Interprocedural Dataflow Analysis, Part III:
Newtonian Program Analysis Via Tensor Product
CS701

Thomas Reps

Abstract

In this lecture, we summarize the interprocedural-dataflow-analysis method of Esparza et
al., which generalizes Newton’s method from a numerical-analysis algorithm for finding roots of
real-valued functions to a method for finding fixed-points of systems of equations over semirings.
As in its real-valued counterpart, each iteration of the method of Esparza et al. solves a simpler
“linearized” problem.

We then move on to a recent method of Reps et al., which attempts to provide an improved
technique for solving the linearized problems produced during successive rounds of Newton’s
method for semirings.

1 Newtonian Program Analysis (NPA)

In previous lectures, we described how interprocedural dataflow-analysis problems could be for-
malized as path problems in which there are two operators, extend (denoted by ®) and combine
(denoted by @). Technically, we are dealing with a semiring, which can be defined as follows:

Definition 1.1 A semiring S = (D, ®,®,0,1) consists of a set of elements D equipped with
two binary operations: combine (&) and extend (®). & and @ are associative, and have identity
elements 0 and 1, respectively. @ is commutative, and @ distributes over &. (A semiring is
sometimes called a weight domain, in which case elements are called weights.)

If fact, we need the semiring to have some additional properties—chiefly so that it makes sense

to define a Kleene-star operator in the following way: *: D — D is the operation a* = @ at,

1€N
where a' denotes the i term in the sequence a® = 1 and ¢'*! = ¢’ ® a. See App. A for the technical
details.

Our focus is on semirings in which @ is idempotent (i.e., for all a € D, a®a = a). In an
idempotent semiring, the order on elements is defined by a C b iff a ®b = b. (Idempotence would
be expected in the context of dataflow analysis because an idempotent semiring is a join semilattice
(D, ®) in which the join operation is @.)

A semiring is commautative if for all a,b € D, a ® b = b® a. We work with non-commutative
semirings, and henceforth use the term “semiring”—and symbol S—to mean an idempotent, non-
commutative, (w-continuous) semiring.

To simplify notation, we sometimes abbreviate a ® b as ab, and we assume the following prece-
dences for operators: * > ® > @. We also sometimes use a € S rather than a € D.

f(x;)

f(X;1)

i+1

Figure 1: The principle behind Newton’s method.

Newton’s Method for Root Finding. The jumping-off point for Esparza et al. is the ob-
servation that the algorithms for solving program-analysis problems are based on Kleene itera-
tion—i.e., the technique for finding the least fixed-point of X = f ()Z) via the sequence RO = 0,
R+ = f (E(i))—whereas in numerical problems, the workhorse for successive-approximation al-
gorithms is Newton’s method. The advantage of Newton’s method in numerical problems is that
when it converges, it converges much faster than Kleene iteration.

Fig. 1 shows how Newton’s method can (sometimes) help identify where a root of an expression
lies. (Newton’s method is not guaranteed to converge to a root.) The general principle is to create
a linear model of the function—in this case the tangent line—and solve the problem for the linear
model to obtain the next approximation to the root.

Newton’s Method for Program Analysis. Esparza et al. [2, 3] have given a generalization
of Newton’s method that finds the least fixed-point of a system of equations over a semiring. In
this section, we summarize their NPA method for the case of idempotent, non-commutative, w-
continuous semirings. Compared to the numerical setting, they have two points that they need to
finesse:

1. With numerical functions, the linear model is defined using derivatives and limits. We have
no such entities in semirings.

2. Newton’s method is for root-finding (i.e., find = such that f(z) = 0), whereas in program
analysis we are interested in finding a fixed-point (i.e., find = such that f(z) = x). Al
though one can easily convert a fixed-point problem into a root-finding problem—find z such
that f(x) — x = 0—this approach creates a new problem because there is no analogue of a
subtraction operation in a semiring.

The method of Esparza et al., which they call Newtonian Program Analysis (NPA), is

also an iterative successive-approximation method, but uses the following scheme:!

70 = T
7D = f(7®) U LinearCorrectionTerm(f, 7))

(1)

'For reasons that are immaterial to this discussion, Esparza et al. start the iteration via 7% = (f1(L),..., fa(L))
rather than 70 = 1. Our goal here is to bring out the essential similarities between Kleene iteration and NPA.

proc X; procX,

(a) (b)

Figure 2: (a) Graphical depiction of the equation system given in Eqn. (2) as an interprocedural
control-flow graph. The three edges labeled “X5” represent calls to procedure Xs. (b) Linearized
equation system over Y obtained from Eqn. (2) via Eqn. (4).

where LinearCorrectionTerm(f, ﬁ(i)) is a correction term—a function of f and the current approx-
imation 7(Y—that nudges the next approximation 7*+1) in the right direction at each step. The
sense in which the correction term is “linear” will be discussed shortly, but it is that linearity
property that makes it proper to say that Eqn. (1) is a form of Newton’s method.

Example 1.2 Consider the following program scheme, where X1 represents the main procedure,
Xo represents a subroutine, and S, Sp, Se, and sq represent four program statements:

Xa() {

Xi1() { Z(S(:){ .
)?2’0 sp; Xa(); X2();

} ‘)

Suppose that we have a semiring that captures a suitable abstraction of the program’s actions
(such as the relational weight domain). Let a, b, ¢, and d denote the semiring elements that abstract
statements Sq, Sp, Sc, and sq, respectively. The (abstract) actions of procedures X1 and Xo can be
expressed as the following set of recursive equations:

X1=a® Xy Xo=doba Xo® Xa®c. (2)

An equation system can also be viewed as a representation of a program’s interprocedural control-
flow graph (CFG). See Fig. 2(a).

In general, let S = (D, ®,®,0,1) be a semiring and ay, ..., a;+1 € D be semiring elements. Let
X be a finite set of variables Xi,..., Xx. A monomaial is a finite expression a1 Xjasz . ..apXrag41,
where k > 0. Monomials of the form Xjao, a1 X1, and a1 Xia0 are left-linear, right-linear,
and linear, respectively. (A semiring constant a; is considered to be left-linear, right-linear, and

linear.) A polynomial is a finite expression of the form m; @ ... ® m,, where p > 1 and mq,...,m,
are monomials. A system of polynomial equations has the form
Xlzfl(Xla"',Xn) Xn:fn(Xla-~-aXn)a

or equlvalently, X f(X), where X = (X1,..., X,,) and f = AX.(f1(X),..., fo(X)). For instance,
for Eqn. (2), f L AX . (a® X2, d®b® X2 ® Xa @ c).

Kleene iteration is the well-known technique for finding the least fixed-point of X = f ()?) via
the sequence 70 = 0; R0+ = f(7(®), Esparza et al. [2, 3] devised an alternative method, called
NPA, for finding the least fixed-point of X = f(X). With NPA, one solves the following sequence
of problems for 7:

70 = (£1(0),.. ., f(0)) (3)

Fi+) —)

where Y@ is the value of Y in the least solution of

Y = f(#D) @ D] (Y) (4)

and Df] (V) is the multivariate differential of f at 7, defined below (see Defn. 1.3).
Eqns. (3) and (4) resemble Kleene iteration, except that on each iteration f F(7D) is “corrected” by
the amount Df\ﬂ((V).

There is a close analogy between NPA and the use of Newton’s method in numerical analysis to
Solve a system of polynomial equations f ()Z') = 0. In both cases, one creates a linear approximation
of f around the point (7D, f (7)), and then uses the solution of the linear system in the next
approx1mat10n of X. The sequence 70, 71 7@ s called the Newton sequence for X =
f(X). The process of solving Eqns. (3) and (4) for 1/(”1) given 7 is called a Newton step or
one Newton round. For polynomial equations over a semiring, the linear approximation of f is
created as follows:

Definition 1.3 /2, 8] Let fi(X) be a component function of f(X). The differential of f;(X) with
respect to X at U, denoted by Dx, fi|z(Y), is defined as follows:

DXjfi|E(}7) =
(0 fol =s5€8
0 if fi= Xk and k # j
Y' if fi :Xj (5)
@ Dx,gxlz(Y) if fi= @ g
keK keK
Dx,gls(V)@h(@)) . _
® g(7) © Dx, hlz (?)) Fh=g8h

Let f be a multivariate polynomial function defined by X, (1(X), .. ,fn()_(')) The multi-
variate differential of f at U, denoted by Df\ (Y), is defined as follows:

—

~ Dxlfl‘ ()EB EBDan1| ()
D \D(Y)=< : >

Dx, fuls(¥) & .. GBDann!()

D]ﬂg(f}) denotes the i component of Dﬂg(f})
The fourth case in Eqn. (5) generalizes the differential of a binary combine, i.e.,

DXj91|g(?)€BDXj92|Q(37) if fi = g1 g2,

to infinite combines. Note how the fifth case, for “g ® h”, resembles the product rule from differential

calculus p p p
_ 9 a9
geh)=Lantgx L, (6)

and in particular the differential form of the product rule:
d(g*h) =dg*h+ g=dh.
We refer to the creation of Eqn. (4) from X = f(X) as the NPA linearizing transformation.

Example 1.4 For Eqn. (2), the multivariate differential of f at the value T = (v, vy) is

D‘ﬂ(ﬁbkg)(?) = <DX1f1|(V17V2)({)@DX2f1(l/l,VQ)(}:)7>

DXI f2‘(klykg) (Y) EB DX2f2’(Z17£2) (Y)

bRYa®@uy®ec
@ b®£2®YVZ®C

bRY:®@ry®c
- Y; 7
<a® 2’(@ b®V2®Y2®c>> (™)

From Eqn. (4), we then obtain the following linearized system of equations, which is also depicted
graphically in Fig. 2(b):

= <0@G®Y2,069 (

a@ Uy @b@ﬂg@ﬂg@c
V1,Ys) = 8
(1, ¥2) <<e9 a®Y2>’ O IRY,Qu,®c (8)
S bRYRY2®c

On the i + 1%¢ Newton round, we need to solve Eqn. (8) for (Y1,Ys) with (vy,v,) set to the value

<1/§i), 1/5”) obtained on the i™™ round, and then perform the assignment <V§Z+1), V§i+1)> +— (Y1,Y5).

It is instructive to consider why the second component in Eqn. (7) has the form that it has:
b®Y2®g2®c€Bb®£2®Y2®c.

Consider differentiating the numeric expression “fXgXh” with respect to X. You’ll probably
immediately say fX¢gXh = fghX?, and therefore the derivative is 2fghX. But let’s go more by
what Eqn. (6) says:

diX(fXth) = f*%*g*X*h—l—f*X*g*%*h
= fxlxgsx X*xh+fxXxgxlxh
= fgXh+ fXgh

If multiplication is not commutative (which is the case with a semiring’s ® operation), then you
cannot simplify the last line to 2fghX.

Note that Eqn. (8) is a linear problem in that each summand has just a single occurrence of a
Y;. Fig. 2(b) gives a graphical depiction of the linearized problem.

A Misconception on My Part. While Prathmesh Prabhu, a student in CS704, was presenting
the experiment that he and two other students had done with NPA as a class project, I formulated
the following analogy in my mind:

Polynomial — Linear

Interprocedural — Intraprocedural

In other words, I was thinking that solving each linearized problem corresponds to solving an
intraprocedural dataflow-analysis problem—a topic that has a fifty-year history [12, 7, 6, 5, 11]. In
particular, Tarjan’s path-expression method [10] finds a regular expression for each of the variables
in a set of mutually recursive left-linear equations. The regular expressions are then evaluated using
an appropriate interpretation of the regular operators +, -, and *. Moreover, Prathmesh’s study
indicated that (i) NPA was not an improvement over conventional methods for interprocedural
dataflow analysis, and (ii) 98% of the time was spent performing classical fixed-point iteration to
solve the linearized problem. Why not just apply a fast intraprocedural solver?

Prathmesh’s reply set me back; he pointed out what we mentioned above, namely, when New-
ton’s method is used in numerical-analysis problems, commutativity of multiplication is relied
on to rearrange an expression of the form “c* X + X % d” in the linearized problem into one of the
form “cx X +d*X,” which equals “(c+d)*X.” In contrast, in interprocedural dataflow analysis, a
dataflow value is typically an abstract transformer (i.e., it represents a function from sets of states
to sets of states) [1, 9]. Consequently, the “multiplication” operation is typically the reversal of
function composition—uv; * v 4 v9 o v;—which is not a commutative operation. When NPA is
used with a non-commutative semiring, an expression “c * X 4+ X % d” in the linearized problem
cannot be rearranged: coeflicients can appear on both sides of variables.

From a formal-languages perspective, the linearized equation systems that arise in numerical
analysis correspond to path problems described by regular languages. However, when expressions
of the form “cx X + X xd” cannot be rearranged, the linearized equation systems correspond to path
problems described by linear context-free languages (LCFLs). Conventional intraprocedural
dataflow-analysis algorithms solve only regular-language path problems, and hence cannot, in gen-
eral, be applied to the linearized equation systems considered on each round of NPA. Consequently,
we are stuck performing classical fixed-point iteration on the LCFL equation systems. (Applying
NPA’s linearization transformation to one of the LCFL equation systems just results in the same
LCFL equation system, and so one would not make any progress.)

On the face of it, it seems impossible, therefore, that Tarjan’s method could help in any way:
formal-language theory tells us that LCFL 2 Regular. In particular, the canonical example of a
non-regular language, {b’c’ |i € N}, is an LCFL.

However, the remainder of the lecture describes how—despite this obstacle—there are non-
commutative semirings for which we can transform the problem so that Tarjan’s method ap-
plies. Moreover, one of the families of semirings for which our transformation applies is the set of
predicate-abstraction domains [4], which are the foundation of most of today’s software model
checkers.

A Promising Step: Pairing. A left-linear equation system corresponds to a left-linear grammar,
and hence a regular language. The fact that Tarjan’s path-expression method [10] provides a fast
method for solving left-linear equation systems led us to pose the following question:

Is it possible to “regularize” the LCFL equation system L that arises on each Newton
round—i.e., transform L into a left-linear equation system Lgeg?

If the extend (®) operation of the semiring is commutative, it is trivial to turn an LCFL equation
system into a left-linear equation system. However, in dataflow-analysis problems, we rarely have
a commutative extend operation; thus, our goal is to find a way to regularize a non-commutative
LCFL equation system.

On the face of it, this line of attack seems unlikely to pan out; after all, if we read the Y5
component of Eqn. (8) as a grammar,

Yo i=d
| bryuvyc
| bYauv,c
| 6221/267

it resembles the language £ = {b’c’|i € N}, which is the canonical example of an LCFL that is not
regular. £ can be defined via the linear context-free grammar

Su=¢€e|bSc 9)

in which the second production allows matching b’s and ¢’s to be accumulated on the left and right
sides of nonterminal S. Moreover, if grammar (9) is extended to have K matching rules

Su=e|bjSe¢ 1<j<K (10)
the generated strings have bilateral symmetry, e.g.,

...bobicri ...
~—~
———

Any solution to the problem of regularizing a non-commutative LCFL equation system has to
accommodate such mirrored correlation patterns.

The challenge is to devise a way to accumulate matching quantities on both the left and right
sides, whereas in a regular language, we can only accumulate values on one side. This observation
suggests the strategy of using pairs in which left-side and right-side values are accumulated sepa-
rately but concurrently, so that the desired correlation is maintained. Toward this end, we define
extend and combine on pairs as follows:

(a1,b1) ®p(az,b2) = (a2 ® a1, by @ by) (11)
(a1,b1) @p(az, b2) = (a1 ® az, by S ba) (12)

Note the order-reversal in the first component of the right-hand side of Eqn. (11): “as ® ay.”

Given a pair (a,b), we can read out a normal value via the operation R(a,b) < 4 ®b. Because

of the order-reversal in Eqn. (11), we have

R((al,bl) ®p(a2,b2)) = R((a2®a1,b1®b2))
= a2®a1 @by @by .
——

The braces highlight the fact that we have achieved the desired mirrored matching of (i) a; with
bl, and (11) a9 with b2.

Example 1.5 Using ®, and @,, we can transform a linear equation (and more generally a set
of linear equations) by pairing semiring values that appear to the left of a variable with the values
that appear to the right of the variable, placing the pair to the variable’s right. For instance, the
equation for Yo in Eqn. (8) is transformed into

(1,d)
Dyp (l,b@kg@ﬂg@C)
®p Zo @p(b, vy ®c)
B Zo Dp(b@vy,c)

Zo = (13)

where Zy is now a variable that takes on pairs of semiring values. After collecting terms, we have
an equation of the form

oy = A @p 79 ®p B, (14)
where A = (1,d®bRry®ry®c), (15)
and B = (b@b@ﬂQ,Zg@C@C). (16)

Eqn. (14) is similar to the equation over formal languages
ZQZA+(Z2'B),

for which the regular expression A - B* is a closed-form solution for Zs. Similarly, the solution of
Eqn. (14) for Zy over paired semiring values is given by

oy = A®p B*r, (17)

where B*? denotes @p B (in which the repeated “multiplication” operation in B' is ®p,). If the
1€EN

answer obtained for Zs is the pair (w1, ws), we can read out the value for Zs as R((wi,ws)) =

w1 Q@ wa.

The algorithm demonstrated above can be stated as follows:

Algorithm 1.6 7o solve a linear equation system L,
1. Conwvert L into a left-linear equation system L e, (with weights that consist of pairs of semiring
values).
2. Find the least solution of equation system L pe,.
3. Apply the readout operation R to the least solution of Lpe, to obtain a solution to L.

In our example, for step (2) we expressed the least solution of Eqn. (14) in closed form, as a
regular expression (Eqn. (36)), which means that the solution for Z3 can be obtained merely by
evaluating the regular expression. In general, when equation system Lges has a larger number
of variables, for step (2) we can use Tarjan’s path-expression method [10], which finds a regular
expression for each of the variables in a set of mutually recursive left-linear equations.

This approach has a lot of promise for Newtonian program analysis because the structure of
Lreg—and hence of the corresponding regular expressions—remains fixed from round to
round. Consequently, we only need to perform the expensive step of regular-expression construction
via Tarjan’s method once, before the first round. The actions taken for step (2) on each Newton
round are as follows: (i) in each regular expression, replace the constant-valued leaves {v;}, which
represent previous-round values, with updated constants, and (ii) reevaluate the regular expression.

procX; procX,

[
Q

iy
Q

N

Figure 3: A path problem that has exactly two paths.

In our example, the original linearized system of Eqn. (8), transformed to left-linear form, is
<Z1’ Z2> = <(l7 a ®22) Dp Z ®p(a7l)7 A Dp Z ®p B>’

for which we have the closed-form solution

/(1,a®vy) By ARy B* @y(a, 1),
<ZI7ZQ> - <A®p B*p .

To solve the original system of equations given in Eqn. (2),
1. First, set vy to 0 in Eqn. (18) and evaluate the right-hand side:

et

2. Then, until convergence, repeat the following steps:
(a) Apply R to the value obtained for Zs to obtain the value of vy to use during the next
round.
(b) Use that value in Eqns. (15) and (16), and evaluate the right-hand side of Eqn. (18) to
obtain new values for Z; and Zs.

(18)

Pairing Fails to Deliver. Unfortunately, the method given as Alg. 1.6 is not guaranteed to
produce the desired least-fixed-point solution to an LCFL equation system L. The reason is that
the read-out operation R does not, in general, distribute over ®,. Consider the equation system

X1 =1 Xo = a1 X1b1 ® axX1bo,

which is depicted graphically in Fig. 3. This system corresponds to a graph with two paths. The
least solution for Xs is a1b; @ asbe, where a1b; and asbe are the contributions from the two paths.
However, when treated as a paired-semiring-value problem, we have

Z1=(1,1) Zy = 71 ®p((a1,b1) ®p(az, b2)).

The least solution for Zs is (a1, b1) ®p(az, b2), whose readout value is R((a1,b1) ®p(asz, b2)). How-
ever, the latter does not equal a1by @ asbs.

R((al,ln)@p(ag,bg)) = R((al@ag,bl@bg))
= (a1 ®az) ® (b1 ®by)
a1b1 @ azb1 ® a1by © azby (20)
a1by @ agby
R((a1,b1)) & R((az,b2)).

[

9

In other words, using combines of pairs leads to cross-terms, such as asb; and a1b2, and consequently
answers obtained by (i) solving Eqn. (14) over paired semiring values for the combine-over-all-values
answer, and (ii) applying R to the result, could return an overapproximation (1) of the least solution
of the original LCFL equation system L.

A Different Kind of Pairing. In light of the example presented above, the prospects for har-
nessing Tarjan’s path-expression method for use during NPA look rather bleak. However, there is
still one glimmer of hope:

A transformation of the linearized problem to left-linear form is not actually forced to use
pairing: given a “coupled value” ¢ = (a,b), we never need to recover from c the value of
either a or b alone; we only need to be able to obtain the value a ® b.

Thus, by using some other binary operator to couple values together, it may still be possible
to perform a transformation similar to the conversion of the equation for Y5 in Eqn. (8) into
Eqn. (13). Of course, the final answer read out of the solution to the left-linear problem must not
have contributions from undesired cross-terms.

Thus, we must ask the question,

Is there an operation to couple two values, a and b, that returns a “blended” value in
which a and b are hidden, but the product a ® b is recoverable.

For instance, in the RSA cryptography, the product ab of two primes a and b is a kind of “blended”
value that hides @ and b (unless a great deal of computational effort is expended), but one can
trivially recover the product ab.

It turns out that the answer to our question is “yes” (!), at least for some semirings of interest.
We will explain the principle for the IFDS framework [8] and predicate-abstraction domains [4]
before giving a more abstract definition of the required properties.

The semiring values for both the IFDS framework and predicate abstraction can be represented
as Boolean matrices. N x N Boolean matrices support an operation called the Kronecker product,
denoted by ®, defined as follows:

raS - NS
ROS = :
ryiS -+ TNNS
which yields an N? x N? binary matrix whose entries are
(R®S)[(a—1)N +b,(a’ —1)N +¥] = R(a,a’) A S(b,b).

Let’s consider why the Kronecker product of two Boolean matrices A and B allows their product
A x B to be recovered later:

A0B — [a11 a1] o [bi1 bi2]
| a1 asp ba1 b2
a12b11 ai12bi2
ai2b11 ai2bz2 (21)
az2b11 az2b12
a2.2b21 az2b22

[a11b11 a11bi2
ai,1ba1 aiibao
az1b11 az1bip

| a2.1b21 az1bo2

[a a b b
Ax B — 11oa2 || b bip
| a1 asp bo1 22

a1,1b1,1 Vaioba1 a11b12Vai b

-] 22)

| a2,1b1,1 Vagpba1 ag1biaVasobao

10

You can see the each of the summands in Eqn. (22) is found in Eqn. (21). It is not too difficult
to create an expression that computes A x B from A® B. (Hint: It involves multiplying A® B
on both the left-hand and right-hand sides by suitable non-square matrices.) Moreover, it turns
out that this “readout” operations distributes over the @ operation for Boolean matrices, which
is component-wise “or.” This latter property is crucial to avoiding the kinds of cross-terms that
cropped up when we tried to use pairing.

We define the desired “coupling” operation in terms of two primitives: transpose and tensor
product:

Definition 1.7 Let S = (D,®,®,0,1) be a semiring. S has a transpose operation, denoted by
4D — D, if for all elements a,a1,as € D the following properties hold:

(a1 ®az)' = az®aj (23)
(a1 D az)' = a} ©d (24)
(a")! = a. (25)

A tensor-product semiring over S is defined to be another semiring ST = (D7, &7, ®71,07, 17),
where S and St support a tensor-product operation, denoted by ® : D x D — D, such that for
all a,a1,a9,b1,b9,c1,c0 € D, the following properties hold:

00a=aG0 = 0f (

a1 ® (be @ ca) = (a1 ©b2) Br(a; ®ca) (

(b1®c1) © ag = (b ®az) Br(c1 ©az) (

(a1 ©®b1) @7(a2 ©b2) = (a1 ®az) © (b1 ® ba). (

A tensor-product semiring defined over a semiring with transpose has a (sequential) detensor-

transpose operation, denoted by 4 . D — D, if for all elements ai,as € D and p1,ps € D
the following properties hold:

111 ® ag) = (af @ az) (30)
$) (pr @7 p2) = 4 (p1) @ 4) (pa). (31)

We assume that Eqns. (24), (27), (28), and (31) also hold for infinite combines.
For brevity, we say that S is an admissible semiring if (1) S has a transpose operation, (ii)
S has an associated tensor-product semiring S, and (iii) S has a sequential detensor-transpose
operation. Henceforth, we consider only admissible semirings.
The operation to couple pairs of values from an admissible semiring, denoted by C : D x D —
D, is defined as follows:
C(a,b) = (a' ®b).

Note that by Eqns. (23) and (29),

C(a1,b1) @7 C(az, b2) = (af ©by) @7(ah O ba)
= (a} ®ab) ® (b1 @ bo)
= (a2 ®a1)' ® (b1 @ bs)

C(az ® a1,by1 @ ba)

(32)

The order-reversal vis a vis ®7 and ® in Eqn. (32) will substitute for the order-reversal vis a vis
®p and ® in Eqn. (11).

11

= =
© ®
) —
I< L o
N
© @
I o
<
N
<
N
o

Figure 4: Graphical representation of the linearized equation system over 7 obtained from Eqn. (2)
using tensor-product-based coupling.

The operator that plays the role of R is 4®) The superscript in 4) serves as a reminder
that Eqn. (30) performs an additional transpose on the first argument of a coupled value (a' ®b),
so that 4) (a! ®b) becomes (a')! @b = a ®b. Consequently,

$0)(Clag @ a1, b1 @b2)) =) (a2 @ a1)' © (b1 @ by))
(a2 ®a1)t)! @ (b1 @ bo)
= as®a; @by ® by

~——

which has the desired matching of a; with b; and ag with be. Moreover, in contrast with Eqn. (20),
by Eqn. (31), 4 does not produce cross-terms:

$) ((al @ b)) Br(ab @ b)) = §E)(ab O by) B §) (ah @ bo)
= a1b1 ® asbs.

Example 1.8 Using tensor-product-based coupling, the Yo component of Eqn. (8) would be trans-

formed into
QLMo (doblr,®v,®c))
Zy= | &7 Zo@7(0' O (1y®c)) (33)
D1 Zo7((b@1y)t ©c)

which is depicted in Fig. 4. After collecting terms, we have

Zy = Ae7(Z2®7 D), (34)
where A = (I'0dBbRr,Qvy,®c))
and B = (b'O(ry®c)) r((b©w,) ©c) (35)
which has the solution
Zy=A®T B*T. (36)

The (untensored) value for Xo is then obtained as Xo = 4) (Zs).

References

[1] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures. In Formal
Descriptions of Programming Concepts. North-Holland, 1978.

12

[2] J. Esparza, S. Kiefer, and M. Luttenberger. Newton’s method for omega-continuous semirings. In Int.
Collog. on Automata, Langs., and Programming, 2008.
[3] J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian program analysis. J. ACM, 57(6), 2010.
[4] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Computer Aided Verif., 1997.
[5] S.L. Graham and M. Wegman. A fast and usually linear algorithm for data flow analysis. J. ACM,
23(1):172-202, 1976.
[6] J.B. Kam and J.D. Ullman. Global data flow analysis and iterative algorithms. J. ACM, 23(1):158-171,
1976.
[7] G.A. Kildall. A unified approach to global program optimization. In Princ. of Prog. Lang., 1973.
[8] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reachability. In
Princ. of Prog. Lang., 1995.
[9] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In Program Flow
Analysis: Theory and Applications. Prentice-Hall, 1981.
[10] R.E. Tarjan. Fast algorithms for solving path problems. J. ACM, 28(3):594-614, 1981.
[11] R.E. Tarjan. A unified approach to path problems. J. ACM, 28(3):577-593, 1981.
[12] V. Vyssotsky and P. Wegner. A graph theoretical Fortran source language analyzer. Unpublished
technical report, Bell Labs, Murray-Hill NJ (as cited in Aho et al., “Compilers: Principles, Techniques,
and Tools”, Addison-Wesley, 1986), 1963.

A Definitions

Definition A.1 An w-continuous semiring is a semiring with the following additional proper-
ties:
1. The relation © = {(a,b) € D x D | 3d: a®d = b} is a partial order.
2. Every w-chain (a;)ien (i-e., for alli € N a; C a;y1) has a supremum with respect to C,
denoted by sup;cy ;.
3. Given an arbitrary sequence (¢;)ien, define

@ci Esup{co®e1 @... D¢ | i € N}
ieN

The supremum exists by (2) above. Then, for every sequence (a;)icn, for every b € S, and
every partition (1;);cy of N, the following properties all hold:

b® (@az> =P o)

1€EN €N
(@Ch) ®b = @(ai@)b)
1€eN 1€N
D (@) - D=
jeJ \i€l; ieN

The notation a* denotes the i term in the sequence in which o = 1 and a'*! = a'®a. An

w-continuous semiring has a Kleene-star operator *: D — D defined as follows: a* = @ai.
1€N

13

