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Abstract

This lecture discusses the relationship between automatic differentiation and backpropaga-
tion. Automatic differentiation (AD) is a technique that takes an implementation of a numerical
function f (computed using floating-point numbers) and creates an implementation of f/. We
explain several techniques for performing AD. For forward-mode AD, we give an explicit trans-
formation of the program, as well as a way to implement AD using operator overloading. We
then reformulate AD as a path problem over a so-called computation graph. The path problem
can be solved in either direction: one direction corresponds to forward-mode AD; the other
corresponds to reverse-mode AD.

Finally, we show how reverse-mode AD forms the basis of the backpropagation algorithm
for training a neural net: in backpropagation, the weight adjustments computed for a neural
net, a given input, and an expected output are found by performing reverse-mode AD on the
computation graph for (i) the neural net, along with (ii) additional computation-graph elements
for the sum-of-squared differences of the neural net’s output with the expected output.

1 Introduction

This lecture provides another payoff for our having invested so much time on path problems.
The point of the lecture is to show you how the core step used to train a neural net—mnamely,
backpropagation—involves solving a path problem. Our path to presenting this concept is a bit
indirect, but hopefully enlightening:

e forward-mode automatic differentiation

e reverse-mode automatic differentiation

e expressing a neural net as an expression DAG

e backpropagation

2 Forward-Mode Automatic Differentiation

This sectionlﬂ describes so-called forward-mode automatic differentiation, which provides a way to
compute, with high accuracy, the derivative of a function defined by a program. An AD tool trans-
forms a program that computes a numerical function F(z) into a related program that computes
the derivative F’(x). These tools address the following issue: Suppose that you have a program
F(x) that computes a numerical function F(z). It is a very bad idea to try to compute F'(z),
the value of the derivative of F' at xg, by picking a small value delta_x and invoking the following

!This section is adapted from [I7, §2].



program with the argument XOEI

float delta x = ...(some small value) ...;
float F/ naive(float x){

return (F(x + deltax) - F(x))/delta x;
}

For a small enough value of delta_x, the values of F(xp+delta x) and F(xq) will usually be very
close. Round-off errors in the computation of F(xp+delta x) and F(xo) are magnified by the
subtraction of the two quantities, and further amplified by the division by the small quantity
delta_x, which may cause the overall result to be useless. Automatic differentiation sidesteps this
problem by computing derivatives in another fashion.

Automatic differentiation can be illustrated by means of the following example:

(1)

Example 2.1 [19]. Suppose that we have been given a collection of programs f; for the functions
fi, 1 < i < k, together with the program Prod shown below, which computes the function Prod(z) =
Hle fi(x). In addition, suppose that we have also been given programs f} for the functions f/,
1 < i < k. Finally, suppose that we wish to obtain a program Prod’ that computes the function
Prod'(z). Column two of the table given below shows mathematical expressions for Prod(z) and
Prod'(x). Column three shows two C++ procedures: Procedure Prod computes Prod(z); procedure
Prod’ is the procedure that an automatic-differentiation system would create to compute Prod’(x).

Mathematical Notation Programming Notation
float Prod(float x){
float ans = 1.0;
k for (int i = 1; i <= k; i++){
Function Prod(z) = Hfz(:v) ans = ans * f;(x);
i=1 }

return ans;

}

float Prod (float x){
float ans’ = 0.0;
float ans = 1.0;

k for (imt i = 1; i <= k; i++){
Derivative| Prod'(z) = Zfz’(x) * Hfj(a;) ans’ = ans’ * f;(x) + ans * £i(x);
i=1 G ) ans = ans * f;i(x);

’
return ans';

}

Notice that program Prod’ resembles program Prod, as opposed to F/ naive (see box (1))). Prod’
preserves accuracy in its computation of the derivative because, as illustrated below in Exam-
ple it is based on the rules for the exact computation of derivatives, rather than on the kind
of computation performed by F/ naive. O

2In the remainder of this section, Courier Font is used to denote functions defined by programs, whereas Italic
Font is used to denote mathematical functions. That is, F(z) denotes a function (evaluated over real numbers),
whereas F(x) denotes a program (evaluated over floating-point numbers). We adhere to this convention both in
concrete examples that involve C++ code, as well as in more abstract discussions in order to distinguish between a
mathematical function and a program that implements the function.

The example programs are all written in C+4, although the ideas described apply to other programming
languages—including functional programming languages (cf. [8,[9])—as well as to other imperative languages. To em-
phasize the links between mathematical concepts and their implementations in C++, we take the liberty of sometimes
using ' and/or subscripts on C++ identifiers.



The transformation illustrated above is merely one instance of a general transformation that can
be applied to any program: Given a program G as input, the transformation produces a derivative-
computing program G’. The method for constructing G’ is as follows:

e For each variable v of type float used in G, another float variable v’ is introduced.

e Each statement in G of the form “v = exp;”, where exp is an arithmetic expression, is trans-

formed into “v/ = exp’; v = exp;”, where exp’ is the expression for the derivative of exp.
If exp involves calls to a procedure g, then exp’ may involve calls to both g and g’.

e Each return statement in G of the form “return v;” is transformed into “return v’;”.

In general, this transformation can be justified by appealing to the chain rule of differential calculus

(see below).

Example 2.2 For Example we can demonstrate the correctness of the transformation by
symbolically executing Prod’ for a few iterations, comparing the values of ans’ and ans (as functions
of x) at the start of each iteration of the for-loop:

Iteration | Value of ans’ (as a function of x) Value of ans
(as a function of x)
0 0.0 1.0
i 7% £(x)
2 £1(x) * £2(x) + £1(x) * £5(x) £1(x) * £2(x)
£ (x) * £2(x) * £3(x)
3 +  £1(x) * £5(x) * £3(x) f1(x) * f2(x) * £3(x)
+ fi(x) * £2(x) x £5(x)
k k
k > (=)« [[£5(x) [I£:
1=1 JF#i i=1

The loop maintains the invariant that, at the start of each iteration, ans’(x) = ‘L ans(x).
The value of ans’ on the 37 iteration would actually be computed with the terms grouped as
follows:
(£ (x)xE2(x) +£1 (x) xE5(x) ) #E3 (x) +(£1(x) #£2(x) ) +£5(x). (2)

Terms have been expanded in the table given above to clarify how ans’ builds up a value that is

k
equivalent—from the standpoint of evaluation in real arithmetic—to Prod’(x) = Zf L(x) *Hf 5(x).
i=1 j£i
However, Eqn. shows what happens operationally: for a summand of the form

fl(X) L 3 fi_l(X) * f/l * fi+1(X) E O 3 fk(X),

the product £1(x) *...xf;_1(x) is built up in variable ans during the first ¢ — 1 iterations; then, in
iteration 4, it is multiplied by £} and added to ans’; thereafter, on subsequent iterations, it resides
in ans’ as ans’ is multiplied by £341(x) % ... * fx(x). O

For the automatic-differentiation approach, we did not really need to make the assumption
that we were given programs f/ for the functions f/, 1 <1 < k; instead, the programs f} can be
generated from the programs f; by applying the same statement-doubling transformation that was
applied to Prod.

In languages that support operator overloading, such as C++, Ada, and Pascal-XSC, automatic
differentiation can be carried out by defining a new data type that has fields for both the value and



enum ArgDesc { CONST, VAR };

class FloatD {

public:
float val’;
float val;
FloatD(ArgDesc,float);

}s

// Constructor to convert a constant

// or a value for the independent

// variable to a FloatD

FloatD: :FloatD(ArgDesc a, float v){

switch (a) {
case CONST:
val’ = 0.0;
val = v;
break;
case VAR:
val’ = 1.0;
val = v;
break;
}

}

FloatD operator+(FloatD a, FloatD b){
FloatD ans;
ans.val’ = a.val’ + b.val’;
ans.val = a.val + b.val;
return ans;

}

FloatD operator*(FloatD a, FloatD b){

FloatD ans;
ans.val’ = a.val * b.val’ + a.val’ * b.val;
ans.val = a.val * b.val;
return ans;
}

Figure 1: A differentiation-arithmetic class.

the derivative, and overloading the arithmetic operators to carry out appropriate manipulations of
both fields [12] 13], along the lines of the definition of the C++ class FloatD, shown in Fig.[l] A
class such as FloatD is called a differentiation arithmetic [14} [15] [16].

The transformation then amounts to changing the types of each procedure’s formal parameters,
local variables, and return value (including those of the £ l)E]

Example 2.3 Using class FloatD, the Prod program of Example can be handled as follows:

3We have referred to automatic differentiation as a “program transformation,” which may conjure up the image of

a tool that perform source-to-source rewriting fully automatically. Although source-to-source rewriting is one possible
embodiment, here the term “transformation” will also include the use of C++ classes in which the arithmetic operators
have been overloaded. With the latter approach, rewriting might be carried out by a preprocessor, but might also be
performed by hand, because usually only light rewriting of the program source text is required.



float f;(float x){...}

float fy(float x){...}
float Prod(float x){
1.0;

float ans
for (int i =
ans * f;(x);

ans

}

return ans;

}

1; i <= k; i++){

= FloatD f;(const FloatD &x){...}

= FloatD fy(const FloatD &x){...}
FloatD Prod(const FloatD &x){
FloatD ans(CONST,1.0); // ans
for (int i = 1; i <= k; i++){
ans * f;(x);
}

return ans;

}

=1.0

= ans

float Prod/(float x){
FloatD xD(VAR,x);
return Prod(xD).val’;

}

By changing the types of the formal parameters, local variables, and the return values of Prod and
the f; (and making a slight change to the initialization of ans in Prod), the program now carries
around derivative values (in the val’ field) in addition to performing all of the work performed
by the original program. Because of the C++ overload-resolution mechanism, the £; procedures
invoked in the fourth line of the transformed version of Prod are the transformed versions of the
f; (i.e., the f; of type FloatD — FloatD).

The value of Prod’s derivative at v is obtained by calling Prod’(v). O

In a differentiation arithmetic, each procedure in the user’s program, such as Prod and the f;
in Example can be viewed as a box that maps two inputs to two outputs, as depicted below:

V— F —F (V)

Computational

Differentation
v -’Differentiating = F (V)
w |version of F F/ (V) *w

In particular, in each differentiating version of a user-defined or library procedure F, the lower-
right-hand output produces the value F’ (v) *w.

An input value v for the formal parameter is treated as a pair (v,1.0). Boxes like the one
shown above “snap together”: when F is composed with G (and the input is v), the output value on
the lower-right-hand side is F/(G(v) ) *G’(v), which agrees with the usual expression for the chain
rule for the first-derivative operator:

— G(V) —— F

Computational
Differentation

i

Differentiating
version of G

Computational
Differentation

]

Differentiating
version of F

—» F(G(V))

I F/ (G(V))*G’ (V)

— = G (V)

1.0 — — G’ (V) —




xX+y

Figure 2: (a) A symbolic computation graph for the evaluation of the expression (z + 4y) * ((x +
y) * (y)). (b) The computation graph for (x 4+ 4y) * ((x + y) * (y)) when x = 3 and y = 5. (It is
recommended to view the figures in this document on-line so that the colors in them can be seen.)

It should be noted that the transformation that was illustrated in Example[2.1]is not fully general
in that it does not yield a procedure that can be composed with other transformed procedures. To
create a composable transformed procedure, the transformation would, in essence, have to make
changes that mimic all of the actions of the version created in Example using class FloatD: the
procedure would have to take two arguments, x and x’; pass these on to composable transformed
versions of the f;; and return a pair (ans, ans’), instead of ans’ alone.

The automatic-differentiation technique summarized above is what is known as forward-mode
differentiation. The availability of overloading makes it possible to implement forward-mode auto-
matic differentiation conveniently, by packaging it as a differentiation-arithmetic class, as illustrated
above. The alternative to the use of overloading is to build a special-purpose preprocessor to carry
out the statement-doubling transformation that was illustrated in Exs. and Examples of
systems that use the latter approach include ADIFOR [I} 2] and ADIC [3].

When the number of independent variables is much greater than the number of dependent
variables, a different technique, reverse-mode automatic-differentiation [10] 18, [7, [5, 6], provides
theoretically better performance—a greatly reduced number of computation steps—but at the
cost of the need to store or recompute intermediate values that affect the final result nonlinearly.
Reverse-mode automatic differentiation is explained in In §6} we describe how reverse-mode
automatic differentiation is the workhorse of the backpropagation algorithm used to train a neural
network.

Forward mode and reverse mode are the endpoints of a spectrum of algorithmic techniques; in
practice, automatic-differentiation tools optimize runtime and memory requirements by exploiting
associativity properties of the chain rule to permit forward mode and reverse mode to be used in
different parts of the computation [4].

3 Computation Graphs

In previous lectures, we described how interprocedural dataflow-analysis problems can be formalized
as path problems on graphs. Here, we will reformulate automatic differentiation—both forward-
mode and reverse-mode—as a path problem. To do so, we introduce the notion of a computation
graph [11]. A computation graph is a labeled directed-acyclic graph (DAG). We start with the—in



general—multi-source/multi-sink DAG that consists of all operations performed during execution,
connected by edges that represent how outputs from one operation were used as inputs to another
operation. Fig. (a) shows an example of a computation graph for the following function:

Wz, y) = (x+4y) = ((z +y) * (). (3)

We will use Eqn. as a running example in the rest of this document. Note that by expanding
the right-hand-side expression, h(x,y) equals 22y +5zy% +4y> (i.e., it is a multivariate polynomial).

To formulate automatic differentiation as a path problem, we have to define the values that
label a computation graph’s edges and to define two operators, extend and combine—as we did for
shortest-distance problems and dataflow-analysis problems. The path problem we need to define
here is relatively straightforward: the extend operator is multiplication and the combine operator
is addition. Note that unlike in the dataflow-analysis case, the combine operator is not idempotent:
for instance, 1 +1 = 2 and not 1! However, the absense of idempotence does not create difficulties
for automatic differentiation because we only need to solve path problems on a DAG; they can
always be solved using a traversal of the DAG in topological order.

The edges are labeled according to the following scheme:

The labeling schema given above is really a symbolic version of the method used to construct
a computation graph; Fig. (a) is an example of a symbolic computation graph. In an actual
computation graph, we will have specific values for x and y, as well as for each of the subexpressions
used as labels: (z 4+ y)y,  + 4y, and  + y. Fig. [2b) shows the computation graph for (z + 4y) *
((x+vy) * (y)) when z =3 and y = 5.

4 Computing Partial Derivatives Using a Computation Graph

The reason why computation graphs are interesting is because it is possible to compute partial
derivatives by solving single-source/single-target path problems on a computation graph. Fig.
returns to the example of h(z,y) = (z +4y) * ((z+y) * (y)), and illustrates how % and %
when 2 = 3 and y = 5, can be computed via forward and backward single-source /single-target path
problems.

The calculations for % depicted in Fig. (a) and Fig. (b) involve summing over all paths from
x to the root of the computation graph for h. This sum can be computed in two directions (and the
same result is obtained via either method): in forward-mode automatic differentiation, the path-
value computations proceed from the leaf x to the root of the computation graph. (Forward-mode
differentiation tracks how the value at each node is affected by a change in the value of the input
x.) In contrast, with reverse-mode automatic differentiation the path-value computations proceed
from the root of the computation graph to the leaf x. (Reverse-mode differentiation tracks how the
output value of the function is affected by a change in the value at a given node in the computation
graph.)

For example, the green values shown in Fig. [3(a) and Fig. [3(b) indicate the intermediate path-
values computed for nodes that are relevant to the final calculation during the forward and backward

traversals, respectively. Because we are working with a DAG, the values can be computed in linear

)
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Figure 3: The computation of partial derivatives of h(z,y), when x = 3 and y = 5, via forward and

backward single-source/single-target path problems. (a) 8((x+4y)*é€rm+y)*(y))) = 155 via a forward

path problem; (b) a((x+4y)*é(m+y)*(y))) = 155 via a backward path problem; (c) a((’”+4y)*é(z+y)*(y))) =

@ y
(d) 8((I+4y)*(,(9(;+y) *W)) — 459 via a backward path problem;

459 via a forward path problem;

time in the size of the relevant portion of the computation graph by traversing that portion of the
computation graph in topological order.

In the case of forward mode AD, the diagrams in Fig. [d]depict the main elements of the induction
step in an inductive proof of correctness of the (forward) path-problem method. The induction
hypothesis is that the single-source/single-target forward path problem in each of the shaded regions
computes the indicated partial derivatives. The continuation of the path computations in a (4, x)
path problem yield the respective indicated values 1 % % + 1% % and g * % + f % %.

However, if we know that the forward-path-problem method is a correct method for computing
partial derivatives, then the correctness of the backward-path-problem method follows immediately
from the associativity and commutativity of + and x.



Figure 4: The essence of the induction step in an inductive proof of correctness of the method for
computing a partial derivative by solving a forward path problem (forward-mode AD). Diagrams
(a) and (b) show how information is propagated from children to their parent in the case of a
+-node and a x-node, respectively.

Example 4.1 Let us now return to Eqn. and show that the values computed in Fig. a) and
Fig. [3(b) are correct by computing the partial derivative by the more usual rules:

Oh(y, ) _O(zPy + bry® + 4y°)
Ox z=3,y=5 B Ox z=3,y=5
= 2xy + 5y° ‘x:&y:&,)
=30+ 125
=155

Another way to check our work is to solve the path problems from Fig. a) and Fig. (b)
symbolically, using Fig. a), and show that both methods produce the answer 2zy + 5y2.
Forward path problem:

oh(y,
f?i:x) =1 (z+y)y+1xyx*(z+4y)
=2y + y* +yx + 4y?)
= 227 + 52
Backward path problem.:
oh(y,
gcx) =(r+yy* 1+ (x+4y)*xy*1

=2y + y* + zy + 4y°
=2a:y—|—5y2



Figure 5: Depiction of the cost difference between forward-mode and reverse-mode automatic
differentiation, depending on what set of partial derivatives is desired.

Forward-Mode Versus Reverse-Mode

At first glance, one may think because forward-mode and reverse-mode automatic differentiation
compute the same answer, neither method is to be preferred over the other. However, the two
methods may have substantially different costs, depending on the number of inputs and outputs of
the function.

To understand the cost difference between forward-mode and reverse-mode automatic differen-
tiation, consider a multivariate function f_i(i") that maps a vector of n inputs (x1,x9,...,2,) to a
vector of m outputs (hy(Z), ha(ZL),. .., hn (%)), as depicted in Fig. [5| Fig. [5|illustrates how forward-
mode and reverse-mode can have much different costs, depending on what set of partial derivatives
is desired:

e One extreme is when we want to compute the set {% [1<Ek< m} of all partial derivatives
of {hx(Z) | 1 < k < m} with respect to some input x;. In effect, n = 1 (although we
must have available the results of any sub-computation that can affect the value of any
of the hg(%)). In this case, the set of partial derivatives should be computed by solving
a single-source/multi-target path problem, which can be performed using a single forward
pass over the computation graph. This computation corresponds to forward-mode automatic
differentiation, and is depicted in blue in Fig.

Oh;

e Another extreme is when we want to compute the set { o |1<k< n} of partial derivatives

of some h;(Z) with respect to all inputs {zx | 1 < k < n}. In effect, m = 1 (and we really
only need the computation graph for h;(Z)). In this case, the set of partial derivatives should
be computed by solving a multi-source/single-target path problem, which can be performed
using a single backward pass over the computation graph. This computation corresponds to
reverse-mode automatic differentiation, and is depicted in purple in Fig.

10



More generally, we might want the set {% |ke K C{l,....m}AleLC{l,... ,n}} There

is a trade-off between performing |L| forward passes or |K| backward passes. Each forward pass

computes {% | ke K } for some j € L. Each backward pass computes {g—g: RAS L} for some
J

i € K. In this case, reverse-mode automatic differentiation is preferred when |L| > |K|. Forward-
mode automatic differentiation is preferred when |L| < |K|.

As we will see in §6] when training a neural network, the number of inputs is typically large, and
the number of outputs is 1. Consequently, the backpropagation algorithm for neural-net training
employs reverse mode.

5 Derivatives for Other Operators

In this section, we describe how to construct the computation graph when the computation contains

operators other than addition and multiplication. In general, for an occurrence of an n-ary operator,
80p(f17"’7fj7"'7f’71) .
- a5

the label on the j¥* argument is the value of the partial derivative :

@ aop(fl, ---'fj' ---'fn)

> af;

i fi

It is easy to see that the two labeling schemes for addition and multiplication depicted at the end
of §3| fit the general pattern. We now consider several other examples.

Square Root. The square-root operator /z o m% is a unary operator; consequently, there is
only one incoming edge to a square-root node. The value on the edge is the value of the partial

1
. . o _ O0(=z2) _ 1 -1 1
derivative /= = =5~ = 507 2 = OV Consequently, for an occurrence of the square-root operator

that produces the value v, the label that should be placed on the incoming edge is %

v

2v

X

Note that the square-root operator is different from addition and multiplication in that the value
on the edge is a function of the output of the operator.

Sigmoid. One of the operations used in neural nets is the sigmoid operation, which is also unary:

def 1
@) =T

11



The value on the edge is the value of the partial derivative

do(z) O1+e )"

ox Ox
= —1(1+e®)2e7®(-1)

() ()
(

1 1+e™® 1
1+e ™ 1+e™ 14e®

Consequently, for an occurrence of the sigmoid operator that produces the value v, the label that
should be placed on the incoming edge is v(1 — v).

v
ﬁ?/v(l—v)
X

|
9
—
3
=~
fi
|
9
—~
K
S~—

Squares of Differences. Consider the following 2-argument function used for computing one
term in a sum of squares of differences:

1
)\m,vi(va)?

In the context of training a neural net, the first argument will be the value computed by one output
node of the neural net. The second argument will be the expected value of a training example, and
thus is considered to be a constant. Consequently, we are only interested in the value on the left
edge, which is the value of the partial derivative

03 (z — v)?
ox

=z —v.
[ lx,v.%(x—v)z J

(x—v)\A

X v

6 Backpropagation for Training a Neural Net

In this section, we explain how reverse-mode automatic differentiation forms the basis of the back-
propagation algorithm for training a neural net: in backpropagation, the weight adjustments com-
puted for a neural net, a given input, and an expected output are found by performing reverse-mode
automatic differentiation on the computation graph for (i) the neural net, along with (ii) additional
computation-graph elements for the sum of the squared differences of the neural net’s output with
the expected output.

12



Cost

Y1 Y2 Y3 training layer {Azl,zz.%(zl - ZZ)ZJ [ﬂzl,zz.%(zl - zz)z] [Azl,zz.%(zl - 22)2]

%1 Y2 Uy V3 U3

Y1
E j output layer E j

hidden layer

input layer
X1 X - xn X1 Xy . Xn

(a) (b)

Figure 6: (a) A neural net with one hidden layer. (b) Circuit used for training a neural net.

Figure 7: Structure of a node in a neural network.

A neural network has an input layer, an output layer, and at least one hidden layer in the
middle, as shown in Fig. @(a). When one looks into one of the nodes in the network, one typically
has what is depicted in Fig.

e a node has some number of inputs 41, .. ., ik, which are multiplied respectively by the weights

W1y ., WE

e these products are then summed

e a sigmoid function is applied to the sum

e the output of the sigmoid function goes off to the next layer in the network—in general, to

multiple nodes in the next layer

A neural network is trained by a “hill-climbing” procedure. One repeatedly presents it with
training examples—i.e., pairs of vectors (Z,¥), where ¥ represents the desired output for input
Z—drawn from some suite of training data. For understanding how training works, it is useful to
think of the neural net as being equipped with an additional layer that computes a cost Cost(¥, ¥)
by computing the sum of the squared differences of the network’s actual output for input & (i.e.,

13
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Figure 8: A neural network has three kinds of inputs: (i) the input data 7, (ii) the parameters
w, and (iii) the desired output ¢. To perform back-propagation, one needs to compute the partial

derivatives {%}. (Adapted from a slide in a POPL 2022 talk by Faustyna Krawiec.)

%) and the expected output —see Fig. [6[(b). The use of the sum-of-squared differences

> é(yj —v;)?

1<j<m

helps to accommodate noise in the training data. (The training data might contain mistakes due
to human error, or it might consist of data observed from the environment via sensors, which will
introduce measurement error.)
For each (&, ¥) pair, the weights in each of the nodes are adjusted by
1. using reverse-mode automatic differentiation to compute %, for each w; that is a weight
component of one of the hidden or output nodes in the neural network
2. making the adjustment w; := w; + na(g;’jt, where 7 is a small constant that controls the rate
of hill-climbing.
Training continues until the weight adjustments fall below some desired threshold.
Note that when training a neural network using automatic differentation, it is the set of weights

{w;} that are considered to be the inputs of the computation graph with respect to which we want

to compute the partial derivatives {%C—ﬁ} (see Fig. . The values from ¥ are treated as constants
for the purposes of a given round of training. Moreover, Cost is the only output, and thus the
number of outputs is 1. Consequently, automatic differentiation is performed using reverse mode.

Fig. [0 shows a full neural-net-training example in schematic form. The figure shows the com-
putation graph for a two-layer neural net, including the training layer. The edges of the graph

14
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Figure 9: A back-propagation example in schematic form.

are annotated with the edge-weights used in the path problem for automatic differentiation. With
reverse-mode automatic differentiation, the desired set of partial derivatives {%C—u‘i‘“} can be com-

puted using a single backward pass over the computation graph.
It is instructive to consider in more detail a couple of the partial derivatives that are computed.

For instance, there is only one path from Cost to wy, and thus %"jt can be computed as follows:
%ojt =1x(y2 —v2) xy2(1 —y2) x 1 x Iy

= (y2 —v2)y2(1 — y2)h1

In contrast, there are multiple paths from Cost to wiy:

1><(y1—l)1)><y1(1—y1) ><1><w3><h3(1—h3) X 1Xx
%olit— —|—1><(y2—v2)><y2(1—y2)><1><w6><h3(1—h3)><1><a:1
+ 1% (ys —wv3) xys(1 —y3) x 1 x wg X hg(1 —hg) x 1 X 21
(y1 —v1)y1(1 —y1)ws
= | + (y2 —v2)y2(1 — y2)ws | h3(1l — h3)x
+ (y3 — v3)ys(1 — y3)wy
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These results are then used to adjust the values of wy and w4 by making the adjustments

0Cost
wg = wg+ 1
Owy
0Cost
W4 = W14 + 1
Owiy
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