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 Annals of Mathematics, 126 (1987), 649-673

 Factoring integers with elliptic curves

 By H. W. LENSTRA, JR.

 Abstract

 This paper is devoted to the description and analysis of a new algorithm to
 factor positive integers. It depends on the use of elliptic curves. The new method
 is obtained from Pollard's (p - 1)-method (Proc. Cambridge Philos. Soc. 76
 (1974), 521-528) by replacing the multiplicative group by the group of points on
 a random elliptic curve. It is conjectured that the algorithm determines a
 non-trivial divisor of a composite number n in expected time at most

 K( p)(log n)2, where p is the least prime dividing n and K is a function for

 which log K(x) = /(2 + o(1))log x log log x for x -x o. In the worst case,
 when n is the product of two primes of the same order of magnitude, this is

 exp((1 + o(1)) Vlog n log log n ) (for n -* xo). There are several other factoring
 algorithms of which the conjectural expected running time is given by the latter
 formula. However, these algorithms have a running time that is basically
 independent of the size of the prime factors of n, whereas the new elliptic curve
 method is substantially faster for small p.

 Acknowledgements. This paper was written at the Mathematical Sciences
 Research Institute in Berkeley (NSF grant 8120790) and at the University of
 Chicago. I thank both institutions for their hospitality and support.

 Introduction

 This paper is devoted to the description and analysis of a new method to

 factor positive integers. It depends on the use of elliptic curves.
 The method is analogous to Pollard's (p - 1)-method [17, Section 4], which

 attempts to find a non-trivial divisor of a given integer n > 1 in the following
 way. First, one selects an integer a(mod n) and a positive integer k that is
 divisible by many small prime powers; for example, k = lcm{ 1, 2,.. ., b } for a
 suitable bound b. Next one calculates ak(mod n), and one hopes to obtain a
 non-trivial divisor of n by calculating ged(ak - 1, n).
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 650 H. W. LENSTRA, JR.

 Pollard's (p - 1)-method is usually successful if n has a prime factor p < n

 for which p - 1 is built up from small prime numbers. Suppose, to be specific,

 that p - 1 divides k, and that p does not divide a. Then in the multiplicative
 group (Z/pZ)* of integers modulo p the number ak becomes equal to the

 neutral element 1, by Fermat's theorem, so that p divides gcd(ak - 1, n). In
 many cases one has p = gcd(ak - 1, n), and the method finds a non-trivial
 divisor of n.

 On the other hand, if for each prime number p dividing n the number

 p - 1 has a large prime factor, then Pollard's (p - 1)-method is not likely to be

 successful within a reasonable time limit.

 The new method is obtained from Pollard's (p - 1)-method by replacing

 the multiplicative group by the group of points on a random elliptic curve. To

 find a non-trivial divisor- of an integer n > 1, one begins by selecting an elliptic

 curve E over Z/nZ, a point P on E with coordinates in Z/nZ, and an integer k

 as above. Using the addition law of the curve, one next calculates the multiple
 k - P of P. One now hopes that there is a prime divisor p of n for which k P

 and the neutral element 0 of the curve become the same modulo p; if E is given
 by a homogeneous Weierstrass equation y2Z = x3 + aXZ2 + bz 3, with 0 =

 (0: 1: 0), then this is equivalent to the z-coordinate of k P being divisible by p.

 Hence, one hopes to find a non-trivial factor of n by calculating the greatest
 common divisor of this z-coordinate with n.

 If a single curve E is used, then the properties of this algorithm are exactly
 the same as those of Pollard's (p - 1)-method, with the order p - 1 of (Z/pZ)*

 replaced by the order of the group E(Z/pZ) of points of E with coordinates in

 Z/pZ. By a theorem of Hasse (1934), this order is of the form p + 1 - tp, where
 tp is an integer depending on E and p for which ItP < 2 p. If, for some prime
 factor p < n of n, the number p + 1 - tp is built up from small primes, then
 the above algorithm is likely to lead to a non-trivial divisor of n, and otherwise
 not.

 However, if the algorithm is unsuccessful, then an option is available that
 has no analogue in Pollard's (p - 1)-method; namely, to repeat the algorithm
 with a different elliptic curve. A different curve will give rise to a new value for

 tp so that p + 1 - tp has a new chance of being built up from small primes.
 This can be repeated until a non-trivial divisor of n is found.

 The analysis of the elliptic curve factorization method that I present in this

 paper shows that the performance of the algorithm is largely determined by the
 density of numbers built up from small primes in the neighborhood of p + 1. If
 a reasonable conjecture concerning this density is assumed, then the following
 can be proved (see (2.9) and (2.10)). Let an integer n > 0 that is not a prime

 power and that is not divisible by 2 or 3 be given. Let also a positive integer g be
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 FACTORING INTEGERS WITH ELLIPTIC CURVES 651

 given. Then, with a suitable choice of parameters, the elliptic curve method

 determines with probability at least 1 - e-g a non-trivial divisor of n in time

 gK (p) M(n),

 where the notation is as follows: p denotes the least prime divisor of n, the

 function K: R >-* R ,n is such that

 K (x) = e (2+ o(l))ogxloglog x for x -x

 and M(n) denotes an upper bound for the time needed to perform a single

 addition on an elliptic curve mod n; one can take M(n) = O((log n)2) or

 O(log n (log log n) 2log log log n), depending on which method is employed.

 The algorithm can be repeated until the complete prime factorization of n

 is obtained. If the same conjecture is true, this takes expected time at most

 e(1+o(L)) ognloglog n for n -*

 the worst case occurring if the second largest prime factor of n is not much
 smaller than x/n.

 There exist other factoring methods that one conjectures to be successful

 within the same time limit, such as the class group method [23] and the

 quadratic sieve [18]. Unlike the elliptic curve method, however, none of these

 has a running time that depends on the size of the prime factors of n. For a

 further comparison of the elliptic curve method with earlier methods, and a

 discussion of its practical merits, I refer to the end of Section 2.

 The unproved assumption on which the analysis of the elliptic curve method
 is based only concerns the distribution of integers built up from small prime

 factors. In particular, it does not refer to elliptic curves. This is mainly due to a

 result of Deuring (1941), which gives a formula for the number of elliptic curves

 E over a finite field Fq for which E(Fq) has a given order. A statement of this
 result, in the case that q is prime, is given in Section 1. In this section one also

 finds the other results on elliptic curves over finite fields that are needed.

 Section 2 is devoted to the factoring algorithm and its analysis. The most

 natural way to describe the algorithm would make use of elliptic curves over

 rings that are not fields, as was done in the outline given above. This theory,

 which one can find in [13, Chapter 2], is not as easily accessible as the theory

 over fields. For this reason the details have been arranged in such a way that no

 reference to the theory over rings is necessary. Accordingly, the description of

 the algorithm given in Section 2 does not follow the above outline in detail.
 The version of the elliptic curve method described in this paper was

 exclusively designed for simplicity of exposition and ease of analysis. An exten-

 sive discussion of practical aspects can be found in [16].
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 652 H. W. LENSTRA, JR.

 An earlier application of elliptic curves to algorithmic number theory can be

 found in [24]. For primality testing algorithms that depend on the use of elliptic

 curves I refer to [4], [7], [10].

 By Fq we denote a finite field of cardinality q. The group of units of a ring A

 with 1 is denoted by A*.

 1. Counting elliptic curves.

 In this section we assemble all facts about elliptic curves over fields that we

 need. Proofs can be found in the book by Silverman [29], if no other reference is

 given.

 We denote by K a field; we shall mainly be interested in the case that

 K = Fp for some prime number p. To simplify the exposition we assume
 throughout this section that the characteristic of K is not equal to 2 or 3.

 (1.1) Elliptic curves. An elliptic curve over K is a pair of elements
 a, b E K for which 4a3 + 27b2 # 0. These elements are to be thought of as the

 coefficients in the Weierstrass equation

 (1.2) y2 = x3 + ax + b.

 We denote the elliptic curve (a, b) by Ea b' or simply by E. The set of points
 E(K) of such an elliptic curve over K is defined by

 E(K) = {(x: y: z) E p2(K): y2z= x3 + axZ2 + bz3}.

 Here P2(K) denotes the projective plane over K. It consists of equivalence
 classes of triples (x, y, z) E K X K X K, (x, y, z) # (0,0,0), two triples

 (x, y, z) and (x', y', z') being equivalent if there exists c E K* such that

 cx = x', cy = y' and cz = z'; the equivalence class containing (x, y, z) is

 denoted by (x: y: z).
 Let E be an elliptic curve over K. Then E(K) contains exactly one point

 (x: y: z) for which z = 0. namely the point (0: 1: 0); this point is called the zero
 point of the curve and denoted by 0. The other points of E( K) are the points
 (x: y: 1), where x, y E K satisfy (1.2). The set E(K) has the structure of an
 abelian group; the group law, which is written additively, is defined as follows.

 First, 0 + P = P + 0 = P for all P E E(K). Next, let P = (x1: yl: 1), Q =
 (x2: Y2: 1) be non-zero points. Then P + Q = 0 if and only if x1 = X2 and
 Y1= - y2. Otherwise, let X E K be determined by X = (y1 - Y2)/(XI - x2) if
 P + Q and X = (34X2 + a)/(2y1) if P = Q. and let v = Yi - Xx1. Then P + Q

 =R. where R = (x3: y3:1) with x3 = x2 -x1 -x2 and y3 =-x3 - v.
 Observe that 0 is the zero element of the group, and that - (x: y: z) =

 (x: -Y: Z).
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 FACTORING INTEGERS WITH ELLIPTIC CURVES 653

 (1.3) Isomorphisms and automorphisms. Let E = Eab and E' Ea' b be
 elliptic curves over K. An isomorphism E -- E' (over K) is defined to be an

 element u E K* for which a' = u4a and b' = u6b. If an isomorphism E -E'
 exists then E and E' are said to be isomorphic; this is clearly an equivalence

 relation. Any isomorphism u: E -* E' induces an isomorphism E(K) -* E'(K)
 of abelian groups that sends (x: y: z) to (U2x: U3y: Z); this isomorphism will
 also be denoted by u. We shall only be interested in elliptic curves up to
 isomorphism.

 Let E be an elliptic curve over K. An automorphism of E is an isomor-

 phism E -* E. The set of automorphisms of E is a subgroup of K*, which is
 denoted by Aut E or AutKE. An easy calculation shows that it can be explicitly
 described as follows:

 (i) If a = 0 and K* has an element p of order 6, then p generates Aut E

 and #Aut E = 6;

 (ii) If b = 0 and K* has an element i of order 4, then i generates Aut E

 and #Aut E = 4;

 (iii) In all other cases Aut E = {,- 1) and #Aut E = 2.

 (1.4) The number of elliptic curves. Let p denote a prime number > 3. In

 the remainder of this section we restrict to the case K = Fp.
 The number of elliptic curves over Fp, as defined in (1.1), is the number of

 pairs (a, b) e FP x FP with 4a3 + 27b2 = 0. The number of all pairs (a, b)
 equals p2, and 4a3 + 27b2 = 0 if and only if a = - 3c2, b = 2c3 for some

 c E Fp; this element c is uniquely determined by a, b by c = - 3b/(2a) (if
 a # 0). Hence 4a3 + 27b2 = 0 for exactly p pairs (a, b). We conclude that the

 number of elliptic curves over Fp equals p2 _ p.
 We use this result to count the set

 { E: E elliptic curve over FP} /F

 of isomorphism classes of elliptic curves over Fp. The number of elliptic curves
 isomorphic to a given elliptic curve E is easily seen to be #Fp*/#Aut E =
 (p - 1)/# Aut E. Summing this over a set of representatives of the isomorphism
 classes and dividing by p - 1 we obtain

 1

 E #Aut E P
 We express this by writing

 ?'{ E: E elliptic curve over FP}/-F = p.

 Here, and in similar expressions below, #' denotes the weighted cardinality, the
 isomorphism class of E being counted with weight (# Aut E) -I.
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 654 H. W. LENSTRA, JR.

 Since # Aut E = 2 for most E it follows from the above formula that the

 ordinary cardinality of the set of isomorphism classes of elliptic curves over Fp is
 approximately 2p. The precise number can be derived from (1.3). Using that the

 existence of p E Fp, as in (1.3)(i) is equivalent to p 1 mod 6, and the existence
 of i E Fp* as in (1.3)(ii) to p 1 mod 4, one finds that

 ?(E: E elliptic curve over FP }/-F = 2p + 6,2p + 2,2p + 4,2p
 for p 1, 5, 7, 11 mod 12, respectively. We shall have no use for this result in the

 sequel.

 (1.5) The order of E(Fp). For any elliptic curve E over Fp we have by a
 theorem of Hasse

 #E(Fp= p + 1 - t, with t E Z. Itl < 2rp
 Let, conversely, p be a prime > 3 and t an integer satisfying ItI < 2vP Then
 the weighted number of elliptic curves E over Fp with #E(Fp) = p + 1 - t, up
 to isomorphism, is given by a formula that is basically due to Deuring [9]; see

 also [1], [30], [25]:

 #'{E: E elliptic curve over Fp, #E(Fp) p + 1 -t}/F = H( t2 - 4p),
 where H( t2 - 4p) denotes the Kronecker class number of t2 - 4p, which we
 now proceed to define.

 (1.6) Kronecker class numbers. We begin by recalling the properties of

 binary quadratic forms that we need. See [3] for more details and for proofs.

 Let A be a negative integer, LA 0 or 1 mod 4. A positive definite integral

 binary quadratic form of discriminant A, briefly a form, is a polynomial
 F = aX2 + bXY + cy2 with a, b, c E Z, a > 0, b2 - 4ac = A. An isomor-

 phism from a form F = aX2 + bXY + Cy2 to a form F' = a'X2 + b'XY + C'y2

 is a matrix (a with a, ,B, y, Z. aS-,By = 1 for which

 aX2 + bXY + cY2 =a'X'2 + b'X'Y' + c'Y'2,

 where X' = aX + /BY and Y' = yX + SY. If such an isomorphism exists, the
 forms F and F' are said to be equivalent; this is indeed an equivalence relation.
 An automorphism of a form F is an isomorphism from F to F. The set of

 automorphisms of a form F is a subgroup of the group SL2Z of 2 X 2-matrices
 with integral entries and determinant 1; this subgroup is denoted by Aut F. We

 have:

 (i) Aut F is cyclic of order 6 if F is equivalent to aX2 + aXY + ay2 for
 some positive integer a; in this case A -3a2;

 (ii) Aut F is cyclic of order 4 if F is equivalent to aX2 + ay2 for some

 positive integer a; in this case A = - 4a2;
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 FACTORING INTEGERS WITH ELLIPTIC CURVES 655

 (iii) In all other cases, the group Aut F is of order 2, and equals

 ((I ?) (A -?)}*
 For fixed AS, the set of equivalence classes of forms of discriminant LA is

 finite. The Kronecker class number H(A) of lA is defined to be the weighted

 cardinality of this set, the equivalence class containing F being counted with

 weight (#Aut F)-':

 H( ) = #'{ F: F is a form of discriminant AS}/ -

 with - denoting equivalence and the meaning of #' being as in (1.4). For

 example, H(- 3) = 1/6, H(- 4) = 1/4, H(- 7) = 1/2. (Warning: one often

 finds the Kronecker class number defined twice as large.) The existence of the

 form X2 + bXY - ((A - b2)/4)Y2, where l= b2 mod 4, shows that H(A) > 0.

 A form F = aX2 + bXY + Cy2 is called primitive if gcd(a, b, c) = 1. We

 denote by h(A) the weighted cardinality of the set of equivalence classes of
 primitive forms of discriminant AS, counted with the same weights as above. It is

 easy to see that

 (1.7) H(A)= h(A/d
 d

 the summation ranging over those positive integers d for which A/d2 is an

 integer satisfying Al/d2 0 O or 1 mod 4. The largest such d is called the
 conductor f of AS, and LAO = tA/f2 is the fundamental discriminant associated to
 A\; the d's in the above summation are exactly the positive divisors of f.

 The quadratic character X: Z >0 {0,1, - 1) associated to A is defined
 by

 X(i) = &(1-1)/2mod 1, x(l) e tO, 1, - 1} if 1 is an odd prime,

 x(2) = 0,1, - 1 for A 0 mod4, 1 mod8, Smod8,
 respectively,

 X(nm) = X(n)X(m) for all n, m e Z . 0

 The analytic class number formula for h (A) is

 ' -A- "X (n)
 h (A\)= 1/ L(1,X), whereL(s,X)= : nS forseC,Res>0.

 2,g ~~~~~~n=1n

 If Xo denotes the quadratic character associated to ASO, one has

 L(1, X) = L(1, Xo) 1- X ))
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 656 H. W. LENSTRA, JR.

 where 1 ranges over the primes dividing f. Combining the last two formulae
 with (1.7) one finds that

 H(A) =L(1, X) A4(f)

 where A: Z >0 -R is defined by

 I _1Ik 1 + I - 21-k

 A(1 ) rIm_1e , 1 I repciey if 1 is prime, k > 1 and XO(l) = 0,1, - 1, respectively,

 1(nm) = A(n)+(m) if n, m e Z>0, gcd(n, m) = 1.

 We are interested in obtaining upper and lower bounds for H(A). It is easily
 seen that

 1 < + (f) < (fAp(f))2 = 0((loglogf)2)

 (see [11, Theorem 328]), where 4 denotes the Euler 0-function. Further we have

 L(1, Xo) = 0(logllol);

 see [20, Kapitel IV, Lemma 8.1]. To obtain a satisfactory lower bound for

 L(1, Xo) we must sacrifice one value for AO. Applying [20, Kapitel IV, Section 6,
 Satz 6.6 and the argument following Section 8, eq. (8.26)] one finds that there

 exists a positive effectively computable constant c1 such that for all z E Z.
 there exists l* < - 4 with the property that

 L(1, Xo) 2 l if IAo0 < Z' AO = A*.

 (If the generalized Riemann hypothesis is assumed we can replace log z by

 log log z, and there is no need to exclude an exceptional value l* for lAO.)

 (1.8) PROPOSITION. There exist effectively computable positive constants

 C2, C3 such that for each z E Z >1 there exists A* = A*(z) < - 4 such that

 C2 - < H(A) < C3 - logA * (1oglogtA)2 log z

 for all A G Z with -z < A < O A 0 or lmod4, except that the left
 inequality may be invalid if At = A*.

 Proof This follows from the inequalities in (1.6).
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 FACTORING INTEGERS WITH ELLIPTIC CURVES 657

 (1.9) PROPOSITION. There exist effectively computable positive constants
 C4, C5 such that for each prime number p > 3 the following two assertions are
 valid; for the notation #', see (1.4).

 (a) If S is a set of integers s with Is - (p + 1)1 < 2rp then

 E: E elliptic curve over Fp, #E(Fp) E S }/-F.

 < C4* #S / rp ( (logp)(log log p)2

 (b) If S is a set of integers s with Is - (p + 1)1 < p then

 E: E elliptic curve over Fp, #E (Fp) E S } F.

 2 C5 * (#S - 2)- p/(log p).

 Proof In both (a) and (b), the left hand side of the inequality equals

 X H(t2- 4p)
 t, p+1-teS

 by the formula in (1.5). We apply (1.8) with z = 4p. Then (a) follows im-

 mediately, with a suitable constant c4. For (b), we note that It2 - 4pI 2 3p if
 p + 1 - t E S. To prove (b), it thus suffices to show that there are at most two

 integers t, ItI < ip, for which the fundamental discriminant associated to
 t2- 4p equals l\*. Let L = Q(A *), and let t be such an integer. Then the
 zeros a, a of X2 -tX + p belong to the ring of integers A of L. Also, ac =p,
 and by unique prime ideal factorization in A and the fact that A* = { 1, -1
 (because A* <- 4) this determines a up to conjugation and sign. Hence
 t = a + & is determined up to sign, as required. This proves (1.9).

 (1.10) Modular curves. We are interested in estimating the weighted num-

 ber of elliptic curves E over Fp for which #E(Fp) is divisible by a given prime
 number 1. For this purpose we need some facts about the modular curves X(l)
 and X1(l). For proofs we refer to [28], [12], [13].

 Let p be a prime number, p > 3, and 1 a prime number different from p.

 We consider pairs (E, P) consisting of an elliptic curve E over Fp and a point
 P E E(Fp) of order 1. Two such pairs (E, P) and (E', P') are said to be
 equivalent over Fp if there exists an isomorphism u: E -- E' over Fp that maps
 P to P' (see (1.3)). We denote the set of equivalence classes by Z1(l)(Fp). If, in

 the definition just given, u is allowed to be in the algebraic closure Fp of Fp
 rather than in Fp (so that a map E(Fp) -* E'(Fp) rather than E(Fp) -* E'(Fp) is
 induced), we obtain the definition of equivalence over Fp. The set of classes of
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 658 H. W. LENSTRA, JR.

 this equivalence relation is denoted by Yj(l)(FP). There is an obvious surjective
 map Z1(l)(Fp) -- Yj(l)(FP).
 We can estimate the cardinality of Yj(l)(FP) by using the following

 properties of the nodular curve Xl(1):

 (i) Xl(1) is a complete non-singular irreducible curve defined over Fp;
 (ii) The genus of Xl(l) equals 0 for 1 = 2 or 3, and 1 + 21 (l - 1)(l - 11)

 for 1 2 5;

 (iii) The set Yj(l)(FP) can in a natural way be considered as a subset of the
 set Xj(l)(FP) of points of Xl(l) defined over Fp;

 (iv) The cardinality of the complement of Yj(1)(FP) in Xj(1)(FP) is
 bounded from above by the number of cusps of Xl(1), which equals 2 for 1 = 2
 and 1 - 1 for 1> 2.

 If C is a complete non-singular irreducible curve of genus g over Fp then by
 Weil's inequality [2] the cardinality of the set C(Fp) of points of C over Fp
 satisfies

 |#C(Fp) - (p + 1)| < 2g .

 Applying this to C = Xl(l) we find, using the above properties:

 (1.11) ?Y1( )(Fp) = p + 0(12p),

 the constant implied by the O-symbol being absolute and effectively computable.
 With p and l as above, suppose now in addition that p 1 mod 1, and let a

 primitive l-th root of unity D Ee Fp be chosen. We consider triples (E, P, Q)
 consisting of an elliptic curve E over Fp and two points P, Q E E(Fp) of order l
 satisfying e,(P, Q) = ', where el denotes the Weil pairing [29, Chapter III,
 Section 8]. Equivalence of two such triples (E, P, Q) and (E', P', Q') over Fp (or
 over Fp) is defined as before; the only difference is that u should not only map P

 to P' but Q to Q' as well. The sets of equivalence classes over Fp and Fp are
 denoted by Z(l)(Fp) and Y(l)(Fp), respectively. There is an obvious surjective
 map Z(l)(Fp) -- Y(l)(Fp).

 The modular curve X(l) has the following properties:

 (i) X(l) is a complete non-singular irreducible curve defined over Fp;
 (ii) The genus of X(l) equals 0 for l = 2, and 1 + 21(12 - 1)(1 - 6) for

 1 2 3;

 (iii) The set Y(l)(Fp) can in a natural way be considered as a subset of the
 set X(l)(Fp) of points of X(l) defined over Fp;

 (iv) The cardinality of the complement of Y(l)(Fp) in X(l)(Fp) is bounded
 from above by the number of cusps of X(l), which is 3 for l = 2 and (12 - 1)/2
 for 1> 2.
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 FACTORING INTEGERS WITH ELLIPTIC CURVES 659

 Applying Weil's inequality cited above to C = X(l) we find from these proper-

 ties that

 (1.12) #Y(l)(Fp) = p + 0(13 p),

 the 0-constant again being absolute and effectively computable.

 (1.13) LEMMA. Let p, 1 be primes, p > 3, 1 # p.

 (a) Let E be an elliptic curve over Fp and P E E(Fp) a point of order 1.
 Denote by AE P the subgroup of all u E AutFE that send P to P. Then the

 number of elements of Zl(l)(Fp) that map to the class of (E, P) in Yl(l)(Fp)
 equals #AEp.

 (b) Suppose that p 1 mod 1, and let a primitive l-th root of unity D EcFp
 be chosen. Let E be an elliptic curve over Fp and P, Q E E(Fp) points of order 1

 satisfying ej(P, Q) = '. Denote by AE, P, Q the subgroup AE, p n AE, Q of AutFE.
 Then the number of elements of Z(1)(Fp) that map to the class of (E, P. Q) in
 Y(l)(Fp) equals #AEPQ.

 Remark. The numbers #AE P and #AE P Q in the lemma equal 2 for 1 = 2
 and 1 for 1 > 2, provided that # AutFE = 2, which for given p is true in all but
 0(1) cases.

 Proof of (1.13). (a) Let E be given by a, b, and let P = (x: y: 1). If E', P'
 is another such pair, given by a', b', x', y', then (E, P) and (E', P') give rise to

 the same element of Y1(l)(Fp) if and only if we have (a', b', x', y') =
 (u4a, u6b, u2x, u3y) for some u E Fp*, and to the same element of Z1(l)(Fp) if
 and only if u can be taken in Fp*. It follows that the number of elements of
 Z1(l)(Fp) mapping to the class of (E, P) equals index [BE P: CE P], where the
 subgroups BE P. CE, P of Fp* are defined by

 BE P= U F: {u4a, u6b, u2x, u3y} C FP),

 CE P= { UCFp*:(u a, u6b, u2xuy) = (v4a v6b v2x v3y)

 for some v E Fp*).

 To count BE P. we notice that for u E Fp* we have u4a E Fp if and only if
 (u4a)P = u4a, so if and only if (uP-1)4a = a; and similarly with u6b, u2x, u3y;
 hence the map sending u to uP-1 maps BE P onto the group AE p of all
 u E AutF E sending P to itself. The kernel is Fp* so that

 #BE P = #AEP Fp.

 From the definition of CE, P it is easy to see that CE P is generated by Fp* and
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 AE PI So that

 ?CE P = #FP #AE P/I(A EpnFP*)
 and

 index[BE P: CE PI = #(AEpnFp*) # AE P

 as required.

 This proves (a). The proof of (b) is similar, and left to the reader. This

 proves (1.13).

 (1.14) PROPOSITION. Let p, 1 be primes, p > 3, 1 5 p. Then the number

 E: E elliptic curve over FP, #E(FP) 0 mod 1} /-F

 equals

 - P+ 0(1ir) if p I mod 1,

 12 lP +0(tir) if p Imod 1.
 Here #' is as in (1.4), and the 0-constants are absolute and effectively

 computable.

 Remark. Comparing (1.14) with the result of (1.4) we see that, for fixed 1,

 the probability that a "random" elliptic curve E over FP satisfies #E(FP)--
 0 mod l tends to 1/(1 - 1) and 1/(12 - 1) if p tends to infinity over the primes
 with p # 1 mod l and p 1 mod 1, respectively. In particular, #E(FP) is even
 with probability approximately 2/3; this can also be deduced from the observa-

 tion that #E(FP) is even if and only if X3 + aX + b has a zero in FP, where E
 is given by a, b. A proposition similar to the above one, but with different

 constants, can be proved for the case in which l is not prime.

 Proof of (1.14). Write Y1, Z1 for Y1(l)(Fp), Z1(l)(Fp). If p 1 mod l let
 an element D E FP* of order l be chosen, and write Y. Z for Y(l)(FP), Z(l)(FP).

 Let W be the set of isomorphism classes of elliptic curves E over FP with
 #E(FP) O mod 1. For each such E, the group E(FP)[] = PE E (FP):
 lP = 0 } has order l or 12 (see [29, Chapter III, Corollary 6.4]) and if the order
 is l2 then p 1 mod l (ibidem, Corollary 8.1.1). We write W = W1UW2

 (disjoint), with Wi consisting of the classes of those E for which #E(FP)[1] = i;
 so W2 = 0 unless p I mod 1.

 The map Z1 -- W mapping the class of (E, P) to the class of E is clearly
 surjective. Two pairs (E, P), (E, P') with the same E represent the same

 element of Z1 if and only if P and P' belong to the same orbit of AutFE; also,
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 FACTORING INTEGERS WITH ELLIPTIC CURVES 661

 the size of the orbit is exactly index[AutF E: AE, ] = #AutFE/#AE, P with
 AEP denoting the stabilizer of P in AutFE (as in (1.13)(a)). Fixing E with

 #E(Fp)[l] = 1i and summing over the orbits of P we obtain
 #Aut FE

 P #A E P
 Dividing by # Aut FE and summing over isomorphism classes of E we obtain

 1

 E - (1-1) *#'Wl + (12 _ 1) * #'W2
 AE P

 with #' as in (1.4) and the summation ranging over Z1. By Lemma (1.13)(a) the

 left-hand sum equals exactly #Y1, and with (1.11) we now find

 (1 - 1)* #'W1 + (12 _ 1)* #'W = P + 0(12rp).
 If p # 1 mod 1, then this simply means that

 (l- 1) #'W= p + 0(12p),

 and the required result follows upon division by 1 - 1.

 Let, for the rest of the proof, the hypotheses be as in (1.13)(b). Then we

 study in a similar way the map Z -* W2 that sends the class of (E, P, Q) to the

 class of E. For each E with #E(FP)[1] = 12 there are 1(12 - 1) pairs of points
 P, Q E E(FP)[1] with e,(P, Q) = A. Hence we have, for such an E:

 #AutFE
 = 1(121)

 (P, Q) AEPQ

 where the sum is over AutF E-orbits of pairs of points P, Q as above and AE , Q
 is as in (1.13)(b). In the same way as before this leads to

 E#A = 1 '2
 Z E, P, Q

 and (1.13)(b) and (1.12) now imply that

 1(12 - 1). #'W2 = P + 0(13 p).

 Hence

 #'W= #'W1 + #'W2

 = I- 1 ((I- 1)* #?W1? + (12 _ 1)* #W2)

 - 1 (1(12 -1) .#W 12 -21
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 662 H. W. LENSTRA, JR.

 which is the required result. This proves (1.14).

 (1.15) PROPOSITION. There exists a positive effectively computable constant
 C6 such that for all pairs of primes p, 1 with p > 3 we have

 #? E: E elliptic curve over F., #E(Fp) # Omodl}/-F > c6p.

 Proof By (1.14) and (1.4), the left-hand side is ((1 - 2)/(1 - 1))p + 0(lrp)
 if p 0 0, lmodl and ((12- 1- 1)7(12- 1))p + 0(p) if p = lmodl. The
 coefficient at p is at least 1/3, so if ' < C7p for a suitable positive constant C7
 then the proposition is correct.

 Applying (1.9)(a) to the set S = {s E Z: Is - (p + 1)1 < 2r, s
 0 mod 1), which has cardinality 0(1 + p 1-1), we find that the proposition is
 also valid if p > c8 and 1 > c9(log p)(log log p)2 for suitable positive constants
 C8, C9.

 In the remaining cases we have p < c8 or c9(log p)(log log p)2 > C7Fp, i.e.
 p is bounded. But for fixed p the proposition is obvious, since by Deuring's
 formula (see (1.5)) and H(A) > 0 (see (1.6)) there are elliptic curves E1, E2 over

 Fp with

 #E1(Fp) = p, #E2(Fp) = p + 1,

 and 1 is not a divisor of at least one of p, p + 1.

 This proves (1.15).

 (1.16) PROPOSITION. There is a positive effectively computable constant clo
 such that for every prime number p > 3 the following two assertions are valid.

 (a) If S is a set of integers s with Is - ( p + 1)1 < p, then the number of

 triples (a, x, y) E F,, for which
 4a3 + 27b2 0, #Ea b(Fp) E S,

 where b = y2 _ x3 - ax, is at least c10(#S - 2) p5/2/log p.
 (b) If 1 is any prime number, then the number of triples (a, x, y) E F3 for

 which

 4a3 + 27b2 1 0, #Ea b(FP) # Omod 1,

 where b = y2 - x3 - ax, is at least c1op3.

 Proof (a) The number to be estimated equals the number of quadruples

 (a, b, x, y) EFp for which Ea b is an elliptic curve over Fp with (x: y:1)
 e Ea, b(Fp) and #Ea b(Fp) e S. Each elliptic curve E over F. is isomorphic to
 Ea b for exactly (p - 1)/#Aut E pairs (a, b) E Fp2 (see (1.4)), and each Ea b
 gives rise to exactly #Ea b(FP) - 1 points (x: y: l). Therefore the number to be
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 FACTORING INTEGERS WITH ELLIPTIC CURVES 663

 estimated equals

 (p - )(#E(Fp)-)
 #4Aut E

 the sum ranging over the elliptic curves E over Fp, up to isomorphism, for which
 #E(Fp) E S. Applying Hasse's theorem (see (1.5)) and (1.9)(b) we find that this
 is at least

 C5(p - 1)(p - 2p)(#S - 2) p/log p,

 as required.

 (b) This is proved in the same way, with (1.15) instead of (1.9)(b).
 This proves (1.16).

 2. The factoring algorithm

 We call a divisor d of a positive integer n non-trivial if 1 < d < n. In this
 section we describe and analyze an algorithm to find a non-trivial divisor of a
 positive integer.

 (2.1) Elliptic curves modulo n. Let n be a positive integer. Consider the set
 of all triples (x, y, z) E (Z/nZ)3 for which x, y, z generate the unit ideal of
 Z/nZ. The group of units (Z/nZ)* acts on this set by u(x, y, z) = (ux, uy, uz).
 The orbits under this action are the points of the projective plane over Z/nZ.
 The orbit of (x, y, z) is denoted by (x: y: z), and the set of all orbits by
 P2(Z/nZ).

 For a, b e Z/nZ we consider the cubic curve E = Ea b defined over
 Z/nZ by the equation

 y2 = x3 + ax + b.

 The set of points E(Z/nZ) of such a curve over Z/nZ is defined by

 E(Z/nZ) = {(x: y: z) E p2(Z/nZ): y2z = x3 + aXz2 + bz3}.

 If 6(4a3 + 27b2) E (Z/nZ)* then E is called an elliptic curve over Z/nZ, and
 in this case the set E(Z/nZ) has a natural abelian group law; it is defined by
 formulae that are more general than those in (1.1), cf. [4].

 The most convenient way to formulate the factoring algorithm to be
 presented in this section would make use of the group structure just mentioned.
 We shall avoid this, because the literature on elliptic curves over rings is not
 easily accessible. We shall only need the group structure in the case that n is
 prime (see (1.1)). For general n we shall work with a partially defined
 "pseudo-addition" on a subset of E(Z/nZ); cf. [10].
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 664 H. W. LENSTRA, JR.

 We denote the point (0: 1: 0) of P2(Z/nZ) by 0, and we let the subset Vn

 of P2(Z/nZ) consist of the "finite" points together with 0:

 Vn = {(x: y: 1): x, y E (Z/nZ)}U{O}.

 For P E Vn and a prime p dividing n we denote by Pp the point of P2(Fp)
 obtained by reducing the coordinates of P modulo p. Observe that Pp = Op if
 and only if P = 0.

 (2.2) Addition. We describe an algorithm that given n E Z >, a E Z/nZ

 and P, Q E VX, either calculates a non-trivial divisor d of n, or determines a
 point R E Vn with the following property: if p is any prime dividing n for

 which there exists b e Fp such that

 6(4a3 + 27b2) +O for a- = (a mod p),

 PT EEa b(Fp), QP E Ea, b(Fp),

 then Rp = Pp + Qp in the group Ea b(Fp).
 If P = 0 put R = Q and stop. If P . 0, Q = 0 put R = P and stop. In

 the remaining case P $ 0, Q $ 0, let P = (x1: y1: 1) and Q = (X2: Y2: 1). Use
 the Euclidean algorithm to calculate gcd(xl - x2, n). If this gcd is not 1 or n,
 call it d and stop. If gcd(x1 - x2, n) = 1 then the Euclidean algorithm also
 gives (xi - x2)f; in this case put

 X = (Y1 - Y2)(Xl-X2)1

 X3= -2 _ X _X2, y3 = X(X1 - X3) - Yi,

 R = (X3: Y3: 1)

 and stop. Finally assume that gcd(xl - x2, n) = n, so that x1 = x2. Calculate
 gcd(y1 + Y2, n). If it is not 1 or n, call it d and stop. If it is n (so that
 Y =- Y2), put R = 0 and stop. If gcd(y1 + Y2, n) = 1, put

 X = (34X2+ a)(? + Y2)'

 X3 = X2-X1-X2, y3 = X(X1 - X3)-Y1,

 R = (X3: Y3: 1)

 and stop. (Notice that in this last case one actually has Y1 = Y2 and P = Q.)
 This finishes the description of the algorithm.

 The correctness of the algorithm is an immediate consequence of the
 formulae given in (1.1).

 If the algorithm determines a point R with the stated property we shall
 denote it by P + Q, and the partial binary operation on Vn defined in this way
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 FACTORING INTEGERS WITH ELLIPTIC CURVES 665

 shall be called addition. If there exists b E Z/nZ such that

 6(4a3 + 27b2) E (Z/nZ)*,

 P E Ea b(Z/nfZ), Q E Eab(Z/nfZ)

 then P + Q, if defined, actually equals the sum of P and Q in the group

 Ea, b(Z/nZ), but we shall not need this. The only property of addition that we
 do need is formulated at the beginning of (2.2).

 (2.3) Multiplication. By repeated addition one readily derives from (2.2) an

 algorithm that accomplishes the following. Given k E Z 0' n E Z > 1 a E Z/nZ

 and P E V', it either calculates a non-trivial divisor d of n, or determines a
 point R E V,, with the following property: if p is any prime dividing n for
 which there exists b e Fp such that

 6(4a3 + 27b2) 0 for a- = (a mod p),

 Pp E E-a b(FP),

 then Rp = k.Pp in the group Ea- b(Fp)
 If this algorithm determines a point R with the stated property we shall

 denote it by kP. We call the partial operation defined in this way multiplication.

 The number of additions that one has to perform in this algorithm is at- most

 the length of the addition chain that is used, see [14, Section 4.6.3]. One can, for

 example, use an addition chain that is derived from the binary representation of

 k, which has length O(log k). Whether or not kP is defined may depend on the

 addition chain that is used (if n is composite). It can be proved that if kP is

 defined for each of two addition chains, then the two outcomes are the same.
 Since we do not need this fact we omit the proof.

 If k is given as k = k1k2 for certain positive integers k1, k2, one can
 calculate kP by kP = kl(k2P).

 Suppose now that k is given as a product

 k = Hrl re(r)

 where r ranges over a certain finite set of positive integers and each e(r) is a

 positive integer. Applying the above repeatedly we see that in order to multiply
 a point P by k it suffices to perform e(r) multiplications by r for each r. We

 shall assume in the sequel that the multiplications by r are performed with r in

 increasing order.

 (2.4) Factoring with one curve. Let n, v, w e Z >1 and a, x, y e Z/nZ
 be given. We describe an algorithm that attempts to find a non-trivial divisor d
 of n.
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 For each integer r> 2, denote by e(r) the largest integer m with
 rm < v + 21U + 1, and put

 w

 k = Hrl e(r)
 r=2

 Let P = (x: y: 1) E V, Attempt to calculate kP by the method just explained.
 If this attempt fails then a non-trivial divisor of n is found, and the algorithm
 halts, with d equal to this divisor. If kP is calculated successfully then the
 algorithm halts as well, with the message that it has failed to find a non-trivial
 divisor of n. This finishes the description of the algorithm.

 In (2.6) below we give a sufficient condition for the algorithm to be

 successful. The choice of a, x, y determines the elliptic curve that one uses. The
 number v may be thought of as an upper bound for the divisor d that one is

 trying to find, although it is by no means guaranteed that indeed d < v. The
 parameter w essentially measures the time that is spent on the algorithm (see
 (2.9)); the probability of success increases with w.

 (2.5) Factoring with several curves. Let n, v, w, h E Z >1 be given. We
 describe a probabilistic algorithm that attempts to find a non-trivial divisor d
 of n.

 (*) Draw three elements a, x, y e Z/nZ at random, and apply algorithm
 (2.4) to n, v, w, a, x, y. If this results in a non-trivial divisor of n, halt, with d
 equal to this divisor. In the other case, go back to (*), except if algorithm (2.4)
 has already been applied h times; in this case, report failure and halt.

 The number v should again be thought of as an upper bound for the divisor
 that one is trying to find. The parameter w is basically the time that one is

 willing to spend on a single curve, and h is the number of curves that one tries.
 For the success probability of the algorithm, as a function of w and h, see (2.8).
 The optimal choice of w and h is discussed in (2.9).

 (2.6) PROPOSITION. Let n, Vv,w E Z. 1 and a , x, y E Z/nZ be as in (2.4),
 put b = y2 - - axe Z/nZ and P= (x: y:l) e V, (see (2.1)). Suppose
 that n has prime divisors p and q satisfying the following conditions.

 (i) p < v;
 (ii) 6(43? + 27b2) O for a- = (a mod p), b = (b mod p);

 (iii) each prime number r dividing #E b(Fp) satisfies r < w;
 (iv) 6(43? 27b2) # O for a = (a mod q), b = (b mod q);
 (v) #Ea b(Fq) is not divisible by the largest prime number dividing the

 order of Pp (see (2.1)).
 Then algorithm (2.4) is successful in finding a non-trivial divisor of n.
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 FACTORING INTEGERS WITH ELLIPTIC CURVES 667

 Remark. Note that conditions (ii) and (iv) imply that Ea b(Fp) and Ea b(Fq)

 have a group structure. Also, Pp * Op in E -b(Fp), so the largest prime number
 referred to in (v) does exist. Clearly (v) implies that q =$ p.

 Proof From p < v and Hasse's inequality (see (1.5)) it follows that

 #Ea b(Fp) < v + 2rv + 1; so for each prime number r the exponent of r in
 #Ea -b(Fp) is at most the number e(r) defined in (2.4). The same is then true for
 the exponent of r in the order X of Pp. Denote by 1 the largest prime number
 dividing a, and by m the exponent of 1 in co; so 1 < m < e(l). Put

 ko= (i re(r) )m-1

 then k0 # Omod xo and k0 1 Omod xo, so that

 koPp Op, k0lPp = Op in the group E (Fp).

 From (iii) we see that 1 < w; so k0 and k01 are divisors of the number k
 appearing in (2.4). Moreover, if kP is successfully calculated by the algorithm,

 then k0P and k0lP are calculated along the way. Hence to prove (2.6) it suffices
 to show that k0P and k0lP cannot both be defined. To do this, we use the
 observation made at the end of (2.1), as follows.

 If k lP E VX exists, then (k0lP)p = kol* Pp =Op in the group Ea L(Fp)
 and therefore k0lP = 0 in X&; but then kol Pq = (kolP)q = 0, in the group
 Ea b(Fq); so by (v) we have ko0P = 0, as well. Therefore, if k0P E XV is also
 defined, we must have k0P = 0 and hence k0Pp = Op. contradicting what we
 proved above.

 This proves (2.6).

 (2.7) PROPOSITION. There exists a positive, effectively computable constant

 c11 with the following property. Let n, v, w E Z , be such that n has at least
 two distinct prime divisors > 3, and such that the smallest prime divisor p of n

 for which p > 3 satisfies p < v. Put

 u = EZ: s - (p + 1) I < p, and each prime dividing s is < w}.
 Then the number N of triples (a, x, y) E (Z/nZ)3 for which algorithm (2.4)

 succeeds in finding a non-trivial divisor of n satisfies

 N C11 u-2

 3> _* [S n3 log p 2[rpI?+1
 Remark. The proposition asserts that the probability that a random triple

 (a, x, y) is successful, which is N/n3, is not much less than the probability that a

 random integer in the interval (p + 1 - , p + 1 + Fp) has all its prime
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 divisors < w; the latter probability is u/(2[ p] + 1). From the proof and the
 remark made just before (1.8) it will be clear that under the assumption of the

 generalized Riemann hypothesis the proposition is also valid with the stronger
 inequality

 N CH u
 n3 loglog p 2[]? + 1

 Proof. Let q be a prime divisor > 3 of n that is different from p. For each

 positive integer s, let T, be the set of triples (a, (, q) E F3with the property
 that

 4a3 + 2732 # 0, #Eafl(Fp) =s,

 where /3 = - - ad. For (a, (, q) e Tsa let the largest prime divisor of the

 order of the point (q: a:1) in the group Ea,fl(Fp) be denoted by lair and let
 Uatl be the set of triples (a', I', q') ei F3 for which

 4a'3 + 27/'2 # 0, #Ea,, 1(Fq) is not divisible by lait

 where /3' = q'2 - ('3 - a's'. With this notation, Proposition (2.6) implies that

 N 2E E E #Vat~la'01'l
 S (a, T, 7) E=-T E- (U(

 where s ranges over the set of positive integers built up from primes < w and

 = {(a, x, y) E (Z/nZ)3: (a mod p, x mod p, y mod p) = (a, , 71),

 (amodq, xmodq, ymodq) = I V )

 Clearly each VaTJ a'4' has cardinality n3/( pq)3 , and by (1. 16)(b) we have

 #Ua(q ? cloq3. Hence we obtain
 N Ts
 -i > C1> 3 n3 2 0 cE p3

 the sum ranging over the positive integers s built up from primes < w.
 Restricting the sum to the integers s that also satisfy Is - (p + 1)1 < p, and
 applying (1.16)(a), one finds that

 N

 3 2 c2(u - 2) p - 1/2/log p

 and the proposition follows.

 This proves (2.7).

 We now suppose that the random number generator that is used in

 algorithm (2.5) to draw the triple (a, x, y) E (Z/nZ)3 gives each triple with

This content downloaded from 
�����������128.105.14.233 on Fri, 26 Apr 2024 16:34:48 +00:00����������� 

All use subject to https://about.jstor.org/terms



 FACTORING INTEGERS WITH ELLIPTIC CURVES 669

 equal probability, and that the successive calls to the random number generator

 are independent.

 (2.8) COROLLARY. There exists an effectively computable constant c12> 1

 with the following property. Let n, v E Z >1 be such that n has at least two
 distinct prime divisors > 3, and such that the smallest prime divisor p of n for

 which p > 3 satisfies p < v. Let further wE Z. 1 be such that the number u
 defined by

 u = #{ s E Z: Is - (p + 1) I < p, and each prime dividing s is < w}

 satisfies u ? 3, and let f(w) = u/(2[ p] + 1) denote the probability that a

 random integer in the interval (p + 1 - p, p + 1 + p) has all its prime

 factors < w. Then for any h E Z > 1 the success probability of algorithm (2.5)
 on input n, v, w, h is at least 1 - c -hf(w)/logv.

 Proof. By Proposition (2.7) and the assumptions made just before the

 corollary, the failure probability of the algorithm equals (1 - N/n3)h, where

 N CH u - 2 clf(w)

 n3 logp 2[pI + 1 31lgv
 It follows that

 ( 1 - )h< e- hcf(w)/(3 log v)

 This proves (2.8).

 (2.9) Efficiency. Let M(n) denote an upper bound for the time, measured

 in bit operations, that is needed to perform a single addition as in algo-

 rithm (2.2). One can take M(n) = O((log n)2) if one uses the ordinary

 Euclidean algorithm [14, Exercise 4.5.2.30], and a faster version leads to M(n) =

 O((log n)(log log n)2(log loglog n)); see [26].

 With this notation, the time required by algorithm (2.4) is

 O(w(log v)M(n)); this follows from the fact that the number k appearing in
 (2.4) satisfies log k = O(w log v).

 The time spent on the factoring algorithm (2.5) is at most h times as large,

 so is O(hw (log v) M(n)). (This does not count the time that the random number

 generator may need; it is called at most h times.) Corollary (2.8) shows that in

 order to have a reasonable chance of success, one should choose the number h of

 the same order of magnitude as (log v)/f(w). Hence, to minimize the estimated
 running time, the number w should be chosen such that w/f(w) is minimal.
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 670 H. W. LENSTRA, JR.

 At this point we need an unproved conjecture. For a real number x > e,

 define

 L(x) = e ogxloglogx

 A theorem of Canfield, Erdds and Pomerance [6, Corollary to Theorem 3.1]
 implies the following. Let a be a positive real number. Then the probability that

 a random positive integer s < x has all its prime factors < L(x)' is

 L(x) -1/(2a) + o(1) for x -* x. The conjecture we need is that the same result is
 valid if s is a random integer in the interval (x + 1 - v' , x + 1 + rx). Putting
 x = p we see that the conjecture implies that

 f(L(p)a) = L(p)-l/(2a)+o(l) for p x

 for any fixed positive a, with f as in (2.8).

 With w = L(p) a the conjecture would imply that

 w/f(w) = L( P) 1/(2a) + a + o(l) for p

 which suggests that for the optimal choice of w we have

 w = L(p) / .?o(1) w/f(w) = L(p)? o(1), forp , .

 A slight practical problem with this choice of w is that p, the least prime factor

 > 3 of n, is not known beforehand. One can solve this problem by replacing p

 by v in the above formula for w, and performing algorithm (2.5) for a suitable
 increasing sequence of values for v. Notice that the factors log v in the running

 time estimate are L(v)o(l).

 These arguments lead to the following conjectural running time estimate for

 the elliptic curve factoring algorithm.

 (2.10) CONJECTURE. There is a function K: R >0 R >0 with

 K(x) = e/(2+o(1))logxloglogx for x x

 such that the following assertion is true. Let n E Z >I be an integer that is not a
 prime power and that is not divisible by 2 or 3, and let g be any positive integer.
 Then algorithm (2.5), when applied with suitable values for v, w, h, can be

 used to find, with probability at least 1 - e -g a non-trivial divisor of n within
 time

 gK(p)M(n),

 where p denotes the least prime divisor of n and where M(n) = O((log n)2) or
 O((log n)(log log n)2(log log log n)) is as in (2.9).
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 FACTORING INTEGERS WITH ELLIPTIC CURVES 671

 It may be possible to replace the conditions on n in this conjecture by the

 simpler condition that n be composite; but in any case integers that are divisible

 by 2 or 3, or that are perfect powers, are easy to recognize directly.

 It is not guaranteed that the divisor found by algorithm (2.5) is the smallest

 prime divisor of n, although in practical circumstances this will often be the

 case.

 The algorithm may be repeated on the divisors that are found, until the

 complete prime factorization of n is obtained. The estimate for the running time

 will then also contain terms gK(p')M(n) corresponding to the other prime

 divisors p' of n, with the exception of the largest one. In all cases one may

 expect the total factoring time to be at most L(n)'+o(1) for n -x 0, with L as
 in (2.9). The worst case occurs if the second largest prime divisor of n is not

 much smaller than vH, so that n is the product of some small primes and two
 large primes that are of the same order of magnitude.

 (2.11) Comparison to other methods. We just mentioned that the elliptic

 curve factoring method may be expected to factor any integer completely in
 time at most L(n)'+o(1). Several other factoring methods have been proposed
 for which, conjecturally, the running time is given by the same formula, such as

 the class group method [23] and the quadratic sieve [18]; see also the discussion
 in [8]. For these other methods the running time is basically independent of the

 size of the prime factors of n, whereas the elliptic curve method is substantially

 faster if the second largest prime factor of n is much smaller than 1W.

 The storage requirement of the elliptic curve factoring method is only

 O(logn). This is also true for the class group method [23], but all other known

 factoring algorithms of conjectured speed L(n)'+o(1) have a storage requirement
 that is a positive power of L(n).

 (2.12) Numbers built up from small prime factors. The elliptic curve

 method is particularly efficient in discovering small prime divisors of a number n.
 This means that it can be used for a purpose different from factoring, namely for

 recognizing numbers that are built up from prime factors below a certain bound.

 Several factoring methods, such as the continued fraction method, the random

 squares method of Dixon and the class group method of Seysen (see [18], [27]),

 need an efficient subroutine for performing this task. The analysis of these

 methods such as given in [18] assumes that the Pollard p-method or the
 Pollard-Strassen method is used for this purpose. Using the elliptic curve

 method instead improves the theoretical performance of these factoring al-

 gorithms. It should be noted that for a rigorous analysis of the elliptic curve

 method, when applied in this way, much less is needed than the conjecture

 stated in (2.9). Namely, it suffices to have an average form of a weaker statement,
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 672 H. W. LENSTRA, JR.

 and this appears to be within reach of the present techniques of analytic number

 theory; these ideas are developed in [19].

 Several practical primality tests depend on large completely factored di-

 visors of certain integers related to the number being tested; see [21], [31]. The

 elliptic curve method can be used to search for such divisors. It is likely that this

 will improve the performance of these primality testing algorithms.

 (2.13) Practical performance. The version of the elliptic curve method

 described in this paper was designed for simplicity of exposition and ease of

 analysis. In an actual implementation one might prefer to make several modifi-

 cations, such as using a different model for elliptic curves, selecting the parame-

 ters in a different way, or adding a routine, as in Pollard's original (p - l)-method,

 that enables one to use curves Ea, b for which #E, -b(Fp) is allowed to have one
 prime factor that is somewhat larger (cf. (2.6)(iii)). For a discussion of these and

 other points, see [16], [5], [7].

 It turns out that, with these modifications, the elliptic curve method is one

 of the fastest integer factorization methods that is currently used in practice. The

 quadratic sieve algorithm still seems to perform better on integers that are built

 up from two prime numbers of the same order of magnitude; such integers are of

 interest in cryptography [22].

 UNIVERSITEIT VAN AMSTERDAM, THE NETHERLANDS

 UNIVERSITY OF CALIFORNIA, BERKELEY
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