CS 809 Fall 2018 Homework #3

Due in class Friday, Oct. 12, 2018.

Rules for Homework. See Homework 1.

3. This problem is concerned with an analog of the Feller "card dealing" algorithm, for choosing a random equivalence relation of $\{1, \ldots, n\}$.

Let B_n denote the number of different equivalence relations on $\{1, \ldots, n\}$. $B_0 = 1$ by convention, and you can verify that the next few values are given by

- a) For k = 1, ..., n, find the number of equivalence relations on $\{1, ..., n\}$ having 1 in a class of size k. Your formula can involve values of B_j for j < n.
- b) Note that 1 must go into some class. Using a), give a recursive formula for B_n . Don't forget your initial condition(s).
- c) Use this to design a recursive algorithm for choosing a random equivalence relation.
- d) Let E_n be the expected number of recursive calls in your solution to c). (This will also be the mean number of equivalence classes in a randomly chosen equivalence relation on $\{1, \ldots, n\}$.) Write down a recurrence relation for E_n , and show that $B_{n+1}/B_n 1$ is the solution to it.
- e) (*) For a random permutation on $\{1, \ldots, n\}$, the size of the part (cycle) containing 1 is uniformly distributed. This is not true for random equivalence relations, as you can see from small examples (even n=3 is big enough). What can you say about its distribution?