Class Project CS766

Multi-View 3D Geometry Reconstruction: Exploiting Massive Parallelism

Chaman Singh Verma

bascomBascom Hall generated by 150 images (Camera: Canon SX 100) using Bundler and PMVS2


Contents:

  1. Introduction

  2. Parallel Paradigms

    1. Fine Grain v/s Coarse Grain Parallelism.

    2. Centralized v/s Decentralized Scheduling.

  3. Exploring Parallelism

    1. Feature Detection.

    2. Feature Matching.

    3. Bundle Adjustment.

    4. PMVS.

    5. Surface Reconstruction.

  4. Results

  5. Future Work

  6. References


Results:

DataSet

#Images

Image Size

Middlebury: Temple
359
640x480
Middlebury: Dino
363
640x480
Ponce: GreenDragon
24
3104x2072
Pone: Armor
48
3504x2336
UW: BascomHall
150
1645x970
MadisonCapitol
246
1649x970
Chazan: Ganesh
100

Chazan: Buddha
100


capitol

Capitol Dataset: Output Point Cloud from Bundler + PMVS2


armor1
armor2
armor3
armor4
armor5

Armor Dataset: Output Point Cloud from Bundler + PMVS2


dragon1
dragon2
dragon3
drago4n
dragon5

Green Dragaon DataSet: Output from Point Cloud from Bundler + PMVS2





Middlebury Benchmark Dataset: (A) Temple (B) Dino

Execution time

DataSet

Feature Detection

( Intel Quad-Core: Hulk)

Feature Matching

(Condor 48 Nodes)

Bundle Adjustment

(Sequential )

PMVS2

(Intel QuadCore:Hulk)

Surface Reconstruction

(Sequential)

Temple
125s
398 s
64 m


Dino
96s
68 s
92 m


Dragon
440s
91s
2m24s
real 7m: user 23m

Armor
983s
671s
3m30s


BascomHall
792s
2418 s
72m
real 186m: user 662m

Capitol
1340s
3294s
242m


Ganesh





Buddha






Feature Detection:



Dataset

Min #Features

Max #Features

Mean #Features

Total Features

Temple
445
1144
869
314426
Dino
66
248
156
58654
Dragon
6928
9546
8194
198050
Armor
11919
55417
27764
1408775
BascomHall
3673
69907
15120
2317129
Capitol
144
28597
13700
3103375
IndianGoddess





  

DataSet/#Threads

1

2

4

6

Temple
12/1.00
6.0/2.00
3.0/4.00
2.20/5.45
Dino
538/1.000
271/1.985
138/3.895
95/5.663
Dragon
831/1.000
432/1.923
237/3.506
173/4.803
BascomHall
4492/1.000
2270/1.978
1163/3.861
776/5.787
Capitol
7757/1.000
3902/1.987
1967/3.943
1366/5.678
IndianGoddess





                                         SIFT Feature detection: Absolute time and Speedup on Multicore Machines on various dataset.

The results shown in the table shows that performance degrades as the number of threads increases supporting the intuitions that multicore machines do not scale well.

Feature Matching:

 

DataSet/#Processors

1

4

7

Temple
113m 10s
29m
16m 41s
Dino
5m 25s
4m 15s
2m 38s
Dragon
5m 25s
1m 39s
1m 7s
Armor
105m 54s
26m
16m 5s
BascomHall
6h 46m
1h 45m
62m 31s
Capitol
14h 58m
3h 50m
137m3s
Ganesh



                                                                       load

Future Work: