
CS 812

Spring 2024

Homework #2

Due Wednesday, March 20, 2024

Rules for Homework. See Homework 1.

1. A 1996 paper by Farris (see link next to this homework) deals with rotational sym-
metries of curves given in parametric form by

f(t) =
∑

n∈Z

ane
int,

with an real. We will assume that a0 = 0, the ai are real, and all but finitely many of
them are 0. The author’s main theorem (p. 187) implies a criterion for such a curve
to have a nontrivial rotational symmetry: there is a number m > 1 and a u ∈ Z∗

m

such that every n with a nonzero an is congruent to u mod m.

a) Find a computable upper bound on the largest m that could work. This implies
that there is an algorithm to decide nontrivial symmetry.

b) Is there a polynomial time algorithm for this? (Remember that we want polyno-
mial in total bit length.)

2. [Logarithms in algorithms.] Many algorithms have bounds like 2 ln2 n (for ERH based
prime testing) or

√

φ(r) log2 n (AKS). It is usually assumed without justification that
these bounds can be efficiently computed.

a) Let n and b be positive integers, with 1 < b ≤ n. Show that ⌊logb n⌋ can be
computed using O(lg n)2 bops, with ordinary arithmetic.

b) Show that ⌊lnn⌋ is computable. [Hint: It is known that e = 2.71828... is tran-
scendental. That is, it is not the root of any polynomial equation with rational
coefficients.]

c) Show that lnn can be approximated with absolute error ≤ 1 in time polynomial
in lg n. [Hint: You can use the Maclaurin series for ln(1 + x), provided that x is
small. Figure out how to reduce to this case.]



3. Background to this problem: In machine cryptography, permutations of the 26 Roman
letters were hard wired into electrical devices called rotors. For technical reasons, it
was desired to use a permutation σ for which the “shifts” i − σ(i) were all distinct
mod 26. Call a permutation good if that is the case.

a) Consider the affine transformations on Zn defined by

x 7→ ax+ b

Give a formula for the number of pairs (a, b) for which the above transformation
is a good permutation on Zn. (Hint: consider primes, then prime powers, and
finally general n using the Chinese remainder theorem.)

b) Estimate this number as a function of n.

c) (*) Find other “easy” ways to make good permutations on Zn. A desirable
property of such constructions is that the set of permutations you can make is
large.

4. In class we discussed methods for finding square roots mod pk, when p is an odd
prime. This exercise deals with p = 2 (which is needed for the quadratic sieve).

a) Let f be a monic polynomial in Z[X]. Suppose that f(x0) ≡ 0 (mod 2m),
2n||f ′(x0), and m > 2n. Give an efficient algorithm that constructs a solution to
f(x) ≡ 0 (mod 22m−2n). Note that by hypothesis, 2m−2n > m. [Hint: Pick an
appropriate j, and then use the Taylor series for f(x0+x12

j) to get a congruence
you can solve for x1.]

This actually holds for any prime p, but we only need it for p = 2.

b) Let k ≥ 3. Find explicit formulas for four different square roots of 1 in Z∗

2k
.

Conclude that this group is not cyclic. Under what conditions is a ∈ (Z∗

2k
)2?

c) Using the result of a), show how to compute square roots in Z∗

2k
using O(k2)

bops. [Hint: When m > 2n, the sequence defined by ki = 2ki−1 − 2n, with
k0 = m, grows exponentially.]

Note: The quadratic formula involves division by 2, so it can’t be used directly to
solve the quadratic x2 + bx + c ≡ 0 (mod 2k). Gauss found the following elegant
substitute. Multiply the congruence by 4 and rearrange to get

(2x+ b)2 ≡ b2 − 4c (mod 2k+2).

The solutions to the original congruence are found by solving 2x+ b ≡ y (mod 2k+2),
where y runs over the solutions to y2 ≡ b2 − 4c (mod 2k+2).


