
SIAM J. COMPUT.
Vol. 17, No. 2, April 1988

(C) 1988 Society for Industrial and Applied Mathematics

001

HOW TO GENERATE FACTORED RANDOM NUMBERS*

ERIC BACH?

Abstract. This paper presents an efficient method for generating a random integer with known factoriz-
ation. When given a positive integer N, the algorithm produces the prime factorization of an integer x drawn
uniformly from N/2 < x <= N. The expected running time is that required for O(log N) prime tests on integers
less than or equal to N.

If there is a fast deterministic algorithm for primality testing, this is a polynomial-time process. The
algorithm can also be implemented with randomized primality testing; in this case, the distribution of
correctly factored outputs is uniform, and the possibility of an incorrectly factored output can in practice
be disregarded.

Key words, factorization, primality, random variate generation

AMS(MOS) subject classifications. 1104, 11A51, 11Y05, 65C10

1. Introduction. Let N be a positive number, and suppose that we want a random
integer x uniformly distributed on the interval N/2 < x <: N. Further suppose that we
do not want to output x in the usual decimal form, but rather as an explicit product
of primes.

This is clearly possible if we are willing to factor x. However, the best known
algorithms for factorization [8], [16] require roughly O(logx)"/lgx/lglgx steps on
input x, so this approach is out of the question if N is large. In contrast, the method
of this paper uses primality testing rather than factorization. Since there are efficient
algorithms for determining primality [1], [10], [13], [17], the method is useful even
when N is so large that factorization is infeasible.

The algorithm works by assembling random primes, but it is not clear a priori
with what distribution these should be selected, nor how to efficiently implement a
desired distribution on the primes. Much of the paper will deal with these questions,
in a rather detailed fashion. However, if one is willing to overlook these technicalities,
the resulting method can be easily sketched.

It selects a factor q of x whose length is roughly uniformly distributed between
0 and the length of N, then recursively selects the factors of a number y between N/2q
and N/q and sets x--y. q. It has now chosen x with a known bias; to correct this, it
flips an unfair coin to decide whether to output x or repeat the whole process.

The results of this paper show not only that the distribution of x is uniform, but
that this is a fast algorithm. A rough measure of its running time is the number of
primality tests required; this quantity has expected value and standard deviation that
are both O(log N)--the same as required to generate a random prime of the same size.

This estimate is the basis for a finer analysis of the running time, which uses some
assumptions about primality testing. If there is a deterministic polynomial-time prime
test, as proved under the Extended Riemann Hypothesis by Miller [10], then the

Received by the editors April 25, 1983; accepted for publication (in revised form) August 6, 1985.
Sections 1-8 of this article originally appeared as Chapter 2 of the author’s Ph.D. dissertation, Analytic
Methods in the Analysis and Design of Number-Theoretic Algorithms, (C) 1985 by the Massachusetts Institute
of Technology Press. A preliminary version of this article was presented at the 15th Annual ACM Symposium
on the Theory of Computing 1983.

? Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706. This research
was supported by the National Science Foundation, grants MCS-8204506 and DCR-8504485, and the
Wisconsin Alumni Research Foundation.

179

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

180 ERIC BACH

expected number of single-precision operations needed to generate x in factored form
can be bounded by a polynomial in log N.

If the method uses a probabilistic polynomial-time prime test such as those of
Rabin [13] and Solovay and Strassen [17], a similar result holds. In this case, the
distribution of correctly factored numbers is still uniform, and the possibility of
producing an incompletely factored output can in practice be disregarded- all within
an expected polynomial time bound.

The method has been implemented; on a medium-sized computer, it will generate
a 120-digit number in about 2 minutes.

The rest of this paper is organized as follows. Section 2 gives a heuristic derivation
of the algorithm, and 3 gives a general discussion of random variate generation.
Section 4 presents the algorithm in explicit form; its running time is analyzed in 5-8.
Finally, 9 gives experimental results.

2. Heuristics. Later sections present a detailed algorithm; this one provides motiva-
tion and sketches a design based on heuristic arguments.

First, what is meant by a "random factor" of a number? If we write down all
numbers between N/2 to N in factored form, we will have an array that is roughly
rectangular, because the juxtaposition of a number’s factors is about as long as the
number itself. If the factorizations are arranged one per line, and given in binary
notation, the picture will look something like this:

10 10 10 10011 100111111 100001100111001
11 11 11 1011011101 10100010111000111
10 101 11010011 10111110111110101011
10111111 100000111101110001010101
10 10 11 1111111010011 100000111110011
100101 1101101 1100011111010101101
10 111 111 111 10010100011 11111101011
11 101 1011110110111011110111001111
10 10 10 10 11101 11111 11100000000111101
11010100011 11101101001011011011

Choosing a random factorization is equivalent to picking a row at random from this
list; if the list were perfectly rectangular, we could do this by choosing a bit at random
and taking the row in which it appears.

Now suppose that we wanted to get the effect of this process by choosing a prime
factor p first and selecting one of the remaining N/p possibilities uniformly. To do
this, we would pick p with probability proportional to its "surface area," that is,
proportional to the total number of bits occurring in all copies of p.

This suggests selecting the first factor p with probability about log p/p log N, since
p occurs in about 1/p of the numbers, and a random bit of such a number will be in
p about log p/log N of the time (ignoring repeated factors).

It is instructive to see what effect this would have on the length of p. A weak form
of the prime number theorem [6, Thm. 7] implies that for 0 < x < N,

log p log x
p=x p log N log N"

Unless otherwise indicated, all logarithms in this paper are to the base e 2.718281

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

GENERATING FACTORED RANDOM NUMBERS 181

Therefore, if we chose p with the proposed probability, the.length of p (relative to the
length of N) would be close to that produced by a uniform distribution, since for
0 =< a <- 1, log p/log N < c with roughly the same frequency in both cases.

One can justify this uniform length heuristic in another fashion. The factorization
of numbers into primes is analogous to the decomposition of permutations into disjoint
cycles; for instance, one can easily prove the "prime permutation theorem": a random
permutation on n letters is prime (a cycle) with probability 1/n. This analogy extends
to the distribution of factor lengths: Knuth and Trabb Pardo have shown that the
relative length of the kth largest factor of a random number has the same asymptotic
distribution as the relative length of the kth largest cycle in a random permutation
[7, 10]. Under this analogy, our prime selection technique corresponds to a process
that selects a random letter in a random permutation and outputs the cycle to which
it belongs. Results on random permutations [5, p. 258] imply that the length of this
cycle is uniformly distributed.

Thus, to choose x uniformly with N/2 < x < N, we might proceed as follows.
Select a length A uniformly from (0, log N) and pick the largest prime p with log p _-< A.
Then recursively select y (the remaining bits of x) to satisfy N/2p<y<= N/p, and
output x, as p times the prime factorization of y.

If the distribution of y were uniform, the probability of selecting x would be about

logp 1

plx P log N N/p- N/2p

This is 2/N, the correct probability for a uniform distribution, times a bias factor of

1
log

log N
p.

This bias should be close to 1, and it is, provided that x does not have too many
repeated prime factors.

Thus, one would suspect that this method is almost right; however, a closer look
at the algorithm reveals the complications listed below.

1) Merely picking the biggest prime less than some given value will not do; for
one thing, the first member of a twin prime pair will be chosen less frequently
than the second. A correct method must be insensitive to these local
irregularities.

2) The bias factor is quite small for certain x, say powers of 2. This problem can
be eliminated by also including prime power factors in the first step, but we
must further decide how often these are chosen.

3) At the end of the algorithm, x will have been chosen with a certain bias, but
the recursion will not work unless all x’s are equally likely. The odds must be
changed somehow to make the eventual output uniform.

4) Finally, we imagine selecting y, the rest of x, from (N/2p,N/p] with probability
2p/N. However, it is by no means certain, and in general not true, that there
are N/2p integers in this range.

Dealing with these problems requires some machinery that will be developed in
the next section.

3. Doctoring the odds. This section discusses a general technique for using one
distribution to simulate another, called the "acceptance-rejection" method [11], [15].
It requires only a little information about the distributions, a source of uniform (0,1)
random real numbers, and some extra time.

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

182 ERIC BACH

This method is usually applied in situations where everything is known about the
distributions. In our case, we will only know the relative probabilities involved, hence
we need the following definition.

Let (Xl,..., xn) be a finite set. We will say that X has a finite distribution with
odds (Pl,..., Pn) if X xi with probability pi/Yj= p. The odds of a distribution are

only defined up to a multiplicative constant; this conforms to ordinary usage, in which
odds of 2:1 and 10:5 are regarded as identical.

To see how to turn one distribution into another, consider an example. Suppose
we have a coin that is biased in favor of heads with odds of 2:1, and we wish to make
it fair. This can be done by the following trick. Flip the coin. If it comes up tails, say
"tails"; if it comes up heads, say "heads" with probability 1/2, and with probability
1/2 repeat the process.

The stopping time can be analyzed by the following "renewal" argument.The
process must flip the biased coin once no matter what happens, and after this first
step, it has one chance in three of being born again. Thus the expected stopping time
E(T) must satisfy E(T)=I+E(T)/3, so E(T)=3/2. More generally, T=t with
probability (2/3). (1/3)t-; this is a geometric distribution with expected value 3/2.
At each reincarnation, the process has no memory of its past, so the stopping time
and the ultimate result are independent.

This example is not very useful, as it requires a fair coin to produce the effect of
one; however, it points out some important features of the method. First, decisions
are only made locally; after getting, say, heads, a decision can be made without knowing
the other possible outcomes or even their total number. Second, only the odds matter;
knowing only the relative probability of each outcome is sufficient for undoing the bias.

Here is the general version; we are given odds (Pl,...,Pn) but want odds
(ql,..., qn). Assume that q_-<p for all i; we can use the following recipe:

PROCESS A: Acceptance-rejection method.
(*) Select X from the original distribution.

Choose a real number A from the U(0,1) distribution.
If X x and A < q i/p , output Y x.
If not, go back to (*).

THEOREM 1. Let X have a finite distribution with odds (pl,... ,pn). If q<-p for
<-_i <- n, then the output of Process A has a finite distribution with odds (q 1,..., q,).

The stopping time T and the output value Y are independent random variables. If
P i= Pi, Q i= qi, then the stopping time is distributed geometrically with expected
value P/ Q.

Proof A direct calculation shows that the joint distribution of T and Y is

Pr[T= t, Y= x] =-- --d 1-

This technique is at the heart of the method, in two ways:
At the top level, the algorithm generates x, N/2 < x <-_ N, with probability propor-

tional to log x. It accepts x with probability log (N/2)/logx, producing a uniform
distribution.

To select a factor with approximately uniform length, the algorithm chooses prime
powers q with odds AN(q) (defined below). To do this, it first chooses integers q in
the following way: 2 and 3 each appear with odds 1/2, 4, 5, 6, and 7 each appear with
odds 1/4, and so on. It turns out that A N(q)< l/q, so acceptance-rejection is used
twice: first to produce the distribution A N(q), and then to throw away q’s that are not
prime powers.

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

GENERATING FACTORED RANDOM NUMBERS 183

4. The complete algorithm. This section presents an explicit program for generating
factored random integers, using the language of real numbers. It assumes the uniform
(0,1) distribution as a source of randomness; 7 will show how this can be simulated
by a fair coin.

For real numbers a and b, let #(a,b] denote the number of integers x satisfying
a < x =< b. For prime powers q =p, and integers N, let

(1) A(q)
logp #(N/2q, N/q)
log N N

Note that if [x] denotes the greatest integer =<x, then #(a/2,a]=[(a+ 1)/2]; this
implies the frequently used estimate

(2) (a- 1)/2<= #(a/2, a]<- (a + 1)/2

and also shows that for q-< N,

AN(q)<=N/q+l
2N

The innermost part of the program selects random prime powers; using the above
notation, it is defined below.

PROCESS F: Factor generator.
(*) Select a random integer j with 1 =<j _-< log 2N.

Let q 2 + r, where r, 0-< r < U, is chosen at random.
Choose a random real number A from the U(0, 1) distribution.
If q is a prime power, q-<_ N, and A <AN(q)2[lgzq], output q.
If not, go back to (*).

The salient features of this process are given by the following result.
THEOREM 2. Process F almost surely halts; the number of times (*) is reached has

a geometric distribution whose expected value is O(log N). It outputs a prime power
q=p, 2<=q<=N, with odds AN(q). The stopping time and the output value are
independent.

Proof The first two steps select q with odds 2-[g2q], and since 2[g2qJAN(q)
(N+ q)/2N <= 1 for q N, Theorem 1 implies that q is output with the stated probabil-
ity. For the stopping time estimate, since

N

P Y 2-[lg2q] 10g2 N,
q=2

it will suffice to show that

Q= Y. AN(q)
qN

is bounded below by an absolute constant. This follows from two consequences of the
prime number theorem given by Rosser and Schoenfeld [14, p. 65]"

(3) E logp N+ O(N/log N)
pN

and

(4) E log p/p log N + 0(1).

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

184 ERIC BACH

Using (3) and (4),

(5) AN(q)>__ Arv(p)>__
Iogp Iogp =-+O1 (1)q<=N pNN pNN 2p log N p<_-N 2Slog N 2 log N

The independence statement is a consequence of Theorem 1.
Just as in the heuristic sketch, the factor generator is a subroutine in the main

program, presented below. This process uses a "stopping value" No, which can be
any convenient number.

PROCESS R: Random factorization generator.
If N =< No, pick a random x, N/2<x<=N, output the factors of x, and stop.
(?) Select a prime power q =p, 2_-< q _-< N, using Process F.

Let U’ Nq].
Call Process R recursively to choose a factored random y with N’/2 < y <-_ N’.
Let x-y.q.

() Choose a real number A from the U(0,1) distribution.
If A <log (N/2)/log x, output the factors of x and stop.
If not, return to (?).

The main result of this paper is the following theorem.
THEOREM 3. Process R generates uniformly distributed random integers x, N2 < x <=

N, in factored form.
Proof If N <_-No, there is nothing to prove. Otherwise, note that for integers y,

[x]/2 < y _-< [x] if and only if x/2 < y <- x, and so the recursive step chooses an integer
y uniformly with N/2q < y <= N/q. Therefore, by Theorem 2, x is chosen at step ()
with probability proportional to

AN(q) p 1ogp #(S/2q,S/q]. 1 log_______x
q=plx #(N/2q,N/q] q= [x log N S #(N/2q,S/q] Slog S

By Theorem 1, the last part of the algorithm ensures that x is output with probability
1/#(N/2,N]. [3

5. The distribution of factor lengths. It was stated earlier that Process F produces
a factor q whose length is roughly uniformly distributed. This can be refined into the
following precise statement: as N-o, log q/log N converges in distribution to a
uniform (0,1) random variable.2 This implies the following: if we define

FN(x) Pr[q -< x in Process F],

then Fn(x) is close to log x/log N. Similarly, the expected values E[log (N/q)] and
E[log2 (N/q)] are close to log N and (log N)2, respectively. The next three lemmas
give upper bounds corresponding to these approximations, which are used in the next
section.

LEMMA 1. If N > 30, and 2 <-_ x <-_ N, then

logx+2
F(x)

log N 2

Proof For N > 30,

log p --< 1.04N

will not prove this as it is not needed later.

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

GENERATING FACTORED RANDOM NUMBERS 185

and

1 logp<---- E <_--log N,log N- y -/3 -2 log N p<=N P

where

0.577215

is Euler’s constant and

/3 logp/p =0.755366...

(these are (3.21), (3.24) and (3.35) from Rosser and Schoenfeld [14]). Using these
inequalities, plus (1) and (2),

1 logp
-+

P
1.04 > logN-2.21ogNqNAN(q)>logN y /3

21ogN

Similarly

21ogN A(q)__< ylgP+/3+ log p__< log x + 2.
q<=x p<=x p q<=x N

Now apply these to the formula FN(X)--_.q<=xAN(q)/.q<=N AN(q). ["]

LEMMA 2. For N> 30,

logN logN+4
E[log(N/q)]<-.

2 log N- 2"

Proof. The expectation can be expressed as a Stieltjes integral:
N

log (N/x)dFN(X).
2-

Using integration by parts and Lemma 1,
N N N

Ilog(N/x)dFrq(x) ;FN(X)dx I lgx+2
<_

x log N-2 x’
2- 2

now computing the integral gives the result.
LEMMA 3. For N> 30,

(logN)2 logN+6
E log 2(N/q)<-.

3 log N 2

Proof As in the last proof, the expectation is
N N

I lg2 <2 I(logN-logx)(2+logx)dX.(N/x)dFN(X)=log N-2 x
2-

6. The expected number of prime-power tests. This section proves that the number
of prime-power tests done by Process R on input N has expected value and standard
deviation that are both O(log N).

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

186 ERIC BACH

For every N, define random variables as follows. Tu is the number of prime-power
tests done by Process R on input N, and Uu, VN, and Wn count the prime-power
tests done during the first call to Process F, the recursive call, and after the first return
to (?), respectively.

THEOREM 4. If No> 106, E(T)= O(log N).
Proof Let N > No, for otherwise the theorem is true immediately. By Theorem 2,

we can choose C > 0 so that Uu-<-C log N; we now prove by induction on N that
TN <= 6C log N.

Since Tu Uu+ Vu+ Wu, E(Tu)=E(Uu)+E(Vu)+E(Wu). By the
definition of C and the formula E(X)= E y(E(XIY)) applied to Vu, this gives

E(Tn) _-< C log N + Eq(E(TIN +
log2

E(TN),
log N

since the probability of renewal is at most 1-1og(N/2)/log N. By induction and
Lemma 2,

E(TN)<= C log N+6CE(log N/q)+
log2

E(TN)
log N

logN logN+4
log N+6C.

2 log N 2

log2
E(TN).

log N

This implies

E(TN)<=
1 (1+31 log 2/log N

log N+) C log N,
log N-

and for N > 106 the coefficient of C log N is less than 6. S
The corresponding estimate for the variance is given below.
THEOREM 5. If No> 106, 0"2(TN) O(1og N)2.
Proof Let R denote the process obtained by replacing the top level stopping

condition A <log(N/2)/logx by A <l-log2/logN; the recursive call uses the
unaltered Process R. We can consider both processes to be defined on the same sample
space; then (extending the notation in an obvious fashion)

TN-- Uu + VN+ WN.

Since UN, VN, and WN are independent,

o-(,,,) o-(u,,,) + o-(v,,,) + o-(

Using the formulas o-2(X) E(X) E(X) and E(X) E (E(XI Y)),

E(2N) N 0.(UN)+ E(N)2+ Eq(E(TN/q])) + log2
T).

log N

The proof of Theorem 4 actually shows that E(Tu)= O(log N); we can therefore
choose D>0 so that 0.2(Uu)+ E(u)2<= D(log N). Furthermore, for any N, Tu <-
TN, SO

E(-2TN) <=D(log N)2+ Eq(E(N/q]))+ log2 E(%).
log N

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

GENERATING FACTORED RANDOM NUMBERS 187

An argument similar to the proof of Theorem 4, using Lemma 3, will show that
E(-2TN) 4D(log N)2. Since

O’2(TN) < E(T2) <= E(2N),

the result follows. [3

7. A single-precision time bound. The next two sections analyze the average number
of single-precision operations needed to generate a random factorization. Any serious
discussion of this must answer two questions. First, the algorithm uses real numbers,
which are not finite objects; how can these be simulated? Second, one might wish to
use randomized prime testing; what happens when the prime tester can make mistakes ?

This section addresses the real-number issue, assuming perfect prime testing;
probabilistic prime testing will be treated in the next section. In what follows, a "step"
means one of the basic arithmetic operations (including comparison) on single-bit
numbers, or a coin flip. All questions of addressing and space requirements will be
ignored.

The following result will be used repeatedly.
LEMMA 4. Let T1, T2, be a sequence of random variables, and let n be a positive

integer-valued random variable, such that T 0 for every > n. If E Til n >- i) < A and
E(n) <= B, then E(YL, Ti) <= AB.

Proof

E ri Y, E(T)= Y E(Tiln>=i)Pr[n>=i]<A Y Pr[n>=i]<=AB. [3
i=1 i=1 i=1 i=1

At several points in our algorithm we need to flip a coin with success probability
0, where 0 is a fixed real number between 0 and 1. This means we compare 0 with a
randomly generated real value ,, thus:

0 =.0101010101...,
A =.0110010111

A finitary procedure with the same effect simply does the comparison bit-by-bit from
the left, only generating bits as they are needed. This is clearly fast; since the bits of
A are specified by independent coin flips, we expect to use only two of them before
reaching a decision. However, it may not be convenient to generate the true bits of 0
one at a time; to avoid this difficulty, we base our procedure on approximations that
might be produced by some scheme like interval arithmetic.

We need the following definition. Let 0, 0 -< 0 -< 1, be a real number. A k-bit
approximation to 0 is an integer multiple 0k of 2-k with 10k 0l 2-k and 0 < 0k < 1.

The lemma below eliminates real numbers from our algorithm; it states, in effect,
that if 0 is approximable by any polynomial-time procedure, then a biased coin flip
with success probability 0 takes constant time on the average.

LEMMA 5. Let 0 <= 0 <= 1, and assume that a k-bit approximation to 0 can be computed
in f(k) steps, wheref is a polynomial of degree rn with nonnegative coefficients. Then the
expected time to decide if a uniform (0,1) random variable is less than 0 is at most

C,(1), where C depends only on m.

Proof Let A be the uniform (0,1) value; we can assume it is irrational, since the
set of rational numbers has measure 0. Consider the following procedure: for k=
1, 2, 3,..., compute a k-bit approximation Ok to 0 and compare this to A k, the number
formed from the first k bits of , if 0 k

q- 2-k <- A k or A k < 0 k 2-k, terminate the process.
The probability that no decision is reached after k steps is at most 2-k, SO the expected

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

188 ERIC BACH

total time is at most a constant times

Y, f(k)21-k=2 Y. ajkJ2-k=2 Y, aj , kJ2-k,
k=l k=l j=0 j=0 k=l

where ao,..., a,, are the coefficients of f. Poly5. and Szeg/5 [12, p. 9] give the formula
(valid for [z] < 1)

k=l (1-z

where g2 is a polynomial with nonnegative coefficients, satisfying g(1)=j!. The result
follows by taking z 1/2 and C,, 2m+Zm !. [-]

LEMMA 6. Let p,q,N be integers with 2 <-p <-q <-N. Then a k-bit approximation to

log p #(N/2q,N/q]2’g2q

log N N

can be computed in O(k q- log log N) steps.
Proof. Let p 2’.e and N 2. r/, where a and/3 are integers and 1 -< e, r/< 2. Then

a log2+log e [(Nq-q)/2q]2[lg2q]

(6) 0
fl log 2 + log r/ N

We approximate 0 by using floating-point numbers to perform the computation implicit
in the above expression; k + O(1) bits of precision s!,ffice to get an absolute error less
than 2-k, by the following argument. First, since 0 _-< 0 _-< 1, it suffices to make the relative
error in the result less than 2-k. Brent [3, Thm. 6.1] shows that on the interval 1 <_- x <= 2,
one can compute log x with relative error 2-" in O(n3) steps. If we take n k + O(1),
we will have enough guard bits to nullify the effect of any remaining error, since there
are only a finite number of further operations. All the numbers involved have exponents
that are less than logzN, so the bound follows. [3

LEMMA 7. Let x andNbepositive integers withN2 < x <= N. Then a k-bit approxima-
tion to log (N/2)/log x can be computed in O(ka+log log N) steps.

Proof Approximate the logarithms as indicated in the proof of Lemma 6. E]

LEMMA 8. Let q > 1 be an integer. Then solving p’=q for an integer p and the
largest possible integer can be done in O(log q)a(log log q)2 steps.

Proof Let d [log2q]; then necessarily ce <_- d. For each such value of c, we solve
X"=q by bisection, using 0 and 2[d/]+l as starting values. This will find a solution
or prove that none exists after O(d/a) evaluations of f(X)=X. The total time is
therefore at most a constant times

(log q)3y2 <-- c _<-- d
lg a= O(log q)3(log log q)2. [-]

The next two results assume the Extended Riemann Hypothesis (ERH), a famous
conjecture of analytic number theory. The details of this hypothesis (for which see
Davenport’s book [4, p. 124]) are not important here; what matters is the following
consequence, first proved by Miller [10].

LEMMA 9 (ERH). To test if an integer p is prime requires O(log p)5 operations.
Proof We write /t2(X for the largest e such that 2e[x, and Zp* for the multiplicative

subgroup of integers modulo p. Then Miller’s primality criterion states that p is prime

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

GENERATING FACTORED RANDOM NUMBERS 189

if and only if every a Zp* satisfies

(7) ap-1 1 and for all k < u2 (p 1), a (p-1)/2k 1 implies a(p-1)/2k+l =+1

(all congruences are interpreted modulo p). Ifp is composite, there is a proper subgroup
G of Zp* such that (7) is violated for all a (3 [9, proof of Thm. 6]. The ERH implies
that there is some number outside G that is less than 2(log p)2 [2, Thm. C]. Therefore
p is prime if and only if condition (7) holds for all positive a =< 2(log p); the result
follows. [3

We now make the following changes to our algorithm: prime-power testing is
done as indicated in the proofs of lemmas 8 and 9, and the real number calculations
are done as indicated in Lemmas 5, 6, and 7. With these modifications we have our
single-precision result.

THEOREM 6 (ERH). The expected number ofsingle-precision operations (arithmetic,
comparison, coin flips) needed by Process R on input N is O(log N)6.

Proof. Theorem 4 and inspection of the algorithm imply that none of its steps can
be executed more than O(log N) times on the average. By Lemma 4, it suffices to
show that no single step of the algorithm has expected time greater than the O(log N)
steps sufficient to test a number less than N for primality. By Lemmas 5, 6, and 7, this
is true for the real number comparisons. Everything else is easily estimated. [3

The real point to this extravagant bound is that it is a polynomial in logN. By using
the prime test of Adleman, Pomerance, and Rumely [1], one can also prove an
unconditional almost-polynomial time bound of O(log N) O(logloglogN). However, much
better estimates can be obtained by using probabilistic prime testing, as described in
the next section.

8. The use of probabilistic primality tests. This section proves theorems analogous
to the preceding results, assuming that a randomized prime test is used. First, a
definition: call a factorization x pl pe complete if all the Pi are prime; if it uses
a probabilistic prime test, Process R may output an incompletely factored number.
The results in this case can be simply summarized: the distribution of completely
factored numbers is still uniform, and incompletely factored numbers can be made
exponentially unlikely at very little cost.

The following result is analogous to Lemma 9.
LEMMA 10. TO test ifp is prime with bounded by 4 (error only being possible when

p is composite) requires n. O(log p)3 operations.
Proof. Rabin [13, Thm. 1] shows that condition (7) is violated for a random a

with probability at most 1/4, so choose n independent random values of a. [3

The prime tests referred to above have a very nice property; the decision is never
wrong unless the input is composite. This is the key observation in the next proof.

THEOREM 7. If the prime test used in Process F produces correct answers when the
input is prime, then the distribution of completely factored outputs is uniform.

Proof. Use induction on N; if N < No, this is clear. Otherwise, the prime powers
produced by Process F have the same relative distribution as before, since the prime
tester never makes a mistake on prime input. Since every subfactorization of a complete
factorization is complete, the calculation that proves Theorem 3 is still valid. C]

The order-of-magnitude bound for the average number of prime power tests still
holds, if the prime test used is sufficiently accurate. Since the average number of tests
increases with N, a constant number of the tests (7) per prime will not suffice. Instead,
we choose a bound e(N) in advance, and make every prime test used by the algorithm
have a chance of error at most e(N).

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

190 ERiC BACH

THEOREM 8. Assume that the prime test used in Process F is correct on prime input,
and has error probability at most e(N) on composite input. If e(N)< N-2, then the
number of prime-power tests done by Process R on input N has mean and standard
deviation that are O(log N), and the probability that an incompletely factored number
is produced is O(e(N) log N)- O(log N/ N2).

Proof. For the time bound, it is only necessary to show that Lemma 1 still holds,
say for N > 106. The proof of Lemma 1 amounted to a lower bound on the relative
probability that q _-< N and an upper bound on the relative probability that q _-< x. The
lower bound still holds, and the new upper bound is at most

log y #(N/2y,N/y]
q<=x y<=x log N N

The second term is at most

2 log N" N / -yx \ y 2 log N

and this will not cause the bound to be exceeded. For the estimate relating to incorrect
output, apply Lemma 4 to the random variables X that are 1 if the ith prime test is
incorrect, and 0 otherwise, and use the inequality Pr[X _-> 1] _-< E (X).

By Lemma 10, error probability less than N-2 can be obtained with about log N
tests, each using O(log N) steps. This will give a polynomial time bound analogous
to Theorem 6.

9. Experiments. This section has two purposes" to show how the algorithm actually
behaves in practice, and to discuss what modifications are necessary to implement it
efficiently.

Call an arrival at (*) in Process F a probe; Theorem 4 implies that Process R
requires O(log N) probes on the average. The constant implied by the "O" symbol
can be estimated by the following heuristic argument. Typically the algorithm will
produce factors whose lengths are 1/2, 1/4, 1/8,... the length of N. Presumably,
then, the average number of probes is close to

21ogzN (1 + 1/2+ 1/4+ 41og2N,

since by (5), we expect Process F to use about 21og_N probes on input N.
This value of 41og2N is also the best bound provable as the stopping value No

and the first set of experiments were designed to see if this estimate is at all realistic
when No is small.

To do this, I coded the algorithm verbatim in C (the "real" numbers have about
15 decimal digits of precision) with No=4. Table 1 gives statistics on the number of
probes required to generate 100 random numbers for various values of N, together
with the presumed mean value 41og2N.

It will be seen from this table that the standard deviation tends to be a bit smaller
than the mean; however, I do not even have a heuristic argument to justify this
observation.

To test its feasibility for large N, I also coded the algorithm with multiprecise
arithmetic on a DEC VAX 11-780, a machine that takes about 5 microseconds to
multiply two 32-bit integers. When dealing with multi-word numbers, efficiency is of
primary importance; this concern led to the following version of Process F.

1) After building the random value q, the program first checks that q_-< N, and
then computes AN(q)2[g2q] in single precision with the formula (6), as if q

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

GENERATING FACTORED RANDOM NUMBERS 191

TABLE
Statistics on the number ofprobes.

Standard
N 41og2N Average Maximum deviation

102 26.56 20.77 60 13.95
103 39.86 35.59 218 34.31
104 53.15 56.30 367 47.49
105 66.44 71.30 329 62.24
10 79.73 72.49 472 59.58
10 93.01 74.61 346 63.43
108 106.30 111.78 491 85.30
10 119.59 120.82 453 96.78

were prime. Only if this exceeds the random value A does it subject q to a
prime-power test.

2) The first part of this test sees if for any small prime p,

Plq and p2,q;

if this is true, q cannot be a prime power. This sieve procedure eliminates most
q from further consideration, for the probability that a random number q
survives this test for all p <= B is about

+
p<=B P

If we let

()a=I] 1+ =1.943596...
p p(p- 1)

then the survival probability is, by Mertens’s theorem [6, p. 22], close to

a’log B
The program used B 1000, which screens out approximately 84% of the q’s.

3) If q passes through the sieve, it is subjected to a "pseudo" test designed to
cheaply eliminate numbers that are not prime powers. This checks that 2q-1 1
and gcd (2q-l- 1, q)= 1; if so, q can be thrown away. The average cost of this
is one modular exponentiation and one gcd computation.

4) Any number q that has survived so far is tested for primality, using (7) with
a 2, 3, 5,..., 29 (the first ten primes). There is a slight advantage to small
values of a, since about one-third of the multiplications done by the modular
exponentiation algorithm will involve a single-word quantity.

5) Only if q is not declared "prime" by the above procedure does the program
try to see if it is a perfect power.

(Various orderings of steps 1-5 were tried, and the one above seems to be the best.)
For the multiprecise implementation, a more realistic measure of the work done

is the number of times q reaches the sieve. Statistics on these values are given in Table
2, from runs that generated 50 numbers each; the last column gives the average CPU
time required per random factorization.

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

192 ERIC BACH

TABLE 2
Statistics on the number of sieve tests, and the running time in seconds.

Standard Average
N Average Maximum deviation time

10t5 29.66 67 17.70 1.51
1030 65.42 225 46.36 4.66
1060 158.92 387 95.04 20.52
10120 250.34 805 174.54 100.08

It is worth noting that for these values of N the average running time is only
slightly worse than O(log N)2.

Table 3 presents the mean values of four quantities related to the output values
x" the number of prime factors of x, and the number of decimal digits in the largest
three factors of x (from the same experiments). It will be seen that the average number
of prime factors grows very slowly with N; the observations are close to the mean
values of log log N + 1.03465... predicted by prime number theory [7, p. 346]. Finally,
the average lengths of the largest three factors are roughly proportional to the length
of N; again, this is predicted by theory [7, p. 343], with constants of proportionality
close to 0.62, 0.21, and 0.088, respectively.

TABLE 3
Statistics on the prime factors.

Average Digits in 2nd 3rd
N number largest largest largest

1015 4.48 10.06 3.76 1.50
1030 5.32 19.84 6.80 2.80
1060 6.18 37.36 13.48 5.94
1012 6.70 78.54 26.56 8.46

Acknowledgments. I would like to thank the following people for offering
encouragement and ideas: Silvio Micali, Manuel Blum, Martin Hellman, Michael
Luby, and James Demmel. I also heartily thank the seminonymous referees, whose
comments improved the paper immensely.

REFERENCES

[1] L. M. ADLEMAN, C. POMERANCE AND R. S. RUMELY, On distinguishingprime numbersfrom composite
numbers, Ann. of Math., 117 (1983), pp. 173-206.

[2] E. BACH, Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms, MIT Press,
Cambridge, 1985 (U.C. Berkeley Ph.D. dissertation, 1984).

[3] R. P. BRENT, Fast multiple-precision evaluation of elementary functions, J. Assoc. Comput. Mach., 23
(1976), pp. 242-251.

[4] H. DAVENPORT, Multiplicative Number Theory, Springer, New York, 1980.
[5] W. FELLER, An Introduction to Probability Theory and Its Applications (Volume I), John Wiley, New

York, 1968.
[6] A. E. INGHAM, The Distribution of Prime Numbers, Cambridge University Press, Cambridge, 1932.
[7] D. KNUTH AND L. TRABB PARDO, Analysis ofa simplefactorization algorithm, Theoret. Comput. Sci.,

3 (1976), pp. 321-348.
[8] H. W. LENSTRA, JR., Elliptic Curve Factorization, Ann. of Math., 126 (1987), pp. 649-673.
[9] M. MIGNoTTE, Tests de primalitd, Theoret. Comput. Sci., 12 (1980), pp. 109-117.

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

GENERATING FACTORED RANDOM NUMBERS 193

[10] G. L. MILLER, Riemann’s hypothesis and tests for primality, J. Comput. System Sci., 13 (1976), pp.
300-317.

11] J. VON NEUMANN, Various techniques used in connection with random digits, J. Res. Nat. Bur. Standards
(Applied Mathematics Series), 3 (1951), pp. 36-38.

12] G. POLY.A AND G. SZEG(, Problems and Theorems in Analysis I, Springer, New York, 1972.
[13] M. O. RABIN, Probabilistic algorithm for testing primality, J. Number Theory, 12 (1980), pp. 128-138.
[14] J. B. ROSSER AND L. SCHOENFELD, Approximate formulas for some functions ofprime numbers, Ill.

J. Math., 6 (1962), pp. 64-94.
[15] B. W. SCHMEISER, Random variate generation: a survey, in Simulation with Discrete Models: A

State-of-the-Art View, T. I. Oren, C. M. Shub and P. F. Roth, eds., IEEE Press, New York, 1981.
[16] C. P. SCHNORR AND H. W. LENSTRA, JR., A Monte Carlo factoring algorithm with linear storage,

Math. Comp., 43 (1984), pp. 289-311.
[17] R. SOLOVAY AND V. STRASSEN, A fast Monte-Carlo test for primality, SIAM J. Comput., 6 (1977),

pp. 84-85.

D
ow

nl
oa

de
d

02
/2

8/
17

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

