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4. In the continued fraction algorithm explain why there is no need to
include in the factor base B any primes p such that va =-1.

5. Following Examples 2 and 3, use the continued fraction algorithm to
factor the following numbers: (a) 9509; (b) 13561; (c) 8777; (d) 14429;

() 12403; (£) 14527; (g) 10123; (h) 12449; (i) 9353; (j) 25511; (k) 17873.
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5 The quadratic sieve method

The quadratic sieve method for factoring large integers, developed by
Pomerance in the early 1980s, for a long time was more successful than
any other method in factoring integers n of general type which have no
prime factor of order of magnitude significantly less than v/n. (For integers
n having a special form there may be special purpose methods which are
faster, and for n divisible by a prime much smaller than v/ the elliptic
curve factorization method in §VI.4 is faster. Also see the discussion of the
number field sieve at the end of the section.)

The quadratic sieve is a variant of the factor base approach discussed
in §3. As our factor base B we take the set of all primes p < P (where P is
some bound to be chosen in some optimal way) such that n is a quadratic

residue mod p, i.e., AWV = 1 for p odd, and p = 2 is always included in

B. The set of integers S in which we look for B-numbers (recall that a
B-number is an integer divisible only by primes in B) will be the same set
that we used in Fermat factorization (see §3), namely:
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muﬁwtﬁ_ Wal+1<t<[va]+A)

for some suitably chosen bound A.

The main idea of the method is that, instead of taking each s € §
one by one and dividing it by the primes p € B to see if it is a B-number,
we take each p € B one by one and examine divisibility by p (and powers
of p) simultaneously for all of the s € S. The word “sieve” refers to this
idea. Here we should recall the “sieve of Eratosthenes,” which one can
use to make a list of all primes p < A. For example, to list the primes
< 1000 one takes the list of all integers < 1000 and then for each p =
2,3,5,7,11,13,17,19, 23, 29, 31 one discards all multiples of p greater than
p — one “lets them fall through a sieve which has holes spaced a distance
p apart” — after which the numbers that remain are the primes.

We shall give an outline of a procedure to carry out the method, and
then give an example. The particular version described below is only one
possible variant, and it is not necessarily the most efficient one. Moreover,
our example of a number n to be factored (and also the numbers to be
factored in the exercises at the end of the section) will be chosen in the
range ~ 108, so as to avoid having to work with large matrices. However,
such n are far too small to illustrate the time advantage of the sieve in
finding a large set of B-numbers.

Thus, suppose we have an odd composite integer n.

1. Choose bounds P and A, both of order of magnitude roughly

m):onﬁ log NOQS.

Generally, A should be larger than P, but not larger than a fairly small
power of P, e.g., P < A < P2,

This function exp(v/logn loglogn), which we encountered before in
this chapter and which is traditionally denoted L(n), has an order of mag-
nitude intermediate between polynomial in logn and polynomial in n. If
n = 105, then L(n) =~ 400. In the examples below, we shall choose P = 50,
A = 500.

2. Fort=[y/n]+1, [\/rn]+2,..., [v/n] + A, make a column listing
the integers t* — n.

3. For each odd prime p < P, first check that AWV =1 (see §I1.2); if
not, then throw that p out of the factor base.

4. Assuming that p is an odd prime such that n is a quadratic residue
mod p (we’ll treat the case p = 2 separately), solve the equation ¢ =
n (mod pP) for 3= 1,2, ..., using the method in Exercise 20 of §I1.2. Take
increasing values of 8 until you find that there is no solution ¢ which is
congruent modulo p? to any integer in the range [y/n]+1 <t < [/n]+ A.
Let 0 be the largest integer such that there is some t in this range for which
t2 = n (mod pP). Let t; and t; be two solutions of t? = n (mod p?) with
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ta = —t; (mod p?) (t; and t, are not necessarily in the range from [/n]+1
to [y/n]+ A).

5. Still with the same value of p, run down the list of > — n from part
2. In a column under p put a 1 next to all values of t? —n for which ¢ differs
from t; by a multiple of p, change the 1 to a 2 next to all values of t2 — n
for which ¢ differs from t; by a multiple of p?, change the 2 to a 3 next to
all values of t2 — n for which ¢ differs from #; by a multiple of p®, and so on
until p®. Then do the same with t; replaced by to. The largest integer that
appears in this column will be .

6. As you go through the procedure in 5), each time you put down a 1
or change a 1 to a 2, a 2 to a 3, etc., divide the corresponding ¢> — n by p
and keep a record of what’s left.

7. In the column p = 2, if n # 1 mod 8, then simply put a 1 next to the
t? — n for t odd and divide the corresponding t* — n by 2. If n = 1 mod 8,
then solve the equation t2 = n (mod 2°) and proceed exactly as in the case
of odd p (except that there will be 4 different solutions ti, ts, t3, t4 modulo
28 if B > 3).

8. When you finish with all primes < P, throw out all of the t2 — n
except for those which have become 1 after division by all the powers of
p < P. You will have a table of the form in Example 9 in §3, in which the
column labeled b; will have the values of ¢, [\/n] +1 <t < [{/n] + 4, for
which t* — n is a B-number, and the other columns will correspond to all
values of p < P for which n is a quadratic residue.

9. The rest of the procedure is exactly as in §3.

Example. Let us try to factor n = 1042387, taking the bounds P = 50
and A = 500. Here [/n] = 1020. Our factor base consists of the 8 primes
{2,3,11,17,19,23,43,47} for which 1042387 is a quadratic residue. Since
n # 1 (mod 8), the column corresponding to p = 2 alternates between 1
and 0, with a 1 beside all odd ¢, 1021 < ¢t < 1520.

We describe in detail how to form the column under p = 3. We
want a solution £ = #10 + %11 -3 +t12 - 324+ 4+ tip-1 " 351 to
t? = 1042387 (mod 3°), where t;; € {0,1,2} (for the other solution t,
we can take ¢, = 36 — t1). We can obviously take ¢; ¢ = 1. (For each of
our 8 primes the first step — solving t2 = 1042387 (mod p) — can be
done quickly by trial and error; if we were working with larger primes,
we could use the procedure described at the end of §11.2.) Next, we work
modulo 9: (1 + 3¢1,1)? = 1042387 = 7 (mod 9), i.e., 6t11 = 6 (mod 9), i.e.,
2t1,1 = 2 (mod 3), so t1,1 = 1. Next, modulo 27: (1+3+9t; 2)2 = 1042387 =
25 (mod 27), i.e., 16 + 18ty 2 = 25 (mod 27), i.e., 2612 = 1 (mod 3), so
t1,2 = 2. Then modulo 81: (1+ 3+ 18 + 27¢; 3)2 = 1042387 = 79 (mod 81),
which leads to ¢; 3 = 0. Continuing until 37, we find the solution (in the no-
tation of §1.1 for numbers written to the base 3): #; = (210211)3 (mod 37),
and t, = (2012012)3 (mod 37). However, there is no ¢ between 1021 and
1520 which is = t; or t; modulo 37. Thus, we have 8 = 6, and we can
take t; = (210211)3 = 589 = 1318 (mod 3°) and t, = 35 —t; = 140 =
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1112 (mod 3%) (note that there is no number in the range from 1021 to
1520 which is = to (mod 3%)).

We now construct our “sieve” for the prime 3 as follows. Starting from
1318, we take jumps of 3 down until we reach 1021 and up until we reach
1519, each time putting a 1 in the column, dividing the corresponding
2 — n by 3, and recording the result of the division. (Actually, for ¢ odd,
the number we divide by 3 is half of t2 —n, since we already divided t2 —n by
2 when we formed the column of alternating 0’s and 1’s under 2.) Then we
do the same with jumps of 9, each time changing the 1 to 2 in the column
under 3, dividing the quotient of 12 — n by another 3, and recording the
result. We go through the analogous procedure with jumps of 27, 81, 243,
and 729 (there is no jump possible for 729 — we merely change the 5 to
6 next to 1318 and divide the quotient of 13182—1042387 by another 3).
Finally, we go through the same steps with 3 = 1112 instead of ¢; = 1318,
this time stopping with jumps of 243.

After going through this procedure for the remaining 6 primes in our
factor base, we have a 500 x 8 array of exponents, each row corresponding
to a value of ¢ between 1021 and 1520. Now we throw out all rows for which
2 — n has not been reduced to 1 by repeated division by powers of p as we
formed our table, i.e., we take only the rows for which t? —n is a B-number.
In the present example n = 1042387 we are left with the following table
(here blank spaces denote zero exponents):

t t2—n 2 3 11 17 19 23 43 47
1021 54 13 - - - - - =
1027 12342 11 2 1 - - - -
1030 18513 -2 2 1 - - = -
1061 83334 11 - 1 1 - 1 -
1112 194157 -5 - 1 - - -1
1129 232254 131 1 - 1 - -
1148 275517 -2 3 - - 1 - -
1175 338238 12 - - 1 1 1 -
1217 438702 111 2 - 1 - -
1390 889713 -2 2 - 1 - 1 =
1520 1268013 -1 - 1 - 2 - 1

Proceeding as we did in Example 9 in §3, we now look for relations modulo
9 between the rows of this matrix. That is, moving down from the first
row, we look for a subset of the rows which sums to an even number in
each column. The first such subset we find here is the first three rows, the
sum of which is twice therow 1321 — — — — . Thus, we obtain the
congruence

(1021 - 1027 - 1030)% = (2 - 3% - 117 - 17)? (mod 1042387).



164 V. Primality and Factoring

But despite our good fortune in finding a set of mod 2 linearly de-
pendent rows so quickly, it turns out that we are not so lucky after
all: the two numbers being squared in the above congruence are both
= 111078 (mod 1042387), so we get only the trivial factorization. As we
continue down the matrix, we find some other sets of dependent rows,
which also fail to give us a nontrivial factorization. Finally, when we are
about to give up — and start over again with a larger A — we notice
that the last row — corresponding to our very last value of t — is depen-
dent on the earlier rows. More precisely, it is equal modulo 2 to the fifth
row. This gives us (1112 - 1520)% = (33 . 17- 23 - 47)? (mod 1042387), i.e.,
6478532 = 4961792 (mod 1042387), and we obtain the nontrivial factor
g.c.d.(647853 — 496179, 1042387) = 1487.

Based on some plausible conjectures, one can show that the expected
running time of the quadratic sieve factoring method is asymptotically

0 Am:._,mv,\gv

for any € > 0. There is a fairly large space requirement, also of the form
exp(Cv/logn loglogn). For a detailed discussion of time and space require-
ments for the quadratic sieve (and several other) factoring algorithms, see
Pomerance’s article in the volume Computation Methods in Number The-
ory.

The pumber field sieve. Until recently, all of the contenders for the
best general purpose factoring algorithm had running time of the form

exp ADT\ logn loglogn)).

Some people even thought that this function of n might be a natural lower
bound on the running time. However, during the last few years a new
method — called the number field sieve — has been developed that has
a heuristic running time that is much better (asymptotically), namely:

exp(O((log n)*/3(log log n)*/?)).

In practice, it appears to be the fastest method for factoring numbers that
are at or beyond the current (1994) upper limits of what can be factored,
ie., > 150 digits.

In some respects, the number field sieve factoring algorithm is similar
to the earlier algorithms that attempt to combine congruences so as to
obtain a relation of the form z? = y2 (mod n). However, one uses a “factor
base” in the ring of integers of a suitably chosen algebraic number field.
Thus, along with the basic machinery of the quadratic sieve, this factoring
method uses algebraic number theory. It is perhaps the most complicated
factoring algorithm known. We shall give only an overview.

The basic requirements of the algorithm can be briefly described as
follows. Given an integer n to be factored, choose a degree d and find n as
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the value at some integer m of an irreducible monic integer polynomial of
degree d:

n=f(m)= m? + ag_1m®t +ag_om@ 2+ - + aym + aq,

where m and the a;, are integers that are O(n'/?). One way to find such a
polynomial is to let m be the integer part of the d-th root of n and then
expand n to the base m. For 125-digit numbers an analysis of the algorithm
suggests that d should be 5, so that m and the coefficients will have about
25 digits.

The number field sieve then searches (by a sieving process similar to
the quadratic sieve) for as many pairs (a,b) as possible such that both
a + bm and also

bif(—a/b) = (—a)*+ag_1(—a) o+ a4 o(—a) 2% 4 - - —arab® ! 4 agb?

are smooth over a given factor base (i.e., are divisible only by primes in
the factor base). The details of how this is done and how this leads to a
factorization of n can be found in the book The Development of the Number
Field Sieve cited in the references below. In order for this procedure to
succeed, the proportion of smooth numbers among values of the polynomial
f should be approximately the same as the proportion of smooth numbers
among all numbers of the same size. Although this is likely to be true, and
is true in all examples that have been computed, it seems to be a very
hard assertion to prove. Since the estimate of running time depends on
this unproved conjecture, it is a heuristic estimate. While perhaps of little
consequence in practice for factoring actual numbers, this circumstance
points to some important open problems in the analysis of the theoretical
asymptotic complexity of factoring.

The author would like to thank Joe Buhler for providing the above
brief summary of the number field sieve for this book.

Ezercises

1. In the example, find all linear dependence relations mod 2 between the
rows of the matrix, and show that if P = 50 and A < 499 one cannot
get a nontrivial factorization of 1042387 by this method.

2. Let n — o0, and suppose that P and A are always chosen to have the
same order of magnitude (for example, suppose that there are positive
constants c¢; and cy such that ¢; <log A/ log P < ¢3). Asymptotically,
what is the most time-consuming part of steps 1)-7) in the above ver-
sion of the quadratic sieve? Give a big-O estimate for the number of
bit operations required by that step.

3. Use the method in this section with P = 50 and 4 = 500 to factor:
(a) 1046603, (b) 1059691, and (c) 998771.



