46

[]anuary

THE FACTORIZATION OF THE CYCLOTOMIC POLYNOMIALS MOD b

W. J. GUERRIER, University of Hawaii

Let n be a positive integer and denote by $F_n(X)$ the cyclotomic polynomial of order n. In teaching courses in algebraic number theory, I have found the theorem below on the factorization of $F_n(X)$ mod p very useful. I do not know, however, of any simple reference for this theorem. The object of this note is to provide such a reference.

THEOREM. Let p be a prime and suppose that $p \nmid n$. Denote by ϕ the Euler ϕ -function.

(i) Set f = the (multiplicative) order of $p \mod n$. Then $F_n(X)$ factors $\mod p$ into a product of $\phi(n)/f$ distinct irreducible polynomials each of degree f.

(ii) For any positive integer, r, $F_p r_n(X) = F_n(X)^{\phi(p^r)} \pmod{p}$.

Proof. (i): Denote by Z_p the field of p elements and let K be the splitting field over Z_p of the polynomial $X^{p^f} - X$. Since $n \mid p^f - 1$, K contains the nth roots of unity. Let ζ be a primitive nth root of unity. The map $x \rightarrow x^p$ is a generator for the Galois group of K/Z_p . Thus the minimal polynomial of ζ over Z_p is

$$(X-\zeta)(X-\zeta^p)\cdot\cdot\cdot(X-\zeta^{p^{f-1}})$$

and therefore $F_n(X)$ has an irreducible factor of degree $f \mod p$.

Now choose another primitive *n*th root of unity η not among ζ , ζ^p , \cdots , $\zeta^{p^{l-1}}$. (Note that since $p \nmid n$, ξ^{p^l} is a primitive *n*th root of unity.) The polynomial

$$(X-\eta)(X-\eta^p)\cdot\cdot\cdot(X-\eta^{p^{f-1}})$$

is then a second irreducible factor of $F_n(X)$ of degree f. Continuing this process one arrives at the desired conclusion.

(ii): Let $\eta_1, \eta_2, \dots, \eta_s$ $(s = \phi(n))$ be the primitive *n*th roots of unity and let ζ be a primitive p^{rth} root of unity. Since (n, p) = 1 each of the elements $(\eta_i \zeta^i)^{p^r}$ $i = 1, \dots, s, j = 1, \dots, p^r$ is a primitive *n*th root. On the other hand for $(j, p) = 1, \eta_i \zeta^i$ is a primitive $p^r n$ th root of unity and for $p \mid j, (\eta_i \zeta^i)^{p^{r-1}}$ is a primitive *n*th root. Thus one has

$$F_{n}(X^{p^{r}}) = \prod_{i,j} (X - \eta_{i} \xi^{j}) = \prod_{\substack{i,j \ (j,p)=1}} (X - \eta_{i} \xi^{j}) \cdot \prod_{\substack{i,j \ p \mid j}} (X - \eta_{i} \xi^{j})$$
$$= F_{p^{r}n}(X) \cdot F_{n}(X^{p^{r-1}}).$$

Therefore,

$$F_{p^r n}(X) = F_n(X^{p^r}) / F_n(X^{p^{r-1}}) \equiv F_n(X)^{p^r} / F_n(X)^{p^{r-1}}$$
$$= F_n(X)^{p^{r-1}(p-1)} = F_n(X)^{\phi(p^r)}.$$

This completes the proof of the theorem.