
SIAM J. COMPUT.
Vol. 13, No. 4, November 1984

(C) 1984 Society for Industrial and Applied Mathematics
013

HOW TO GENERATE CRYPTOGRAPHICALLY STRONG
SEQUENCES OF PSEUDO-RANDOM BITS*

MANUEL BLUM’[" AND SILVIO MICALI*

Abstract. We give a set of conditions that allow one to generate 50-50 unpredictable bits.
Based on those conditions, we present a general algorithmic scheme for constructing polynomial-time

deterministic algorithms that stretch a short secret random input into a long sequence of unpredictable
pseudo-random bits.

We give an implementation of our scheme and exhibit a pseudo-random bit generator for which any
efficient strategy for predicting the next output bit with better than 50-50 chance is easily transformable
to an "equally efficient" algorithm for solving the discrete logarithm problem. In particular: if the discrete
logarithm problem cannot be solved in probabilistic polynomial time, no probabilistic polynomial-time
algorithm can guess the next output bit better than by flipping a coin: if "head" guess "0", if "tail" guess "1".

Key words, randomness, pseudo-random number generation, unpredictability, random self-reducibility

1. Introduction.
1.1. Randomness and complexity theory. We introduce a new method of generat-

ing sequences of pseudo-random bits. Any such method implies, directly or indirectly,
a definition of randomness.

Much effort has been devoted in the second half of this century to make precise
the notion of randomness. Let us informally recall Kolmogorov’s influential definition
[18]:

A sequence of bits A a, a,. , a is random if the length of the minimal
program outputting A is at least k.

We remark that the length of a program, from a computational complexity point
of view, is a rather unnatural measure. We want to investigate a more operative
definition of randomness in the light of complexity theory.

A mental experiment. A and B want to play head and tail in four different ways.
In all of them A "fairly" flips a "fair" coin. In the first way, A asks B to bet and then
flips the coin. In such a case we expect B to win with a 50% frequency. In the second
way, A flips the coin and, while it is spinning in the air, she asks B to bet. We are still
expecting B to win with a 50% frequency. However, in the second case the outcome
of the toss is determined when B bets: in principle, he could solve the equation of the
motion and win! The third way is similar to the second one: B is allowed to bet when
the coin is spinning in the air, but he is also given a pocket calculator. Nobody will
doubt that B is still going to win with 50% frequency: before he can initialize any
computation the coin will have come up head or tail. The fourth way is similar to the
third, except that now B is given a very powerful computer, able to take pictures of
the spinning coin, and quickly compute its speed, momentum, etc. We will not say
that B will always win, but we may suspect he may win 51% of the time!

The purpose of the above example is to suggest that

The randomness of an event is relative to a specific model of computation
with a specified amount of computing resources.

Received by the editors April 11, 1983, and in final form January 15, 1984. Supported in part by National Science

Foundation grant MCS 82-04506 and by a fellowship of Consiglio Nazionale delle Ricerche-ltaly. A version of this

paper was presented at the AMS Conference on Probabilistic Computational Complexity, June 1982, Durham, New
Hampshire and in the 23rd FOCS, November 1982, Chicago, Illinois.

-Computer Science Department, University of California, Berkeley, California 94720.
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

85O

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS 851

The links between randomness and the computation model were pointed out by Michael
Sipser in [31], where he defines randomness with respect to finite state automata (see
also [24]). In his very nice paper [29], Shamir considers also the factor of the computing
resources, presents significant progress in this direction and points out some open
problems as well.

In this paper we investigate the randomness of/c-bit long sequences with respect
to. the computation model of Boolean circuits with only Poly k) gates.

1.2. CSPRB generators. We introduce the notion of a cryptographically strong
pseudo-random bit generator (CSPRB generator) and show under which conditions
it can be constructed. A CSPRB generator is a program G that, upon receiving as
input a random number (hereafter referred to as the seed), outputs a sequence of
pseudo-random bits b, b2, b3," . G possesses the following properties:

1) The bits b’s are easy to generate. Each b is output in time polynomial in the
length of the seed.

2) The bits b’s are unpredictable. Given the generator G and b,. , b, the first
s output bits, but not the seed i, it is computationally infeasible to predict the s + 1st
bit in the sequence with better than 50-50 chance. Here s is polynomial in the length
of the seed.

Our generators are an improvement of Shamir’s pseudo-random number gen-
erators. In [29], Shamir presents programs that from a short secret random seed,
output a sequence of numbers x’s such that the ability of predicting the next output
is equivalent to inverting the RSA function [27]. The main difference between ours
and Shamir’s generator is:

Shamir’s generator outputs numbers and not bits. Such numbers could be unpredict-
able and yet of very special form. In particular every bit of (information about) the
next number in the sequence could be heavily biased or predictable with high probabil-
ity. As a consequence, if the numbers so generated are 100 bits long, they might not be
uniformly spread in the interval [1, 2].

1.3. Pseudo-random sequences and statistical tests. Passing given statistical tests
is the key point for evaluating pseudo-random sequences. The classical sequence
X/l ax + b mod n, provides a fast way of generating pseudo-random numbers. Such
a sequence is known (for a clever choice of the parameters a, b, and n) to generate
"well mixed numbers" (see Knuth [17]). However it is not cryptographically strong.
Plumstead [25] shows that the sequence can be inferred even when a, b and n are all
unknown.

In contrast, our bit-sequences cannot be generated as fast, but cannot be inferred
either. This is so because they have "embedded" some hard problem.

An analysisof a particularly simple pseudo-random number generator appears in
Blum, Blum and Shub [9]. They point out that well mixed sequences in which hard
problems are embedded can nevertheless be poor pseudo-random sequences. Something
more is needed to construct good generators of pseudo-random sequences; what that
is is pointed out in 2.

Unpredictability of the next output bit is the key test studied in this paper, in an
earlier version of this paper [10], we presented a deterministic polynomial-time
algorithm that stretched a random k-bit long seed into a polynomially (in k) long
bit-sequence. Any probabilistic polynomial-time algorithm, correctly predicting the
next bit with probability greater than 1/2+ e in a so produced pseudo-random sequence,
could be easily transformed to a probabilistic algorithm, running in expected

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

852 MANUEL BLUM AND SILVIO MICALI

poly (k, e -1) time, for solving the discrete logarithm problem for a fraction e of the
primes of length k.

Though we were aware of the polynomial dependency on e-1 (in fact in [10]
Lemma 2 explicitly states it), our main theorem summarized our results stating that
the next bit in our pseudo-random sequences could not be predicted in polynomial
(in k) time with probability greater than 1/2+ e, for 0 < e < 1.

Yao [33] was the first one to realize the importance of emphasizing the polynomial
functional dependency on e-1 and made excellent use of it (see 1.3.2).

Indeed, without any changes in our algorithm, e could be replaced with the smallest
value that will keep the running time polynomial. Since in our case the running time
is polynomial in k and e-1, we henceforth use 1/poly (k) for e in this paper.

We now proceed to a formal treatment.

1.3.1. The next-bit-test. Let P be a polynomial and S {Sk} be a collection of
multisets such that Sk contains P(k)-bit long sequences (the same sequence s may
belong more than once to Sk). Let P1 be a polynomial. A predicting collection C {C}
is a collection of circuits such that each circuit C has less than Pl(k) gates, Boolean
inputs, i< P(k), and one Boolean output. On input the first bits of a sequence s
randomly selected in Sk, C will output a bit b. Let pkC, denote the probability that
b the + 1st bit of s. We say that the collection S passes the next-bit-test if for all
predicting collections C, all polynomials Q, all sufficiently large k and all i< P(K),

1 1
p kc’i < "+ Q k----

Ability to predict the next bit from the preceding ones is indeed a statistical test
tor a bit-sequence. In fact, if a bit-sequence were generated by independent coin flips,
no strategy would predict the next bit with a success rate even slightly better than
50-50. This particular test is passed by the sequences produced by a CSPRB generator.
Therefore CSPRB generators produce evenly distributed numbers: just divide the output
sequences into k-bit long segments.

Subsequently, Yao [33] showed the following very interesting result.

1.3.2. Yao’s statistical test. The following definition is derived from Yao [33].
As before, the collection S {Sk} is such that the multiset Sk contains P(k)-bit long
sequences.

Let P1 be a polynomial. A polynomial-size statistical test is a collection C {Ck}
of circuits. Each circuit Ck has less than Pl(k) gates, P(k) Boolean inputs and one
Boolean output. Let c

Pk,S denote the probability that Ck outputs 1 on input a randomly
selected sequence in Sk, and pCk,R the probability that Ck outputs 1 on a randomly
selected P(k)-bit long sequence. The collection S passes all polynomial-size statistical
tests if for all polynomial-size statistical test C, for any polynomial Q, for all sufficiently
large k,

1
P,s-p,RI<Q(k).

THEOREM (Yao). A collection S {Sk} passes the next-bit-test if and only if it
passes all polynomial-size statistical tests.

1.3.3. Related tests tor strings. Earlier definitions and theorems about tests for
distinguishing strings belonging to two different sets can be found in Goldwasser and
Micali [13]. They presented a probabilistic encryption scheme in which a single bit b

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS 853

is, with the help of a coin, encoded by a k-bit long string /3, called a probabilistic
encryption of b. Here k is a security parameter. Both 0 and 1 will have many possible
probabilistic encodings, but all of them are uniquely decodable. They defined a
probabilistic encryption scheme to be bit-secure if for all polynomials P and Q, for all
sufficiently large k, no circuit with less than P(k) gates can correctly guess whether/3
is the encryption o 0 or 1 with probability greater than 1/2+ 1/Q(k). Under an
intractability assumption for the quadratic residuosity problem, they present a prob-
abilistic encryption scheme that is bit-secure.

A probabilistic encryption of an n-bit long (n <Pl(k) for some polynomial P1)
string bl," , bn is a sequence/31," ,/3n where each/3i is a probabilistic encryption
of bi. Let P be a polynomial. A separator is defined to be a collection of circuits
C { Ck}. Each circuit Ck has less than P(k) gates, kn Boolean inputs and one Boolean
output. For a string s Sl ., s, let c

,’" Ps,k denote the probability that Ck outputs 1 on
input a probabilistic encryption of s. The encryptions of the string x Xl,’’’, x, are
unseparable from the encryptions of a string y yl,..., Yn if for all separators C and
for all polynomials Q, for sufficiently large k,

1
Px’k--PY’kl< Q(k)"

The computational difficulty of separating the encryptions of polynomially long
bit-sequences reduces to the one of correctly guessing the decoding of an encrypted
single bit.

THEOREM (Goldwasser and Micali). For any pair of n-bit long strings x and y, the
encryptions of x and y are unseparable if and only if the encryption scheme is bit-secure.

1.4. Instances of the CSPRB generator model. A general algorithmic scheme
for constructing CSPRB generators is presented in 2. The first instance of this scheme
is based on the intractability assumption for the discrete logarithm problem and is
described in 4. Other interesting instances of the general model have subsequently
been found based on the intractability assumption of various one-way functions. Yao
[33] and Blum, Blum and Shub [9] found instances based on the intractability .of
deciding quadratic residuosity modulo composite numbers whose factorization is
unknown. Yao [33] and Goldwasser, Micali and Tong [14] implemented CSPRB
generators based on the intractability of factoring. Yao [33] also proves that one can
obtain instances of the CSPRB generator scheme if one-way functions with a particular
property exist.

1.5. Applications. Recently, a large number of cryptographic protocols for pro-
tecting private communication and business transactions have been developed [7], [8],
[13], [14], [15], [20]. The security of these new protocols is based both on the security
of some encryption scheme and the ability of the participants to generate large random
numbers unknown to an adversary. Security vanishes if an adversary, though not able
to break the encryption scheme, can successfully predict the output of the pseudo-
random number generator. This is not an abstract worry as shown by Plumstead. The
problem calls for the use of CSPRB generators.

In private key cryptography, one-time pads constitute the best type of cryptosys-
tem. In practice, one-time pads are approximated by pseudo-random number gen-
erators [4]. Shamir [29] points out that "unpredictable" pseudo-random number
generators may be a valid substitute for one-time pads. Therefore, CSPRB generators
are particularly good substitutes for one-time pads: two partners who both possess

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

854 MANUEL BLUM AND SILVIO MICALI

the same CSPRB generator and have secretly exchanged a random seed, are actually
sharing a long bit-sequence that can be successfully used as a one-time pad.

The fact that the cryptographic strength of CSPRB generators depends only on
the secrecy of the seed and not on the secrecy of the program, makes them an available
tool to mathematically nonsophisticated users. In fact, it is unreasonable to assume
that a business person should be able to design a cryptographically strong generator.
However, anyone can buy such a program from the public market and secretly select
a short random seed.

2. A general algorithmic scheme for constructing CSPRB generators. In this
section we present the formal definition of a CSPRB generator and a theorem showing
a set of conditions that allow one to construct such generators. In 3 we show some
results about the discrete logarithm problem; namely that there exists a Boolean
predicate whose computational difficulty is equivalent to that of the discrete logarithm
problem. In 4 we show that these results make possible, under the intractability
assumption for the discrete logarithm problem, to concretely implement CSPRB
generators. In 5 we explicitly define the notion of random self-reducibility that is
the basis of our results.

DEFINITION. Let O be a polynomial, ! a set of inputs and Ik c_c_ I the set of inputs
of length k. Let A be a deterministic algorithm that, on input a seed x Ik, outputs a
Q(k)-bit sequence sx. Let Sk {SxIX Ik}. The algorithm A is a Q-CSPRB generator
if the collection S {Sk} passes the next-bit-test.

The sequences output by a CSPRB generator will be called the CSPRB sequences.
CSPRB sequences are ultimately periodic. However, for the great majority of the
seeds, the corresponding CSPRB sequences do not quickly become periodic with a
short period.

Let a and/3 be integers. We say that a bit-sequence is (a,/3)-periodic if it becomes
periodic, with period length less than/3, after at most a bits.

THEOREM 1. Let P1, P2 and P3 be polynomials. Set Q P1 + P2+ 2P3 + 1 and let
G be a Q-CSPRB generator Let 6k denote the fraction of the seeds of length k for which
G generates a (Pl(k), P2(k))-periodic pseudo-random sequence. Then 6k < 1/P3(k) for
all sufficiently large k.

Proof. Assume, for contradiction, that 6k>=l/P3(k) for each kF where F is
infinite. Let k F. Denote by ei the fraction of seeds of length k for which the first
Pl(k)+P2(k)+i bits in the corresponding CSPRB sequence form a (Pl(k), P2(k))-
periodic sequence. Then we have

1
2"P3(k)= k e3(k)"

Let the integer ie[0,2. P3(k)) be such that ei-ei+<-1/2(1/P3(k)). (Such an exists,
otherwise e0 > 1.) Consider the following algorithm A that predicts the (i + 1)st bit in
a CSPRB sequence bl, b_,. ., bo() produced with a seed of length k:

Look at S=bl,"., bi. If S is not a (Pl(k), P2(k))-periodic sequence,
predict b/l by flipping a coin. Else, predict bi+ so to preserve the (Pl(k), P2(k))-
periodicity.

Because of e>=l/P3(k) and our choice of i, A will predict b/l correctly with
probability greater than 1/2+ 1/(2. P3(])). We have reached a contradiction as, for some
polynomial P, for each k e F, A can be transformed to a circuit Ck, with less than
P(k) gates, that accomplishes the same task. Q.E.D.

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS 855

We just mention that we could replace the above algorithms Ak by a uniform
probabilistic polynomial time algorithm that makes use of sampling.

2.1. Problems in building generators. Let B be a predicate defined in a domain
D with 2k elements, such that B(x) 1 for half of the x’s in D. Then we could generate
random bits bo, bl,’’’ by picking xi at random in D and outputting bi B(x). The
drawback of this method is that we need to use k random bits to pick each x, but we
generate a single bit b. Instead, we would like to pick only the first x0 at random in
D and to select the other x’s in a deterministic way, namely, by setting Xi+x =/(x)
where f is a deterministic function. The problems of this approach are illustrated by
the following example. Let D consist of the integers in the interval [0, n], B(x)= 1 if
x<n/2 and B(x)=0 otherwise, and let f(x)=x+l. With such a choice for f, we
would essentially output always 0 or always 1, a not too random-looking bit-sequence!
This simple example shows that the deterministic function f may interact badly with
the predicate B spoiling the "randomness" of the output. Theorem 2 essentially shows
simultaneous conditions on f and B that prevent such bad interaction. We first describe
what predicates B should be used.

2.2. Unapproximable predicates. N {0, 1, 2,. }. B is said to be a set ofpredi-
cates if B {B: D {0, 1}/i Sn, n N}, where Sn is a subset of the n-bit integers
and D is a subset of the integers with at most n bits. An element of Di is always
represented by n bits, the leading ones may be O’s.

Set In {(i, x)li Sn and x D}. An element of In is called an input of size n. B
is accessible if there are two constants c and c2 and a probabilistic algorithm A such
that, on input n, A halts after n c, steps; A outputs "?" with probability 1/2c2k; and
whenever A does not output "?" it outputs an element (i, x)In with uniform
probability.

Let B be a set of predicates and P be a polynomial. Let cP. denote the size of a
minimum size circuit C C[.,.] that computes B(x) correctly (i.e. C[i, x]= B(x))
for at least a fraction 1/2+ 1/P(n) of the inputs (i, x) of size n. Such a circuit C will be

Psaid to 1/P(n)-approximate B. B is unapproximable if for any polynomial P, c grows
faster than any polynomial in n.

Example (Goldwasser and Micali [13]). Let Sn set of all n-bit composite integers
that are products of two distinct equal-length primes. Let D denote the set of all
integers x [1, i] relatively prime to whose Jacobi symbol (x/i) +1; and let Bi(x) 1
if x is a quadratic residue mod i, B(x)= 0 otherwise. Then it is easy to show that B
is accessible. Furthermore, under the quadratic residuosity assumption [13], B is also
unapproximable. Another example can be found in 4.

Remark. Note that for an unapproximable predicate B, as n goes to infinity, the
fraction of In such that B(x)= 1 (B(x)=0) goes to 1/2.

2.3. Sufficient conditions for constructing CSPRB generators.
EASY

f(x)

HARD

B(f(x))
FIG.

THEOREM 2. Let O be a polynomial, B {B: Di-, {0, 1}1i Sn, n N}, an un-
approximable and accessible set of predicates and I {(i, x) In ln N} be the set of all

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

856 MANUEL BLUM AND SILVIO MICALI

inputs relative to B. Let
1) f’(i, x) 1 Di be a polynomial time computable function;
2) fi f i,)" Di Di be a permutation .for all
3) h" (i, x) ! Bi(j(x)), be a polynomial time computable predicate (see Fig. 1).

Then it is possible to construct a Q-CSPRB generator G.
Proof Let heN.As B is an accessible set of predicates, let c, c2 and A be its relative

constants and probabilistic algorithm. Set c Q(n), the desired length of the sequence
and n’ [n/C,J. The following constitutes the Q-CSPRB generator G that stretches the
random n-bit seed r to a Q(n)-bit pseudo-random sequence.

Run A on input n’ using the bits of r as coin tosses. If A’s output is "?" then generate
the sequence consisting of c O’s. Else, if A has randomly selected an input
(i,x)I,,,,

generate the sequence Ti,x x,f(x),fEi(x), ,f(x) and
fr6m right to left (!), extract one bit from each element in T,, as follows"
for j= c to l, output the bit B,(f(x)).

For simplicity, let us assume that A never outputs "?" and n n’. Then G takes
the random input (i, x) and stretches it into the sequence S, (s)__t,...,c where

Sj Bi(f-J+l(x)).
G operates in polynomial time. The sequence T,x can be constructed in Poly (n)

time as the function f (and thus each function]) is polynomial time computable
(hypothesis (1)).

Once the sequence T,x is computed and stored, each bit s S,x can also be
computed in polynomial time: by hypothesis (3), s B(f-+(x)) is easy to compute
as f-(x) is given.

G is cryptographically strong. Let P and P2 be polynomials. We want to prove
that, when n is large enough, for any k between 1 and c- 1 Q(n), a circuit C with
less than P(n) gates, cannot "predict" Sk+ with probability greater than 1/2 + 1 /P2(n).
The proof is by contradiction. Assume that there is an infinite family of integers, F,
such that for each n F there is a circuit C,, with less than P(n) gates, predicting
Sk+ correctly with probability (taken over all the possible seeds of length n) at least
2 + 1/P2(n). Then the following poly(n) time algorithm A, making calls to the circuits
C,, 1/P2(n)-approximates B; i.e. A(i,x)=B(x) for a fraction 1/2+l/P2(n) of the
(i, x) I. This will contradict the assumption that B is unapproximable. In fact, as all
C, have size less than P(n), for some polynomial P3, for each n e F, A can be
transformed to a circuit, with less than P3(n) gates, that -+ 1/P2(n)-approximates B
for inputs of size n.

ALGORITHM A.
For input (i, x) In, n F, generate the sequence of bits (b,. , bk-1, bk)

(Bi(fk(x)), Bi(f2(x)), B(f(x))). Input these k bits to the circuit Cn to

compute a bit y. Set A(i, x) y.
We now prove that A 1/P2(n)-approximates B for inputs of size n, n F. Notice that
the bits bl, bk are the first k bits of the Q-CSPRB sequence S.k-c,,z, x). Thus
A(i, x)= B(x) if and only if Cn correctly predicts the k + 1st bit of S,-c<x). But this
will happen for a fraction at least -12+ 1/P2(n) of the (i, x) In. In fact we are assuming
that Cn correctly predicts the k + 1st bit of the S,x sequences for a fraction 1/2+ 1/P2(n)
of the (i, x) In and we know that the function fk- is a permutation as, by hypothesis
(2),] is. Q,E.D.

3. The discrete logarithm problem. Let p be a prime. The set of integers [1, p- 1]
lorms a cyclic group under multiplication mod p. Such a group is denoted by Z*. Let

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS 857

g be a generator for Zp*. The unction fp.s" x Z*p gX mod p defines a permutation
on Zp* computable in Poly (Ipl) time. The discrete logarithm problem (DLP) with inputs
p, g and y consists in finding the x Zp* such that gX mod p y. A circuit C[.,., .]
solves the DLP mod a prime p if, for any g generator for Zp* and any y Zp*,
C[p, g, y] x such that x Zp* and gX mod p y. Such an x will be simply denoted by
indexg(y) whenever no ambiguity may arise about p.

3.1. Actual knowledge about the DLP. gX mod p seems to be a one-way function.
The fastest algorithm known for the DLP is due to Adleman [1] and runs in
time O(2C41gploglgp). It is easy to see that the difficulty of the DLP does not depend
on the generator g or y. By this we mean that if for a nonnegligible fraction 1/Poly (I Pl))
of pairs (g, y), g a generator and y Zp*, the DLP with inputs p, g and y could be
efficiently solved, then it could be solved in probabilistic poly (Ipl) time for any g and
any y. Thus our intractability assumption for the DLP will depend only on the
prime p.

Pohlig and Hellman [26] show that the DLP mod a prime p such that p- 1 contains
only small prime factors can be efficiently solved. However such primes constitute a
negligible fraction of all primes [34]. No one knows how to construct "small" circuits
that solve the DLP mod even a single prime p that is not of the above type.

3.2. The intractability assumption for the DLP. Let P be a polynomial and let
Pc, denote the size of a smallest size circuit C that solves the DLP for at least a fraction

PliP(n) of the n-bit primes p. Then c, grows faster than any polynomial in n.
Why circuit complexity? The above intractability assumption is certainly a strong

one. It implies that the CSPRB sequences, implemented using the DLP as described
in 4, resist prediction by polynomial size circuits.

For the same implementation, if we assume that the DLP cannot be solved in
probabilistic polynomial time., we could prove (in essentially the same way!) that the
CSPRB sequences would resist prediction by any fixed probabilistic polynomial time
Turing machine M, i.e., for all sufficiently large seed length k, M cannot predict the
next bit in a CSPRB sequence generated with a seed of length k better than at random.

This, however, is not satisfactory for the cryptographic applications mentioned in
1.5. We would like first to choose a seed length, and then allow our adversary to

choose any probabilistic polynomial time Turing machine for predicting our sequence!
The problem calls for nonuniform complexity.

3.3. The DLP and the principal square root problem. We recall some known
results about Zp*.

An element T of Zp* is called a quadratic residue mod p if and only if T x2 mod p
for some x Zp*; such an x is called a square root mod p of T.

FACT 1. Given any generator g for Z’p, an element T of Z*p is a quadratic residue
mod p if and only if T g2S mod p for some integer s [1, (p-1)/2]. We recall that
such a representation of T is unique. Moreover T has two square roots mod p: g2 mod p
and gS+p-1)/2 mod p (e.g. see Shanks [30]).

FACT 2. There exists a polynomial time algorithm for testing whether an element
T of Z*p is a quadratic residue mod p (e.g. see [30]).

FACT 3 (Adleman, Manders and Miller [2], Berlekamp [5]). Given any T, a
quadratic residue mod p, there exists a probabilistic polynomial-time algorithm to compute
both square rdots of T mod p.

We introduce the following basic definition.
DEFINITION. Let g be a generator for Zp*, T a quadratic residue mod p and 2s

the unique index of T such that 2s[1, p-1]. Then g mod p .will be called the

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

858 MANUEL BLUM AND SILVIO MICALI

g-principal square root of T, and gS+(p-1)/2 mod p the g-nonprincipal square root of T.
We will simply say principal square root and nonprincipal square root when no
ambiguity about the generator g may arise.

Let g be a generator for Zp*. Notice that given T, a quadratic residue mod p, but
not the index of T base g, one can still test efficiently that T is indeed a quadratic
residue and can efficiently extract its two square roots mod p, say X and Y. However
Theorem 3 shows that deciding which square root of T is the g-principal one is a
much harder problem. In fact, even allowing a weak oracle for the principal square
root problem, the DLP becomes easy.

DEFINITION. Let g be a generator for Zp* and x Zp*. The predicate Bp,g(X) is
defined to be equal to 1 if x is the principal square root of x2 mod p and 0 otherwise.

Remark 1. Notice that, given s Zp* such that x g mod p, it is easy to evaluate
Bp,g(x)" just check whether or not s<-_(p-1)/2 and output 1 or 0 respectively.

THEOREM 3. Let Q be a polynomial. Let MBo[’, ", "] (magic box) be an oracle
such that, .for all primes p and for all generators for Z’p, MBo[p, g, x] Bp,g(x) for a
fraction at least 1/2+ 1/Q(IPl) of the x Z*p. Then there is a probabilistic algorithm with
oracle MBo that, for all primes p, solves the DLP mod p in expected poly (IPl) time.

We first establish some intermediate results. The following lemma shows that with
an oracle or the principal square root problem, the DLP is solvable in polynomial time.

LEMMA 1. Let MB[" ", be an oracle such that, for all primes p, for all generators
g for Z*p and all x Z’p, MB[p, g, x] Bp,g(X). Then there is a poly ([p[) time algorithm
with oracle MB that solves the DLP mod p for all primes p.

Proof. We actually prove a stronger result: we exhibit a poly (Ipl) time algorithm
that finds indices base g mod p by only making use of the more restricted oracle
MB[p, g,].

The algorithm, given by y Zp*, finds x =index(y) bit-by-bit from right to left.
In the middle of the execution, the variable index will contain the right half of the
bits of x and the variable element is such that indexs(element)=the left half of x.
Think of indexs(element) and index as lists of O’s and l’s. The algorithm, abstractly,
transfers the last bit of index(element) in ront o index until index(element) vanishes
(i.e. element= gO= 1) and thus all of x has been reconstructed in index. "-" denotes
the concatenation operator.

Step 0 (Initialization)
element := y; index := empty word.

Step 1 (check for termination condition)
If element 1 HALT. index x.

Step 2 (find one more bit of x)
Test whether element is a quadratic residue mod p. If yes index := 0---index and
go to step 4 else index := 1---index and go to step 3.

Step 3 (element is a quadratic nonresidue, i.e. indexg(element) is odd. Change the last
bit of indexg(element) from 1 to 0)

element := g-1. element mod p
Step 4 (erase 0 from the tail of indexs(element))

element is a quadratic residue. Compute both square roots of element mod p. Have
MB select the principal one. element := principal square root of element and go
to Step 1.

Q.E.D.

The algorithm in Lemma 1 needs, for Pl times, to select the principal square root
of a quadratic residue mod p. It does so by making pl calls to the oracle MB that
computes Bp. correctly 100% of the time.

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS 859

We should ask what happens to the algorithm if it is allowed to make calls to an
oracle that evaluates Bp,g only slightly better than guessing at random.

The following lemma, making use of the algebraic structure of Zp*, shows how to
"concentrate a stochastic advantage", i.e. how to turn an oracle that answers most of
the instances of a decision problem correctly, even if we do not know which ones!, into
an oracle answering any specific instance correctly with arbitrarily high probability.
Let us recall one version of the weak law of large numbers:

If Yl," Yk are k independent 0-1 variables such that Yi 1 with probability
a, and Sk Yl-t-. d-Yk, then for real numbers e and 8 > 0,k > 1/(4e28) implies
that Prob (ISk/k-al> e)< 8.

Let us define trials (e, 8). trials (e, 8) 1/(4e28). Notice that trials (e, 8) depends
polynomially on e -1 and 8-1.

Let p be a prime, g a generator for Zp* and t[1, p-1]. Then IS(p, g, t), the
t-initial segment of Z*p with respect to g, is defined by IS(p,g, t)=
{gX mod pl0 --< x <_- p- 1)/t}.

LEMMA 2. Let e (0, 1/2) and 8 (0, 1). Set =trials (e/2, 8). Let MB[.. .,. be
an oracle such that for p prime, g generator for Z*p and x Z’p, MB[p, g, x] Bp.g(X)
for a fraction at least 1/2+ e of the x Z*p. Then, there is a probabilistic poly (Ipl,
8 -1) algorithm with oracle MB that on input p (prime) and e (quadratic residue mod p
belonging to IS(p, g, t)) selects the g-principal square root of e correctly with probability
greater than 1 &

Proof. Let p prime and g generator for Zp*. Again, to find indices base g mod p
we will only make use of the more restricted oracle MB[p, g,]. As in the rest of the
proof p and g will remain fixed, we write MB[x] instead of MB[p, g, x]. On input
ee IS(p, g, t), e quadratic residue mod p, select rl," ", rt at random in [1, (p- 1)/2].
Compute 2r,. , 2ri. Compute el e. g2rl mod p," , en e. g2ri mod p. All the ei’s
are quadratic residues modp as indexs(e) is even for all i’s. In fact index(e)=
(indexg(e)+2r) mod p-1 and both indexg(e) and p-1 are even. Compute the two
square roots X and Yi of each e. (Note that while both square roots can be computed,
it is not (yet) clear which of X and Yi is principal.) For each e select PSQR, your
guess for the principal square root of ei, in the following way: if MB[X]- MB[Y],
randomly select, with probability 1/2, one of the two square roots Xi and Y; call Z
your selection and set PSQRi Z. Otherwise, if MB[Xi] 1, set PSQR X; else
set PSQR Y. Notice that the ei’s have been drawn at random with uniform probabil-
ity among the quadratic residues mod p: in fact every even index between 1 and p- 1
can be uniquely written in the form (index(e) + 2r) mod p- 1, for 1 <_- 2r-< p- 1. Thus,
even if an adversary has chosen the x’s for which MB(x)=Bg(x), setting a’=
Prob (PSQR is the principal square root of e), we have a’ =1/2+ e.

Notice the following fact:

Let 2s be the index of e, i.e. e gES mod p and 2s l, p-], and let X and
Ybe its square roots mod p. Let 2s + 2r < p 1. Then X. g"mod p is the principal
square root of e. gEt mod p if and only ifX is the principal square root ofe.

2s is unknown, but, as e IS(p, g, t), we know that 2s[1,(p-1)/t]. Therefore, if
2s + 2ri > p 1, 2r must belong to the interval [(1)(p- 1)/t, p 1]. This will happen
with probability= 1/t. Assume, without loss of generality, that PSQRi=X and
X. g’, mod p X. Then,

a Prob (Bp,g(X) IlPSQR, X) >-_ a’- 1/t > 1/2+ e/2.

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

860 MANUEL BLUM AND SILVIO MICALI

(Recall that 1/ea&) We exploit this fact in the following way: initialize to "0"
two counters Cx and Cv. For each r if X. gr, mod p- PSQR then increment Cx,
else increment Cv. Upon termination, if Cx > Cv output X as the principal square
root of e, or else Y. As a > 1/2+ e/2 let X be the principal square root of e, then by
the weak law of large numbers, Prob ([Cx/t- a[> e/2) < 8. Or equivalently, Cx > Cv
with Probability > 1- 8. Q.E.D.

LEMMA 3. Let Q be a polynomial and

(1t--- trials
O(I pl)’ 21pl

Let MBo be an oracle such that, for all primes p and all generators g for Z’p,
MBo[p, g, x]= Bp.g(x) for at least a fraction 1/2+ / Q(Ipl) of the x Z*p. Then there
is a probabilistic poly (Ipl) algorithm that on input p prime and y IS(p, g, t) finds
indexg (y) mod p in expected poly (] Pl) time.

Proof. On inputs p, g, and y we will only call the more restricted oracle
MB[p, g,.]. Let y be any element in iS(p, g, t). We apply a modification of the
algorithm in Lemma 1 to find the index of y, That algorithm, in Step 4, to select the
principal square root of a quadratic residue mod p, and thus also for a quadratic residue
in IS(p, g, t), would call the oracle MB. Call instead MBo as in the algorithm of
Lemma 2 setting e 1/Q<Ipl) and 8 1/21pl. By Lemma 2, Step 4 will be p6tformed
correctly with independent probability equal to 1-1/2lpl. Notice that if x belongs to
1S(p, g, n), so does x. g-1 mod p; and that if x is a quadratic residue mod p belonging
to IS(p, g, t), also its principal square root will belong to 1S(p, g, t). Therefore, if in
Step 4 the algorithm correctly selects the principal square root, the total computation
will be done in the initial segment IS(p, g, t). As Step 4 is executed at most IPl times,
the probability that the index of y will be found correctly is greater than
(1-1/(21pl))lpI> 1/2 (consider the Taylor series expansion around x 0 of the function
f(x)-(1-’l/x)lpl). It is easy to see that the whole computation is polynomial in
Ipl, Q.E.D.

We are now ready to prove Theorem 3.
Proof of Theorem 3. The following probabilistic poly (Ipl) time algorithm finds

indexg(y) mod p for any y Z*p by only making calls to the oracle MBo[p, g,"]. Set

(1trials Q(Ipl)’2lpl"

Recall that

IS(p’g’t)={gx mdp x[o"P-I]}"t
The algorithm makes use of the variables i, w, index(w), and candidate.

Step 0 (Initialization)

i:=1

Step 1 (guess that index(y)[i(p-1)/t, (i+l)(p-1)/t] and map y into the
t-initial segment)

W :-- y" g-i(p-1)/t mod p

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS 861

Step 2 (If w IS(p, g, t), find the index of w)

Apply the algorithm in Lemma 3 to find the index of w. index(w):= the index
of w.

Step 3 (check whether the index of y has been found)

candidate := index(w) + i(p- 1)/t; if gcandidate mod p y then HALT: candidate
is the index of y in base g. Else continue.

Step 4 (keep on guessing)

i:= i+ 1. If i> then i:= 1 and go to Step 0; else go to Step 1. Q.E.D.

4. A concrete CSPRB generator based on the discrete logarithm problem. Let
us describe an implementation, based on the intractability assumption for the DLP,
of our general algorithmic scheme for constructing CSPRB generators.

We first recall a recent and powerful result due to Erich Bach [3].
LZMMA 4 (Bach [3]). There is a probabilistic algorithm that, on input n N, selects

an integer k, together with its prime factorization, with uniform probability among the
n-bits integers. The algorithm runs in expected poly (n) time.

TI-IEOREM 4. Under the intractability assumption for the DLP, we can construct a
CSPRB generator

Proof. Let $2n be the set of the 2n-bit integers (leading bit 1) such that the
first n bits of constitute a prime p, and the next n bits (leading bit possibly 0) a
generator g for Zp*. Let "---" denote concatenation. For S2n, p-- g, set Di Zp*
and, for x Z*, set Bi(x) Bp.s(x). We show that the set of predicates B {Bli S.}
is an accessible, unapproximable set of predicates.

B is accessible, a) With uniform probability, we can select, among all the n-bits
primes, a prime p together with the factorization of p- 1, in probabilistic poly (n) time.

S’elect, with uniform probability, an n-bit integer k, together with its prime
factorization, until k + 1 is a prime. By Lemma 4,/c can be selected in expect.ed poly (n)
time. k + 1 can be tested for primality in random poly (n) time (see Solovay and
Strassen [32]) and it will be a prime after expected O(n) random selections of k
because of the prime number theorem. If the prime p k + 1 has been so selected, it
has been selected with uniform probability.

b) To generate a triplet (p, g, x) such that p is an n-bit prime, g a generator for
Zp* and x Zp*, with uniform probability we follow the following algorithm:

(1): Generate p as in (a).
(2): Flip 2n fair coins; if the first n outcomes of the flips constitute a generator

for Zp* and the second n outcomes constitute an x Z* then halt, the desired
triplet has been selected, else go to (1).

As all triplets (p, g, x) so generated have the same probability of being selected
it remains to show that the above algorithm runs fast. For this, note that, for all n-bit
primes p, the probability of generating an x Zp* is greater than 1/2. Also, for all the
n-bit primes p, the probability of constructing a generator for Zp* by flipping n fair
coins is greater than 1/(12 1Oge 1Oge (p-- 1)). In fact, for all p, the generators for Z*
are (p- 1) (where is Euler totient function) and Rosser and Schoenfield [28] prove
that (k) > 1/(6 1Oge 1Oge k) for k > 3. Moreover, as we have the factorization of p- 1
as well, it is easy to check whether g is a generator for Zp* (see [30]).

B is unapproximable. By contradiction. Assume that there are polynomials P1
and P: such that for n F, F infinite, there is a Pl(n)-size circuit Cn that evaluates

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

862 MANUEL BLUM AND SILVIO MICALI

Bp,g(X) correctly for a fraction of at least 1/2+ 1/Pa(n) of the n-bit inputs p, g, and x.
Then a counting argument shows that there would be a fraction at least 1/P.(n) of
pairs (p, g) for which the circuit Cn evaluates Bp,g(x) correctly for at least a fraction
1/2+ 1/(2. Pa(n)) of the x e Z*. A trivial modification of Theorem 3 would then show
that there is a probabilistic poly (n) time algorithm A, with oracle Cn, that for each
n e F solves the DLP for at least a fraction 1/Pa(n) of the n-bit primes p. This would
violate the intractability assumption for the DLP as, for some polynomial P3, for each
n e F, A could be transformed to a circuit with less than P3(n) gates.

B satisfies the hypothesis of Theorem 2. A seed is a pair (i =p-g, x). Define
fi(x) gX mod p. Note that, given x e Zp*, it is easy to check whether gX mod p is a
principal square root: just check whether x _-< (p-1)/2. The other properties trivially
hold. Q.E.D.

Theorems 2, 3 and 4 imply that it is possible to stretch a short random seed into
a long pseudo-random bit sequence such that any efficient strategy to predict better
than 50-50 the next output bit can be easily transformed to a "small" circuit solving
the discrete logarithm problem.

5. Random sell-reducibility. The purpose of this section is to single out the notion
of random self-reducibility that we hope will be useful to complexity theory.

The notion of reducibility (Cook [11], Karp [16] and Levin [19]) is central to
complexity theory. Conjunctive self-reducibility has also played an important role (see
Berman [6], Fortune [12], Meyer and Paterson [22] and the article of Mahaney [21]
proving the conjecture of Berman and Hartmanis that no NP-complete set can be
reduced to a sparse set unless P NP).

We introduce the notion of random self-reducibility by distilling the properties
of the reductions in 3. Informally, these properties guarantee that, if the majority
of the instances of a decision problem (even if we do not know which ones) can be
efficiently answered correctly, then every individual instance can be efficiently answered
correctly with arbitrarily high probability.

In the two definitions below, B {Bi:D {0, 1}1i e Sn, and n e N} is an accessible
set of predicates, p is the "reduction function" and tr the "interpretation function’"
using r, a sequence of coin tosses, /9 randomly maps instance x into instance y;
given the answer for y and the sequence of coin tosses r, tells us what the answer for
x should be.

DEFINITION (strong random self-reducibility). Let p: e S, x e Di, re Di) --) Di
and tr: (i e Sv, x e D, r e D, b e {0, 1}) {0, 1} be polynomial time computable func-
tions. We say that B is strongly randomly self-reducible if for all e Sv and all x e D:

a) p(i, x,. is a permutation over D and
b) for all reDi, Bi(x)=tr(i,x,r,B(p(i,x,r))).
DEFINITIOr (weak random self-reducibility). Let t9: e Sn, x e Di, re Di) D be,

as before, a polynomially computable function and r: (i e Sv, x e D, r e D, e e (0, 1),
b e {0, 1}) {0, 1} be a function computable in probabilistic poly (1il, e-l) time. We say
that B is weakly randomly self-reducible if for any polynomial Q, for all sufficiently
large e Sv and all x e D:

a) t9(i, x,. is a permutation over D and
b) letting r be randomly selected in D,

Prob (B,(x)= tr(i, x, r, ni(p(i, x, r))) > 1/2+ 1/Q(Iil).

Acknowledgments. We are proud to thank many friends.
We are grateful to Shaft Goldwasser for having suggested the discrete logarithm

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS 863

as a suitable one-way function for our purposes and for numerous valuable discussions,
to Richard Karp for his precious gift of setting the context and making vague ideas
precise, and to Andy Yao for having brought to light hidden potentials.

This work gained a great deal of concision and clarity due to the elegant result
of Erich Bach [3].

We benefitted highly from the insightful comments of Lenore Blum, Steve Cook,
Faith Fich, Zvi Galil, Donald Johnson, Leonid Levin, David Lichtenstein, Mike Luby,
Gary Miller, Andrew Odlizko, Joan Plumstead, Charlie Rackoff, Ron Rivest, Jeff
Shallit, Mike Sipser and Po Tong.

REFERENCES

[1] L. ADLEMAN, A subexponential algorithm for the discrete logarithm problem with applications to
cryptography, Proc. 20th IEEE Symposium on Foundations of Computer Science, 1979, pp. 55-60.

[2] L. ADLEMAN, K. MANDERS AND G. MILLER, On taking roots in finite fields, Proc. 18th IEEE
Symposium on Foundations of Computer Science, 1977, pp. 175-177o

[3] E. BACH, How to generate random integers with known factorization, Proc. 15th ACM Symposium on
Theory of Computing, 1983.

[4] H. BEKER AND F. PIPER, Cipher Systems, Northwood, 1982.
[5] E. BERLEKAMP, Factoring polynomials over large finite fields, Math. Comp., 24 (1970), pp. 713-735.
[6] P. BERMAN, Relationship between density and deterministic complexity of NP-complete languages, 5th

International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer
Science, 62, Springer-Verlag, New York, 1978, pp. 63-71.

[7] M. BLUM, How to exchange (secret) keys, Proc. 15th ACM Symposium on Theory of Computing, 1983.
[8], Three applications of the oblivious transfer, unpublished manuscript, 1981.
l9] L. BLUM, M. BLUM AND M. SHUB, A simple securepseudo-random numbergenerator, Proc. CRYPTO-

82, Allen Gersho, ed.; this Journal, to appear.
[10] M. BLUM AND S. MICALI, How to generate cryptographically strong sequences of pseudo-random bits,

Proc. 23rd IEEE Symposium on Foundations of Computer Science, 1982, pp. 112-117.
[11] S. Coo:, The complexity of theorem proving procedures, Proc. 3rd ACM Symposium on Theory of

Computing, 1971, pp. 151-158.
[12] S. FORTUNE, A note on sparse complete sets, this Journal, 8 (1979), pp. 431-433.
[13] S. GOLDWASSER AND S. MICALI, Probabilistic encryption and how to play mental poker keeping secret

all partial information, Proc. 14th ACM Symposium on Theory of Computing, 1982, pp. 365-377,
Probabilistic Encryption, J. Comp. Sys. Sci., to appear.

[14] S. GOLDWASSER, S. MICAL! AND P. TONG, Why and how to establish a private code on a public
network, Proc. 23rd IEEE Symposium on Foundations of Computer Science, 1982, pt. 134-144.

[15] S. GOLDWASSER, S. MICALI AND A. YAO, Strong signature schemes and authentication, Proc. 15th
ACM Symposium on Theory of Computing, 1983.

[16] R. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations, R.
Miller and J. Thatcher, eds., Plenum, New York, 1972, pp. 85-103.

[17] D. KNUTH, The Art of Computer Programming: Vol. 2 Seminumerical Algorithms, Addison-Wesley,
Reading, MA, 1981.

[18] A. KOLMOGOROV, Three approaches to the concept of "the amount of information", Probl. of Inf.
Transm., 1/1, 1965.

[19] L. A. LEVIN, Universal sequential search problems, Probl. of Inf. Transm., 9/3 (1973), pp. 265-266.
[20] M. LUB, S. MICALI AND C. RACKOFF, The MiRackoLus exchange of a secret bit, Proc. 24th IEEE

Symposium on Foundations of Computer Science, 1983.
[21] S. MAHANEY, Sparse complete sets for NP: a solution of a conjecture of Berman and Hartmanis, Proc.

20th IEEE Symposium on Foundations of Computer Science, 1980, pp. 54-59.
[22] A. MEYER AND M. PATERSON, With what frequency are apparently intractable problems difficult?,

Massachusetts Institute of Technology, Tech. Report, Cambridge, MA, Feb. 1979.
[23] G. MILLER, Riemann’s hypothesis and tests for primality, J. Comp. Sys. Sci., 13 (1976), pp. 300-317.
[24] G. PETERSON, Succint representations, random strings and complexity classes, Proc. 21st IEEE Sym-

posium on Foundations of Computer Science, 1980, pp. 86-95.
[25] J. PLUMSTEAD, Inferring a sequence generated by a linear congruence, Proc. 23rd IEEE Symposium

on Foundations of Computer Science, 1982, pp. 153-159.

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

864 MANUEL BLUM AND SILVIO MICALI

[26] S. POHLIG AND M. HELLMAN, An improved algorithm for computing logarithms over GF(p) and its

cryptographic significance, IEEE Trans. Information Theory, IT-24 (1978), pp. 106-110.
[27] R. RIVEST, A. SHAMIR AND L. ADLEMAN, On digital signatures and public key cryptosystems, Comm.

ACM, 21 (1978), pp. 120-126.
[28] J. ROSSER AND L. SCHOENFIELD, Approximate formulas for some functions ofprime numbers, Illinois

J. Math., 6 (1962), pp. 64-94.
[29] A. SHAMIR, O/1 the generation of cryptographically strong pseudo-random sequences, 8th International

Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science, 62,
Springer-Verlag, New York, 1981.

[30] D. SHANKS, Solved and Unsolved Problems in Number Theory, Chelsea, London, 1978.
[31] M. SIPSER, Three approaches to a definition of finite state randomness, unpublished manuscript, 1979.
[32] R. SOLOVAY AND V. STRASSEN, A fast Monte-Carlo test for primality, this Journal, 6 (1977), pp.

84-85.
[33] A. YAO, Theory and applications of trapdoor functions, Proc. 23rd IEEE Symposium on Foundations

of Computer Science, 1982.
[34] ANDREW ODLIZKO, private communication, 1984.

D
ow

nl
oa

de
d

04
/1

0/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

