be represented as the matrices My, Ms, and M3, respectively.
100 1 10 1 01
My =10 10 My =0 0 O Ms = {0 0 O
0 0 1 0 0O 0 00

The extend operator ® in this problem is matrix multiplication. As noted above, the number
of ones in each column of the dataflow-transformer matrix for a bidirectional dataflow-analysis
problem must be at most 1. It is easy to argue that when two such matrices are multiplied, that
property is preserved.

In the case of the graph representation, the ® operation amounts to 2-step graph reachability.
The edge transformer can also be written in functional form as

AS.((IV x S) U gen),

where S is the characteristic vector of the input set, gen is a vector that represents reachability
from A, and N is a matrix whose ™" row is a vector that indicates reachability from input fact d;.

Using the definition of edge transformers, the number of times dataflow fact d; holds at a particu-
lar node can be calculated by performing reachability on the composition of the edge transformers.
Fig. 5 shows the concatenation of the edge transformers for the path [s,1,2,4][1,2,4]7[1,3,4,5,6].
(Note that, for purposes of this computation, path-fragment b is considered to include the loop’s
back-edge 4 — 1.)

Matrices M (i) can be defined for each of the terminal symbols i in the grammar. Terminal
symbol b corresponds to the path [4,1,2,4]. Matrix M (b) is merely the product the edge-transformer

matrices for the edges in path-fragment b:
M(b) = M471 X MLQ X M274.

We also define frequency-propagation matrices for terminal-symbol/node pairs. For instance,
for terminal symbol b and node i (where ¢ may or may not be part of b), the frequency-propagation

o—)o——)o\o
o—>ee—e [
4 1 2 4
V’

Fo(1)
%_/
Fb(2)

Figure 6: Partial products.

matrices are denoted by Fy(i). Fy(i) represents the frequency transformation from the beginning
of a b symbol to just before node i in b. Fy(1) is the edge transformer for the edge 4 — 1. F(2) is
the product of the matrices for edges 4 — 1 and 1 — 2. For all nodes not in the path represented
by nonterminal b, the Fj matrix will contain all zeros, which represents the fact that we do not find
these nodes in path-fragment b.

Using the definitions for the matrix transformers over path fragments and frequency matrices
over terminal-symbols in the grammar, M and F matrices are defined for the non-terminal symbols
of the WPP. (The Fs matrices, where S is the start symbol of the grammar, are used to calculate
the final dataflow-frequency answers for the entire path.) Matrices are defined over the grammar
symbols in a bottom-up fashion. In this case, M(A) and F4(.) are defined in terms of M (b) and
Fy(-) according to the rule “A — bb”:

M(A) = M) x M(b)
Fa(i) = Fp(i) + M(b) x Fy(i)

In particular, the two summands in F4(i) correspond to the two places in bb where node i may
occur.

In general, the computation of Fp(-) for a nonterminal P resembles a prefix-sum computation
over the symbols of the production with P on the left-hand side. For instance, in our example the
production for S is “S — aAAAbc,” and thus M (S) and Fs(-) are defined as follows:

M(S) = M(a) x M(A) x M(A) x M(A) x M(b) x M(c)

Fs(i) = Fa(z’) + M(a) x Fa(i) + M(a) x M(A) x Fa(i)
M(a) x M(A) x M(A) x Fa(i) + M(a) x M(A) x M(A) x M(A) x Fy(i)
M(a) x M(A) x M(A) x M(A) x M(b) x Fe(i).

Finally, the frequency vector for node i, denoted by Frequency(i), can be obtained from the
first row of Fg(1), in this case:

Frequency(i) = (1,0,0) x Fs(1).

The first element of this vector is the frequency that A is reachable at node 7 from A at the
beginning of the path (i.e., the beginning of execution). Because at every node of the path A is
always reachable from A at the beginning of the path, the first element of Frequency() tells us
how many times node i occurs in the path. In general, the j' entry of Frequency(i) indicates the

number of times that the j* dataflow fact holds at node i. Thus, the frequency vector can also be
used to compute the fraction of times a particular dataflow fact j holds at node ¢

Frequency(i)(j)
Frequency(i)(1)

Fraction(i, j) =

References

[1] T. Ball and J. Larus. Efficient path profiling. In MICRO, 1996.

[2] J.R. Larus. Whole program paths. In Prog. Lang. Design and Impl., 1999.

[3] C.G. Nevill-Manning and I.LH. Witten. Identifying hierarchical structure in sequences: A linear-time
algorithm. J. of Art. Intell. Research, 7:67-82, 1997.

[4] G. Ramalingam. Data flow frequency analysis. In Prog. Lang. Design and Impl., 1996.

[5] B. Scholz and E. Mehofer. Dataflow frequency analysis based on whole program paths. In Proc. Int.
Conf. on Parallel Architectures and Compilation Techniques (PACT), 2002.

