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INTRODUCTION

Certain ervplographic keys, such as a number which makes
it possible to compute the seeret decoding exponent in an
RSA public key cryptosystem,™ or the system miaster key
and certain other keys in a DES cryptosystem,® are so im-
portant that they present a dilemma. If too many copies are
distributed one might go astray, If too few copies are made
they might all be destroyed,

A typical cryplosystem will have several volatile copies
of an important key in protected memory locations where
they will very probably evaporate if any fampedng or prob-
ing occurs. Since an opponent may be content to disrupt the
system by forcing the evaporation of all these copies it is
useful to entrust one or more other nonvolatile capies
reliable individuals or secure locations. What must the non-
volatile copies of the keys, or nonvolatile pieces of infor-
mation from which the keys are reconstructed, be guarded
against? The answer is that there are at least three types of
incidents:

& An abnegation incident is an event after which a non-
volatile piece of information is no longer completely
reclaimable by the organization which entrusted it to a
guard. There are three main types of abnegation inci-
dents:

—Destruction of the nonvolatile piece of information.
For example, a person carryving & copy of a number can
meet with an unexpected accident, during which the
copy i destroved,

—Degradution of the nonvolatile piece of information,
For example, a person may lose his copy of the number
and, in embarrassment and confusion, produce some
other pumber when asked.

~Defection with the nonvolatile information, For ex-
ample, the person with the copy of the number may
divulge it to the opposition and refose to tell it 1o the
organization which entrusted it 10 him.

& A berraval incident 15 an event after which a nonvalatile
piece of information is completely known to an oppo-
nent of the organization which entrusted it to a guard,
Defection, which we have already encountered among
abnegation incidents, is one kind of betrayal incident,
The other main kind of beirayal incident is
—Derelicrion with the nonvolatile piece of information,

[y
ek

an act which reveals it to the apposition 5o as not {o be
discovered by the organization which entrusted it o
the guard, either before or afier he has been requesied
to return it. For example. the person who has the copy
of the number can show it 1o an opponent but still play
the part of a faithful guard, and even report the number
back correctly when requested.

& A combination incident is an abnegation incident which
is also a betrayal incident. The main kind of combina-
tion incident is defection. The three types of incident
arg, thus, A, B and C. And the commonest kinds of A,
B or C incidents are the four Ds, Note that none of the
four Ds neéed imply malfeasance, misfeasance or even
nonfeasance on the part of the guard. But it would be
wise to consider such possibilities whenever an incident
of any of the three types is detected.

Why was. simple loss of the nonvolatile piece of infor
mation not included above? The answer is ihat some types
of loss amount essentially to destruction of the nonvolatile
piece of information, in the sense that neither the organi-
zation that entrosted it to a guard nor any of its opponents
is likely to get the piece of information before the encrypted
information becomes valueless. For example, the person
with the copy of the number was on a Mars fiyby which lost
contact forever with Earth as #t went behind Mars. Bw if a
loss cannot be confidently regarded as a destruction, the
proverbial “*prudent man.'' in charge of cvaluating this in-
cident for the organization which eptrusted the nonvolatile
piece of information to & guard, must regard it as a defection.
For example, if the person who memorized the number
disappeared after a family quarrel the prudent man evalu-
ating the incident must assume that an opponent knows the
piece of information in guestion.

COUNTING AND DISCOUNTING INCIDENTS

There are iwo principles for counting incidents, The first
is Boole’s law of inclusion and- exclusion. Suppose that an
organization issucs nonvolatile pieces of information to
guards and wails a modest period of time during which
incidents gecasionally occur. Let a stand for the aumber of
abnegation incidents, & for the number of betrayal incidents
and ¢ for the number of combination incidents. The total
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number J of incidents is d=a+b=c because 2 combination
incident gets counted twice. once by g and once by b,
The second principie is that incidents are so rare, that the
possibility of two separate incidents occurring with the same
nonvolatile piece of information is usually dismissed on
probabilistic grounds as absurd. A defection is a single in-
cident with two aspecls, abnegation and betrayal, so it is
nol dismissed as too improbable. But the idea that the per-
son who has a copy of the number diés in a plane crash one
month after confiding it 1o an opponent iy dismissed as too
improbable. Too slavish an adherence to this **second-order

improbability™ prejudice can lead o ludicrously inappro-

priate actions, such as that of the statistician who always
carries his own bomb on airplanes because it is so improb-
able that there will be two bombs on the same flight. But it
is a good rule of thumb if used properly,

This latter principle implics, among ather things, that fnone
of the four numbers a, b, ¢ or a+b- ¢ exceeds the number
£ of nonvolatile picces of information entrusted to the g
guards,

Suppose an organization chooses in advance the number
a of abnegation incidents and the number & of betrayal
incidents it feels it must be protected against when entrusting
several nonvolatile pieces of key reconstruction information
to a set of guards. Each guard gets a different piece of
information. The lifetime of this scheme must not be very
many months if scparate incidents involving the same piece
of information are to be ruled out. We know that
c= MIN{a, b} since a combination incident is both an ab-
negation incident and a betrayal incident. From the two
counting principles above it then follows that

a+b-MIN{a.b)=dsa+b

and that d=g, where g is the number of guards to which
the organizaiion entrusts the g nonvolatile pieces of infor-
malion.

The prudent man, when designing a system of safeguard-
ing key information which is secure from a abnegdtion in-
cidents as well as & betrayal incidents, must assume that the
number ¢ of combination incidents is zero. This means that
the maximum number of incidents must be anticipated, since

d=a+b-c=a+b-0

in this case, Such a key information safeguarding system
must have the property that a4 b+ 1 different nonvolatile
pieees of key reconstruction information are generated, and
given to distinet puards. The key must be reconstructible
from any b+ of these picces (this assumes g abnegation
incidents) but there must be no information whatever abouwt
the key which can be inferred from knowledge of only b of
these pieces (this is protection against b betrayal incidents).
This last requirement is unusual, For example, a polynomial
of degree & can be recoustructed from its values at b+|
points, But already its values at any b poings tell a lot aboul
it, It can alse be reconstructed from the values of its Oth
through Bbth Tayler cocfficients at & point, But already the
valugs of any b of these b+ 1 numbers tell 1 lot aboul it
What we are asking for, then. is somewhal couunter-intui-

tive. Let us a coin a metaphor to describe it, We want to
give every one of a+b+1 guards a shadow of a different
profile of the key, so that the key can be reconstifuted in its
entirety from any b+ of these shadows. However, some-
body who has seen only & such shadows should be com-
pletely in the dark, in the very strong sense Lthat any key on
the keyring could cast these b shadows when illuminated
from b appropriately chosen directions.

Let us Jook at what happens if a=b=4. Then any five of
the nine guards have the wherewithal to recopsiruct the key.
Thus, there is considerable protection against defection and
dereliction, since even four of the nine pieces of information
are not enough to reveal anything av all about the key 1o an
opponent. There is also protection against destruction, If
the four pieces of infarmation belonging to any four guards
are destroyed the other five can still be used 1o recanstruct
the key. As to degradation, suppose that six guards give
correct reports of the shadows they carry, 1o return {o the
metaphor. Then there are six different sets of five guards
whose picces of information can reconstitute the same key,
If the other three misreport their shadows then any one of
the 120 s¢ts of five goards containing at least onc of the
misreporting three guards will give a deseription of the key,
but probably all these deseriptions will differ among them-
selves and will also differ from the true value of the key.
Thus, the six reports of different sets of five guards which
agree gre singled out as correct. Of course, if it is possible
to tell whether a proffered key is the right one, then it is
possible (o reconstruct the key when only five guards report
correctly. So protection against degradation need not be
synonymous with protection against destruction, but they
are largely concomitant with each other. In the approach to
be discussed it will be assumed that the right key can be
recognized when proffered, This assumption is reasonable
since Hsts of plaintext to ceyptext pairs can be publicized
for tosting as a backsiop 1o the simpler test, which is that
stored ciphertext messages will probably yicld nonsensical
diecipherments under a false key.

The rest of the paper describes one way to cast the a+b+1
shadows of a key in sueh a fashion that it can be recon-
structed from any b+1 of them, but that no b of them tell
anything about it whatever. The way this is done is to sct
up & many-to-many correspondence between keys and one-
dimensional vector subspaces of {i.e. lines through the origin
of } a fOpite vector space, F. One key determines a vas!
collection of lines but one ling determines a tiny collection
of keys, When an organization has a key to apportion among
a+b+1 guards, it picks at random one of the lines corre-
sponding {o that key. Let us call this line L. Then it picks
at random a+b+1 vector subspaces of f—the shadows of
the Key—such that any & or fewer of them intersect in a
large vector subspace of F whose various one dimensional
vector subspaces lead back to all possible keys with ap-
proximately equal probability, but such that any b+1 of
them intersect in L, Onceé L has been found there are only
a few possible keys which could have given rise to it, Each
one is tried against a stored 1ist of plaintexi to cryptext pairs
and the correet one identified, This s not the firss application
of projective geometric ideas to problems invelving codes.®
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SOME PRELIMINARY RESULTS

a b is the bih power of g, and asb is the produet of a
and b,

# Lemma 1—Let a and b be positive integers. Let R be
a set with at least o+6+2 members, Then there are
more than a+b+2 subsets of B which consist of b+1
objects, There are more than a+b+| subsets of R
which consist of b objects. If fand g are two members
of R there are more than a+ & subsets of RN {f} whick
consist of b obicets, and there are at least a+b subsets
of RN\{f.g} which consist of & objects.

o Lemma 2=-Suppose that a and b are positive integers
smaller than 2z, Let M be a matrix with at most a+b+2
rows and at most b+2 columns. Then M has as most

{z+ 132z} eniries and at most (241} b+1by b+l

submatrices. Thus M has fewer than 3z 1 2 entries and
fewer than 4 T z submatrces of size b+1=by=h+1.

e Lemma 3—Suppose that 0<2Ex<20=2<E,
Then 2J(1—-x} | E-(1-Ex){<Q12.

o Lemma 4—If 4sA<B then p(l-j/B)<p(t=2/B),
where the products are over positive integers j< 4.

® Lemma 5—Suppose that A and B are integers and that

0=2(A= 1)} 2<2B0<2B<(A~1)B.

Then 1 -2Q0<BH{{(B-A BB T AD<1, and
1=20<{{B-2)/B) } A<({(B=1)/B){ A<].
& Lempia 6—Suppose that A and B are integers and that
02(A—1) § 2<2BO<2B< (A~ 1)B

Suppose that a sample of A points (with replacement) is
taken from a population of B points. Then the probability U
that all sample points are distinet exceeds [-20. 1T two
distinguished points of the population are specified in ad-
vance the probability ¥ that no sample point is equal to
cither of them exceeds 1~20, Therefore it follows a fortiori
that if one or two distinguished population points are spec-
ificd in advance, then the probability W that none of the
points of the sample is equal to any of the distinguished
points or w any other point of the sample exceeds -4,

#Lemma 7—Let p be an odd prime. Let d be a positive
integer. Let S{d,p) be the collection of all d by d matnices
with entrics taken from the field F of integers modulo p.
Let ¢ and w be two non-zero members of F, Then there are
as many members of $(d,p) with determinant equal to v
as there are with determiinant equal to w.

eLemma B-Let p be an odd prime. Let & and » be
positive integers. Let flp.nk) be the number of & by #
matrices  over the fiekd F oof residue Classes module p
whose rank is less than k. Then f{p, n, 1)=1 and, whenever
2=k=n,
fip. n Ki=ps [(E—I}MH)EHM a=-pt (k=1 fAp. 2,

k=1).
Consequently,
pilk=Dins)I=flp, n, K<pi[k=1Ha+2)]+(p T r)
: fpon, k=1}

far every integer & such that 2=k=n,

& Lemma 9—Let pbe an odd prime. Let flp, A, k) be as

in Lemma 8. Then pf (vt 2-D=<flp, n, B}=<2p 1 (n 1 2-1L

e Theorem l—Let p be a prime larger than 6. Let d be

a positive integer. Let S(d,p) be the collection of all o

by d matrices with entries taken from the field F of

integers modulo p. If vEF let #(e, d, p) be the number

of members of S{d, p) whose determinant is equal to v,
Suppose that k and g are members of F. Then

alh, d, pi<3n(g, d, p)
and [pt{nt2=012<flp.nn)<2p(n}2-1).

Thus, all determinants cccur approximately equally often.
In fact every non-zero field element oceurs equally often as
the value of the determinant of a member of S{d, p) but zero
occurs more often, though not thrice as often.

& Theorem 2—Let a, b and p be positive integers. el
M be a matrx with a+b+2 rows and b+2 columns.
Suppose that

0=2[{a+ b+ 2+ )-1]1 2<2p<2p
([(c:+b+2_){b+ N-1]p.

Suppose that one position in each row of M is chosen at
random, and that that entry is set equal (o 1. Suppose that
the remaining {a+ b+ 2){#+1) entries of M are chosen at
random {(with replacement) from the population of all p
residue classes modulo p. Then each of the two events

L. Two entries of M, neither of which is one of the a+b+2
entries which were set equal to 1 at the outset, are
congruent to each other module p

2. An entry of M, other than one of the g+ b+2 entries
which were s¢t equal fo | at the outsel. is congruent
o cither G or | modulo p

have probability smaller than 20, Consequently. the prob-
ability that neither Event | nor Event 2 occurs exceeds

1-40.

It is easy to verify that if @Q=1/1077, and a and b are
both smaller than 10, then it suffices to choose any p= 101 12
in order to satisfy the hypotheses of Theorem 2. This is the
order in which users of the kevpuard system will usually
proceed. The tiny positive number @ is a measure of the
depariure from complefe randomness of the concealing pro-
¢cedure. The modest-sized positive integer a (resp. b is the
number of abnegation (resp. betrayal) incidents to be
guarded against, After deciding on these three safety levels
a user must then accept a value of pas large as dictated by
the hypotheses of Theorem 2 in order to achieve them, The
keyspace will then be chosen to contain at least p keys,

Consider, now, the probabilistic interpretation of Theo-
rein |, IF vou choose a member x of the field F of integers
module p, and choose some d by d matrx M over F al
random (by choasing its successive entries at random with
replacement from f) then the probability W that der(Mi=x
satisfies the inequality 1/2p=W2/p.

We will assume that the manner in which the matrix in
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Theorem 2 s chosen {salling each row with a | cntey) dues
not do much violence o this conclusion, In other words, we
will make the following {unproven but plaumbfel assump-
tion,

s Hypothesiz I—Let p be an odd pnme Let @ and b
be positive integers, Let A be a matrix with a+5+2
rows and b4 2 columns. Suppose that a position in each
row is chosen at random and that that entry is 561 equal
to |. Suppose that, thereafter. each of the remaining
(a+b+2)(b+1) entries is chosen at random from the
field F of residue classes modulo p. Suppose that,
then, a collection of 41 row indices is chosen at ran-
dom from the set of all £4+1 member subsets of the set
of all @+ b+2 row indices. Suppose, finally, that a col-
lection of b+ I column indices is chosen at random from
the set of all £+ 1 member subsets of the set of all A+2
column indices. Let x be a member of F. Let Wbe the
probability that the vatue of the determinant of the b+ |
by b+1 submatrix § of M corresponding (o these row
and colupm indices is equal to x. Then W satisfies the
ineguality

12p<W<2/p.

To put matters in a nutshell, a judicious salting of #n
otherwise rundemly chosen matrix with a few entries equal
to 1 should nol cause the determinants of its large square
submatrives to depart from the quite uniform disiribution
thut determinants of completely randomly selected matrices
exhibit,

FUARDING KEYS

A key & is a positive integer, A kevset K is a finite set of
keys. Let B be the largest member of the keyset XK. A
reasonably small positive integer 2 i chosen. On practical
grounds 2 should probably be smaller than 100, Two positive
integers @ und b smaller than z are chosen, A prime ponly
shightly smaller than B is found. It wounld nut. in Fact, be too
expensive 1o find the largest psendoprime smaller than B
and let it be p. A psendoprime is a large positive integer
which satisfies a vonsiderable number of Rabin’s (hopefully}
stochastically independent necessary® conditions for primal-
ity. and can therefure be assumed to be prime with a prob-
ability in excess of (,99999 Y9999 Y9999 Y9999, or even more,
if desired. Though p might be composite we shall regard it
as prime in the development below. Let F be the field of
imegers modalo p, Let V be the b+2 dimensional vector
space over F which consists of all lists (written in the form
of rows) of +2 members of F. For every member g of the
set G of a+b+1 guards we will define a corresponding b+
dimeasional vector subspace V(g) of the b+2 dimensional
vector space V. To each Key & there will correspond many
lines, through the vrigin of V. representing . The organi-
zation wishing to entrust 4 1o a set of guards will choose
one of these lines at random and call it L{&), When b guards
intersect their subspaces the intersection must be ol least
two-dimensional. Moreover, it will be such that its varions
one-dimensional vector subspaces represent all members of

F with approximately equal likelihood. Bul when b+
guards infersect their subspuces the interseetion is the line
Lk}, which does not depend on which b+ 1 guards were
chosen. To L(k) there will correspand only 5+2 possible
keys, The candidates can be checked and the key recliimed,
The rest of this section fleshes out this outline,

Te begin we pick z and choose positive integers gand b
smaller than z, Then we choose a small O, and thereafier a
suitably karge p to satisfy the inequalities in the hypotheses
of Theorem 2, We construcy a matrix M with g+ 542 rows
and b+2 mlumns as follows. For each row of M we pick an

“entry at random and set it equal to 1. Next we pick an entry

at random in the first row of M and choose its value & af
random  from  F. Then we choose the remaining
{a+b4+2p{b+2)—1 entrics of M at random {with replace-
ment} from F. Now we test M for acceplance or rejection.
In vrder to pass the first test 4 must have only one | in
cach row, it must have no zero entry and o two of it
entries can be cqual vnless they are both equal (o 1. Since
a aml b are non-pegative integers smaller than z it follows
from Lemma 2 that there are fewer than 3z 1 2entries of M.,
Since p and O satisfy the inequalities in the hypotheses of
Theorem 2. #t then follaws from Lemma 4 that such a ran-
dom process will produce a matrix which passes the first
test with probability in excess of 1-2Q. In order to pass the
second test M must have no b+ 1 by b+ submatrix whose
determinant, calculated in F, is zero, and must have no two
b+1by b+1 submatrices whose determinants, calculated in
F, are cqual, There are fewer than 4 1 z such submatrces,
according to Lemma 2, The foregoing suggests that the ran-
dom process which produced M will cause it to pass the
second test with probability in excess of |20, Therefore,
it should pass both tests with probability in excess of 1=40.
In other words, the process used almost always produces a
usable matrix M the first time it is employed. Once a matrix
M passes the tests we know from Lemma | thal we can
form more than a+ b+ 1 sets of b+ 1 rows of M which con-
tain the first row of M, So we pick a+b+1 different sets of
b+1 rows of M, cach of which contains the first row of M.
Each such set is linearly independent since every b+#1 by
b+1 submalriz of M is non-singular. Let N(jf) be the b+1
by b+2 submatrix of M formed in the obvious way from the
Jth of these a+b+1 sets of rows. Its first row consists of
the first of s rows which occurs in the sei. [ts second row
is Mg second. And 5o on. Now for each x&€ V it is possible
to form the b+2 by &+2 matrx Y{J,x) from N{j) by ap-
pending a last (i.e. (b+2)nd) row

x=(x() 2@ . .., x(b¥1), x(b+2))
(¥Ox[p+2.10] YUL0[b+2,2], .. .,
Y(i.x)b+2,b+1], Y X)b+2.b+2])

It

The b+1 dimensional vector subspave of the vector space
of rows with b+ 2 entries taken from F determined by N{/)
is the set

U= xlder( Y{j.x)=0}

Evidently the first row foff M belongs to L{J§) lor every j§
since Y(4. 1) has first and last row equal to Ffor every f,

Authorized licensed use limited to: Unlversny of W;sconsm Downloaded on Aprll 22,2024 at 20:22:12 UTC from |EEE Xplore. Restrictions apply.

Fropyr the eollection ol the Conpates

CHstory B

sonen Dapows corrpitlerhistore ore)



Safeguarding Cryplogaphic Keys kI

S0 when b+ of these A+ 1 dimensional vector subspaces
of the 5+2 dimensional vector space of rows of b+2 entries
taken from F are intersected their intersection is the line
through the origin which also contains the vector f which

is the first row of M. The cquation del{ Y{j,x1)=0is. of

course, @ lincar cquation of the form
el A+ e/, 23602y .
x{b+ 1)+ c{f.b+2)x(b+2)=0

Cte(l b+

where ¢{j,1) is 4 determinant of some #41 by b+1 sub-
matrix of M. These are non-zero, and pair-wise unequal by
the way M was produced. And, because of the foreguing,
they probably appear to be approximately randomly selected
from F.

But now look at what }mppun% when only & of these
subspaces s intersected 1o form a two-dimensional vector
subspace. This means choosing infegers

1= j(1)=0(2)= . .. <fib)sat b+
and sulving the simultaneous equations

der{(Y{j{1),x)#=0
det{ ¥{j{21,.x)=0

det( Y(j;b),x)ﬁ)

for x, by using Gauss elimination, then choosing a basis of
two vectors for this space of all such x. The two-dimensionsl
vector space in question contwing the first row of M. Bui
the randomness of the choices of the members of A should
mean the following:

& Hypothesis 2-Consider the collection of all vectors
in this two dimensional subspace which have exactly
one entry cqual to § and which have pairwise distinet

gniries none of which is zero, Any two members of

FNA0,1) will be represented approsimately equally

often in the count of multiplicities of cecurrence of
members of F\{0,1} as entries in the vectors of this

collection.

If this is correct then isulation of this two-dimensional
subspace sheds oo light whatever on how 1o recover the

key. The recovery system. when you have b+1 subspaces
{53 is to solve the system

des(Y(jU)xn=0

det{ Y{ilh+11.x))=0

as above. The solution is a line through the origin, A basis
for it is u single vector g={g(1),2(2). . . .. g{b+1.2(b+2})}
which is some non-zero multiple of £, the first row of M,
which comains the key as one of its enirics. You know g,
not f. But for each entry g{i) of g it is easy 1o find the
RDEF such that g{DA{i=1 mod(p). The b+2 veatlors

hil)g
g

b+

are the only multiples of g which huve | as an entry, There-
fore fis among them, and the key & i among the entries of
. So one of the (5+2) 12 entries on the list ol vedtors
above is the key, And the key is not egqual o 1, which oceurs
once among the entries of each vector, So there are

b+ 1Hb+=:{z+ 1)

candidates w be tested. One of them will pass the test.
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