
Schoof’s Algorithm for the Size of an Elliptic Curve
Eric Bach
April 2000

INTRODUCTION.

The goal of these notes is to explain the main results of [1], which has two parts:
1) A poly-time algorithm for computing the number of points on an elliptic curve mod

p.
2) An algorithm (polynomial-time for fixed a), for computing the square root of a mod

p. This uses part 1) as a subroutine.

NOTATION.

p = odd prime
Fp = finite field w/ p elements
E = elliptic curve defined by some equation with coordinates in Fp. This has a group
structure, where the group operations are given by rational operations. For this see,
e.g. [4].
(p|l) denotes the Legendre symbol (we only care about l prime).
If N is the number of points on E with coordinates in Fp, then

N = p+ 1− t

for some number t with |t| ≤ 2
√
p. This was proved by Hasse in the 1930’s. Roughly, it

says that the “predicted” number of points is p+1, to within a small error t that is O(
√
p).

The error term t is called the “trace of Frobenius” – the reason for this peculiar name is
that if φ denotes the map

(x, y) 7→ (xp, yp)

(here x and y are coordinates of any point of E in the algebraic closure of Fp) then φ
satisfies

φ2 − t · φ+ p = 0. (∗)
To make sense of this, use additive notation for the group operation on E. We can

speak of multiplication by n, which is just adding a point to itself n times. Then φ is a
linear operator, in the sense that φ(aP + bQ) = aφ(P) + φ(Q). The above equation is like
the characteristic equation for a matrix – it says that if you take any point P , and apply
the above operator, i.e.

(φ2 − tφ+ p)(P) = φ(φ(P))− tφ(P) + pP

(pP denotes P added to itself p times), then you get the identity element of the group.
[Note: the idea of “endomorphism ring” may be useful to introduce here.]

COUNTING THE NUMBER OF POINTS ON AN ELLIPTIC CURVE

The basic idea for finding N is to compute t mod l for lots of small prime values of l,
and recombine the results using the Chinese remainder theorem.

1

This is done by “reducing (*) mod l.” We have to think a little about what this might
mean. We want to cook up some operator φl (which you should think of as “φ mod l”)
with the property that

(φl)
2 − (t mod l)φl + (p mod l) = 0 (∗∗)

But what will this “operate” on? Since the coefficients are only defined mod l, a reasonable
choice to use is

E[l] := {P ∈ E : l · P = 0}

This will work because the Frobenius map φ clearly preserves E[l]. If you let E[l] be as
large as possible (throwing in points whose coordinates are in extension fields of Fp), then
it’s known that

E[l] = Fl × Fl

(Fl = the finite field of l elements). Granting this, then, φl will be a 2×2 matrix of entries
from Fl, and its characteristic equation is

(φl)
2 − tφl + p = 0

[Is this also the minimal polynomial?]
The idea is now to search for a t satisfying the property (**). The search process is

not fancy – it just tries all t, of 0 ≤ t < l. However, there are some rather clever “data
structures” involved.

The basic idea is the following: a set S of points is represented by a polynomial that
vanishes on S and nowhere else. Various operations on set of points (union, intersection,
etc.) translate into operations on the polynomials. Using this “representation” of E[l], we
will check whether or not something like (**) holds.

DIVISION POLYNOMIALS

We’ll restrict attention to curves that are presented in Weierstrass form:

Y 2 = X3 +AX +B

(So p 6= 2, 3.)
It’s known that there are polynomials φn, ωn, and ψn (computable by recursion on

n) such that:
1) If (x, y) is an affine point of E, then

(x, y) ∈ E[n] ⇔ ψn(x, y) = 0.

In this sense ψl “represents” E[l].
2) Multiplication by n is given in affine coordinates by

n(x, y) = (
φn
ψ2
n

(x, y),
ωn
ψ3
n

(x, y))

2

3) The degree of ψn is < n2

4) If n is odd, then
φn, ψn, ωn/y

are polynomials in x; if n is even, then

φn, ψn/y, ωn

are polynomials in x.
The first few of the ψn are

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx−A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)

After that we can use the recursion formulas

ψ2n+1 = ψn+2ψ
3
n − ψn−2ψ

3
n+1

ψ2n =
1

2y
ψn(ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1)

Finally,
φn = xψ2

n − ψn+1ψn−1

ωn =
1

4y
(ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1)

(For proofs see [4] p. 33.)
Classically the division polynomials have integer coefficients, but for our purposes we

can think of them as living in Fp[x, y].

FINDING THE CHARACTERISTIC EQUATION MOD l

Assume that 2 < l < p. There are two cases, depending on whether or not (p|l) = 1.
Only the first is used by the point counting algorithm.

CASE 1: p is not a square mod l.
In this case, (**) has to be the minimal polynomial of φ on E[l]. [Proof: otherwise φ

acts like a scalar, call it c 6= 0. But the characteristic polynomial of c times the identity
matrix is X2 − 2cX + c2; it follows that p ≡ c2 mod l.]

The unknown coefficient t may be zero or not. We first attempt to find a nonzero t
that works; if none is found, then t ≡ 0 mod l.

To prove that φ2 − tφ + p annihilates E[l], it is enough that it annihilate ”most” of
E[l], as the following shows.

Remember that E[l] = Fl × Fl. We want to find the magic t for which

φ2 − tφ+ p = 0

3

that is, the t for which the kernel of the left-hand side is 2-dimensional.
For P ∈ E[l], let A,B,C denote the following points:

A = φ2(P)

B = −tφ(P)
C = p(P)

(they are thus functions of P). For “most” points in E[l], A,B,C are distinct, as can be
seen by counting the number of P for which distinctness fails.
1) A = B holds iff P ∈ ker(φ−t). This kernel is at most 1-dimensional, since φ’s minimal

polynomial has degree 2. Therefore at most l points P make A = B.
2) B = C is similar: count the kernel of φ− p/t to get at most l points.
3) For A = C, recall that t 6= 0. Then since φ2 − p is the “wrong” polynomial, its kernel

has size at most l too.

Therefore there are at most 3l points P for which A,B,C are not distinct. If l ≥ 5,
l2 − 3l > l. Hence if we show that

∀P ∈ E[l], (A,B,Cdistinct ⇒ A+B + C = 0) (+)

then we know that
#(ker (φ2 − tφ+ p)) > l2/2

so it must be all of E[l].

Recall the condition for three points to be on a line in the projective plane: (x1 : y1 : z1),
(x2 : y2 : z2), (x3 : y3 : z3) are collinear iff

det





x1 y1 z1
x2 y2 z2
x3 y3 z3



 = 0.

Assume that t and p are reduced mod l. Then if A,B,C are distinct,

(φ2t− tφ+ p)(x, y) = 0

is equivalent to the collinearity of A = φ2(x, y), B = −tφ(x, y), and C = p(x, y) (sometimes
this is taken as the definition of elliptic curve addition).

Since p, t 6≡ 0(mod l), we know that φ2(x, y), −tφ(x, y), p(x, y) will all be in the affine
plane when (x, y) ∈ E[l]. Denoting the affine coordinates of these three points by (x1, y1),
(x2, y2), and (x3, y3) checking (+) is the same as checking whether

det





x1 y1 1
x2 y2 1
x3 y3 1



 = 0.

4

Let ∆(x, y) denote this determinant; if t is correct then we will have

∀(x, y) ∈ E[l], ∆(x, y) = 0

The idea now is to rewrite this condition so as not to involve y. Since l is odd, we see that
(x, y) ∈ E[l] iff (x,−y) ∈ E[l]; put another way, membership in E[l] does not involve y, so
we can reduce the above criterion to

∀(x, y) ∈ E,ψl(x) = 0 =⇒ ∆(x, y) = 0

Now notice that if (x,y) is contained in E[l], then y cannot be 0 (for otherwise 2(x, y)
would be the identity). We will factor y out of ∆ as follows. We know that ∆ has the form

det







xp
2

yp
2

1
φt(x

p)
ψt(xp)2

ωt(x
p)

ψt(xp)3 1
φp(x)
ψp(x)2

ωp(x)
ψp(x)3

1






= 0.

Now
1. ∀n, φn/ψ2

n is in Fp(x)
2. n even =⇒ ωn/ψ

3
n is in Fp(x)/y

3. n odd =⇒ ωn/ψ
3
n is in yFp(x)

The first column of ∆ contains only functions in Fp(x); and when multiplied by y, the
second column of ∆ contains only functions in Fp(x) · y2 (because p is odd). This last
operation (multiplication by y) will not affect whether or not ∆ is zero, since we know that
y 6= 0. After multiplying the last column by y, we can replace all y2’s by x3+Ax+B, and
clear fractions to get a new determinant ∆′(x). Our criterion now is

∀x ∈ F̄p, ψl(x) = 0 =⇒ ∆′(x) = 0

This is equivalent to
∆′(X) ≡ 0(modψl(X))

which is what the algorithm actually tests.

CASE 2: (p|l) = +1.
We now want to run the above algorithm, but we must first test if φ − c is zero on

E[l] (there are only two choices for c, as c2 ≡ p(modl)). Let c denote one of these values.
Then we have to check whether for all (x, y) ∈ E[l], the pair

(xp, yp)

is equal to
(φc/ψ

2
c , ωc/ψ

3
c)

i.e.
xp − φc/ψ

2
c ≡ 0(ψl)

5

and
yp − ωc/ψ

3
c ≡ 0(ψl)

The first one is easy to check. For the second, we can again divide or multiply by y, then
substitute x3 +Ax+B for y2, yielding an equation in x only.

If this preliminary check gives a good value of c, then we know that t ≡ 2c mod l.
Otherwise, we have shown that (**) is the minimal polynomial of φ, and we continue as
in case 1.

RUNNING TIME ANALYSIS

Recall that the idea of the algorithm is to compute t mod l for lots of small l, where
(p|l) = +1.

Since |t| ≤ 2
√
p, we need the product of these l’s to be at least 4

√
p. So we must

choose B to make
∑

4≤l≤B

(l|p)=+1

log l = 1/2 log p+O(1).

Half of all primes are quadratic residues of p, so by the prime number theorem B ∼ log p
should be enough. So we need O(log p/ log log p) values of ℓ. (This hand-waving should be
replaced by something rigorous.)

We must now make ψn, φn, ωn modulo y2 = x2 − Ax − B for n ≤ B. We use the
recurrence formulas, taking care to do the reduction at each step. The polynomials for n
each have degree ≤ n2 (why?), so the bit complexity will be

∑

n≤B

O((n2)2)O(log p)2 = O(log p)7.

Now consider an individual prime l. We work in the ring R = Fp[x]/(ψl(x)) (remember
l is odd here). Operations in R cost O(l4(log p)2), which is O((log p)6).

We need:
1. xp

2

– costs O((log p)7).

2. yp
2+1 = (x3 +Ax+B)(p

2+1)/2 – ditto.
3. φp/ψ

2
p and ωp/ψ

3
p with p reduced mod l – costs O((log p)6).

4. xp, then powers of this in R up to O(l2) – costs O((log p)8).

And then for each t ≤ l:
5. φt/ψ

2
t and ωt/ψ

3
t evaluated at xp – each polynomial a linear combination of O(l2)

elements of R, hence O((log p)6) operations.
Since there are at most l values of t, the total work for a given l is O((log p)8).
Since there are O(log p/ log log p) values of ℓ, the total work for this part of the algo-

rithm is O((log p)9/ log log p).
Recovery of t using the Chinese remainder theorem can be done with O(log p)2 bit

operations [5].
This gives a complexity estimate of O((log p)9/ log log p) bit operations. A reduced

bound of O((log p)8) is claimed in [6], which (presumably) results from streamlining the
algorithm somewhat.

6

COMPUTING SQUARE ROOTS MOD p

Only the case p ≡ 3 mod 4 is of interest, for other p see [4].
Suppose we have a quadratic field K with discriminant ∆. (General ∆ can be reduced

to this case.) Skipping some details here, an elliptic curve E can be found that has complex
multiplication by A, the ring of integers in K. Use the ideas of the previous sections to
express the Frobenius on E as

φ =
a+ b

√
∆

2

Since φ2 − tφ+ p = 0, we must have

p = φφ̄ = a2 −∆b2

and so in Fp √
∆ = a/b.

REFERENCES.

[1] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p,
Math. Comp. v. 44, pp. 483-494, 1985.

[2] B. Mazur, Eigenvalues of Frobenius acting on algebraic varieties over finite fields, AMS
Proceedings of Symposia in Pure Mathematics vol 29, 1975 [”Algebraic Geometry, Arcata
1974”]

[3] W. Waterhouse and J. S. Milne, Abelian varieties over finite fields, AMS Proceedings
of Symposia in Pure Mathematics vol. 20, 1969.

[4] S. Lang, Elliptic Curves: Diophantine Analysis, Springer 1978.

[5] E. Bach and J. Shallit, Algorithmic Number Theory, vol. 1: Efficient Algorithms, MIT
Press 1996.

[6] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography, Cambridge Univ.
Press, 1999.

7

